1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
// Copyright 2019 TiKV Project Authors. Licensed under Apache-2.0.
use std::sync::Arc;
use log::debug;
use log::info;
use crate::backoff::{DEFAULT_REGION_BACKOFF, DEFAULT_STORE_BACKOFF};
use crate::config::Config;
use crate::pd::PdClient;
use crate::pd::PdRpcClient;
use crate::proto::pdpb::Timestamp;
use crate::request::codec::{ApiV1TxnCodec, ApiV2TxnCodec, Codec, EncodedRequest};
use crate::request::plan::CleanupLocksResult;
use crate::request::Plan;
use crate::timestamp::TimestampExt;
use crate::transaction::lock::ResolveLocksOptions;
use crate::transaction::lowering::new_scan_lock_request;
use crate::transaction::lowering::new_unsafe_destroy_range_request;
use crate::transaction::ResolveLocksContext;
use crate::transaction::Snapshot;
use crate::transaction::Transaction;
use crate::transaction::TransactionOptions;
use crate::Backoff;
use crate::BoundRange;
use crate::Result;
// FIXME: cargo-culted value
const SCAN_LOCK_BATCH_SIZE: u32 = 1024;
/// The TiKV transactional `Client` is used to interact with TiKV using transactional requests.
///
/// Transactions support optimistic and pessimistic modes. For more details see the SIG-transaction
/// [docs](https://github.com/tikv/sig-transaction/tree/master/doc/tikv#optimistic-and-pessimistic-transactions).
///
/// Begin a [`Transaction`] by calling [`begin_optimistic`](Client::begin_optimistic) or
/// [`begin_pessimistic`](Client::begin_pessimistic). A transaction must be rolled back or committed.
///
/// Besides transactions, the client provides some further functionality:
/// - `gc`: trigger a GC process which clears stale data in the cluster.
/// - `current_timestamp`: get the current `Timestamp` from PD.
/// - `snapshot`: get a [`Snapshot`] of the database at a specified timestamp.
/// A `Snapshot` is a read-only transaction.
///
/// The returned results of transactional requests are [`Future`](std::future::Future)s that must be
/// awaited to execute.
pub struct Client<Cod: Codec = ApiV1TxnCodec> {
pd: Arc<PdRpcClient<Cod>>,
}
impl<Cod: Codec> Clone for Client<Cod> {
fn clone(&self) -> Self {
Self {
pd: self.pd.clone(),
}
}
}
impl Client<ApiV1TxnCodec> {
/// Create a transactional [`Client`] and connect to the TiKV cluster.
///
/// Because TiKV is managed by a [PD](https://github.com/pingcap/pd/) cluster, the endpoints for
/// PD must be provided, not the TiKV nodes. It's important to include more than one PD endpoint
/// (include all endpoints, if possible), this helps avoid having a single point of failure.
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Config, TransactionClient};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// let client = TransactionClient::new(vec!["192.168.0.100"]).await.unwrap();
/// # });
/// ```
pub async fn new<S: Into<String>>(pd_endpoints: Vec<S>) -> Result<Client> {
Self::new_with_config(pd_endpoints, Config::default()).await
}
/// Create a transactional [`Client`] with a custom configuration, and connect to the TiKV cluster.
///
/// Because TiKV is managed by a [PD](https://github.com/pingcap/pd/) cluster, the endpoints for
/// PD must be provided, not the TiKV nodes. It's important to include more than one PD endpoint
/// (include all endpoints, if possible), this helps avoid having a single point of failure.
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Config, TransactionClient};
/// # use futures::prelude::*;
/// # use std::time::Duration;
/// # futures::executor::block_on(async {
/// let client = TransactionClient::new_with_config(
/// vec!["192.168.0.100"],
/// Config::default().with_timeout(Duration::from_secs(60)),
/// )
/// .await
/// .unwrap();
/// # });
/// ```
pub async fn new_with_config<S: Into<String>>(
pd_endpoints: Vec<S>,
config: Config,
) -> Result<Client> {
Self::new_with_codec(pd_endpoints, config, ApiV1TxnCodec::default()).await
}
}
impl Client<ApiV2TxnCodec> {
pub async fn new_with_config_v2<S: Into<String>>(
_keyspace_name: &str,
pd_endpoints: Vec<S>,
config: Config,
) -> Result<Client<ApiV2TxnCodec>> {
debug!("creating new transactional client APIv2");
let pd_endpoints: Vec<String> = pd_endpoints.into_iter().map(Into::into).collect();
let mut pd = PdRpcClient::connect(&pd_endpoints, config, true, None).await?;
let keyspace_id = 0; // TODO: get keyspace_id by pd.get_keyspace(keyspace_name)
pd.set_codec(ApiV2TxnCodec::new(keyspace_id));
Ok(Client { pd: Arc::new(pd) })
}
}
impl<Cod: Codec> Client<Cod> {
pub async fn new_with_codec<S: Into<String>>(
pd_endpoints: Vec<S>,
config: Config,
codec: Cod,
) -> Result<Client<Cod>> {
debug!("creating new transactional client");
let pd_endpoints: Vec<String> = pd_endpoints.into_iter().map(Into::into).collect();
let pd =
Arc::new(PdRpcClient::<Cod>::connect(&pd_endpoints, config, true, Some(codec)).await?);
Ok(Client { pd })
}
/// Creates a new optimistic [`Transaction`].
///
/// Use the transaction to issue requests like [`get`](Transaction::get) or
/// [`put`](Transaction::put).
///
/// Write operations do not lock data in TiKV, thus the commit request may fail due to a write
/// conflict.
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Config, TransactionClient};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// let client = TransactionClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let mut transaction = client.begin_optimistic().await.unwrap();
/// // ... Issue some commands.
/// transaction.commit().await.unwrap();
/// # });
/// ```
pub async fn begin_optimistic(&self) -> Result<Transaction<Cod, PdRpcClient<Cod>>> {
debug!("creating new optimistic transaction");
let timestamp = self.current_timestamp().await?;
Ok(self.new_transaction(timestamp, TransactionOptions::new_optimistic()))
}
/// Creates a new pessimistic [`Transaction`].
///
/// Write operations will lock the data until committed, thus commit requests should not suffer
/// from write conflicts.
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Config, TransactionClient};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// let client = TransactionClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let mut transaction = client.begin_pessimistic().await.unwrap();
/// // ... Issue some commands.
/// transaction.commit().await.unwrap();
/// # });
/// ```
pub async fn begin_pessimistic(&self) -> Result<Transaction<Cod, PdRpcClient<Cod>>> {
debug!("creating new pessimistic transaction");
let timestamp = self.current_timestamp().await?;
Ok(self.new_transaction(timestamp, TransactionOptions::new_pessimistic()))
}
/// Create a new customized [`Transaction`].
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Config, TransactionClient, TransactionOptions};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// let client = TransactionClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let mut transaction = client
/// .begin_with_options(TransactionOptions::default().use_async_commit())
/// .await
/// .unwrap();
/// // ... Issue some commands.
/// transaction.commit().await.unwrap();
/// # });
/// ```
pub async fn begin_with_options(
&self,
options: TransactionOptions,
) -> Result<Transaction<Cod, PdRpcClient<Cod>>> {
debug!("creating new customized transaction");
let timestamp = self.current_timestamp().await?;
Ok(self.new_transaction(timestamp, options))
}
/// Create a new [`Snapshot`](Snapshot) at the given [`Timestamp`](Timestamp).
pub fn snapshot(
&self,
timestamp: Timestamp,
options: TransactionOptions,
) -> Snapshot<Cod, PdRpcClient<Cod>> {
debug!("creating new snapshot");
Snapshot::new(self.new_transaction(timestamp, options.read_only()))
}
/// Retrieve the current [`Timestamp`].
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Config, TransactionClient};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// let client = TransactionClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let timestamp = client.current_timestamp().await.unwrap();
/// # });
/// ```
pub async fn current_timestamp(&self) -> Result<Timestamp> {
self.pd.clone().get_timestamp().await
}
/// Request garbage collection (GC) of the TiKV cluster.
///
/// GC deletes MVCC records whose timestamp is lower than the given `safepoint`. We must guarantee
/// that all transactions started before this timestamp had committed. We can keep an active
/// transaction list in application to decide which is the minimal start timestamp of them.
///
/// For each key, the last mutation record (unless it's a deletion) before `safepoint` is retained.
///
/// GC is performed by:
/// 1. resolving all locks with timestamp <= `safepoint`
/// 2. updating PD's known safepoint
///
/// This is a simplified version of [GC in TiDB](https://docs.pingcap.com/tidb/stable/garbage-collection-overview).
/// We skip the second step "delete ranges" which is an optimization for TiDB.
pub async fn gc(&self, safepoint: Timestamp) -> Result<bool> {
debug!("invoking transactional gc request");
let options = ResolveLocksOptions {
batch_size: SCAN_LOCK_BATCH_SIZE,
..Default::default()
};
self.cleanup_locks(.., &safepoint, options).await?;
// update safepoint to PD
let res: bool = self
.pd
.clone()
.update_safepoint(safepoint.version())
.await?;
if !res {
info!("new safepoint != user-specified safepoint");
}
Ok(res)
}
pub async fn cleanup_locks(
&self,
range: impl Into<BoundRange>,
safepoint: &Timestamp,
options: ResolveLocksOptions,
) -> Result<CleanupLocksResult> {
debug!("invoking cleanup async commit locks");
// scan all locks with ts <= safepoint
let ctx = ResolveLocksContext::default();
let backoff = Backoff::equal_jitter_backoff(100, 10000, 50);
let req = new_scan_lock_request(range.into(), safepoint, options.batch_size);
let encoded_req = EncodedRequest::new(req, self.pd.get_codec());
let plan = crate::request::PlanBuilder::new(self.pd.clone(), encoded_req)
.cleanup_locks(ctx.clone(), options, backoff)
.retry_multi_region(DEFAULT_REGION_BACKOFF)
.extract_error()
.merge(crate::request::Collect)
.plan();
plan.execute().await
}
// For test.
// Note: `batch_size` must be >= expected number of locks.
#[cfg(feature = "integration-tests")]
pub async fn scan_locks(
&self,
safepoint: &Timestamp,
range: impl Into<BoundRange>,
batch_size: u32,
) -> Result<Vec<crate::proto::kvrpcpb::LockInfo>> {
let req = new_scan_lock_request(range.into(), safepoint, batch_size);
let encoded_req = EncodedRequest::new(req, self.pd.get_codec());
let plan = crate::request::PlanBuilder::new(self.pd.clone(), encoded_req)
.retry_multi_region(DEFAULT_REGION_BACKOFF)
.merge(crate::request::Collect)
.plan();
plan.execute().await
}
/// Cleans up all keys in a range and quickly reclaim disk space.
///
/// The range can span over multiple regions.
///
/// Note that the request will directly delete data from RocksDB, and all MVCC will be erased.
///
/// This interface is intended for special scenarios that resemble operations like "drop table" or "drop database" in TiDB.
pub async fn unsafe_destroy_range(&self, range: impl Into<BoundRange>) -> Result<()> {
let req = new_unsafe_destroy_range_request(range.into());
let encoded_req = EncodedRequest::new(req, self.pd.get_codec());
let plan = crate::request::PlanBuilder::new(self.pd.clone(), encoded_req)
.all_stores(DEFAULT_STORE_BACKOFF)
.merge(crate::request::Collect)
.plan();
plan.execute().await
}
fn new_transaction(
&self,
timestamp: Timestamp,
options: TransactionOptions,
) -> Transaction<Cod, PdRpcClient<Cod>> {
Transaction::new(timestamp, self.pd.clone(), options)
}
}