1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
// Copyright 2019 TiKV Project Authors. Licensed under Apache-2.0.
use std::iter;
use std::marker::PhantomData;
use std::sync::atomic;
use std::sync::atomic::AtomicU8;
use std::sync::Arc;
use std::time::Instant;
use derive_new::new;
use fail::fail_point;
use futures::prelude::*;
use log::debug;
use log::warn;
use tokio::time::Duration;
use crate::backoff::Backoff;
use crate::backoff::DEFAULT_REGION_BACKOFF;
use crate::codec::ApiV1TxnCodec;
use crate::pd::PdClient;
use crate::pd::PdRpcClient;
use crate::proto::kvrpcpb;
use crate::proto::pdpb::Timestamp;
use crate::request::codec::{Codec, EncodedRequest};
use crate::request::Collect;
use crate::request::CollectError;
use crate::request::CollectSingle;
use crate::request::CollectWithShard;
use crate::request::Plan;
use crate::request::PlanBuilder;
use crate::request::RetryOptions;
use crate::timestamp::TimestampExt;
use crate::transaction::buffer::Buffer;
use crate::transaction::lowering::*;
use crate::BoundRange;
use crate::Error;
use crate::Key;
use crate::KvPair;
use crate::Result;
use crate::Value;
/// An undo-able set of actions on the dataset.
///
/// Create a transaction using a [`TransactionClient`](crate::TransactionClient), then run actions
/// (such as `get`, or `put`) on the transaction. Reads are executed immediately, writes are
/// buffered locally. Once complete, `commit` the transaction. Behind the scenes, the client will
/// perform a two phase commit and return success as soon as the writes are guaranteed to be
/// committed (some finalisation may continue in the background after the return, but no data can be
/// lost).
///
/// TiKV transactions use multi-version concurrency control. All reads logically happen at the start
/// of the transaction (at the start timestamp, `start_ts`). Once a transaction is commited, a
/// its writes atomically become visible to other transactions at (logically) the commit timestamp.
///
/// In other words, a transaction can read data that was committed at `commit_ts` < its `start_ts`,
/// and its writes are readable by transactions with `start_ts` >= its `commit_ts`.
///
/// Mutations are buffered locally and sent to the TiKV cluster at the time of commit.
/// In a pessimistic transaction, all write operations and `xxx_for_update` operations will immediately
/// acquire locks from TiKV. Such a lock blocks other transactions from writing to that key.
/// A lock exists until the transaction is committed or rolled back, or the lock reaches its time to
/// live (TTL).
///
/// For details, the [SIG-Transaction](https://github.com/tikv/sig-transaction)
/// provides materials explaining designs and implementations of TiKV transactions.
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Config, TransactionClient};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// let client = TransactionClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let mut txn = client.begin_optimistic().await.unwrap();
/// let foo = txn.get("foo".to_owned()).await.unwrap().unwrap();
/// txn.put("bar".to_owned(), foo).await.unwrap();
/// txn.commit().await.unwrap();
/// # });
/// ```
pub struct Transaction<Cod: Codec = ApiV1TxnCodec, PdC: PdClient<Codec = Cod> = PdRpcClient<Cod>> {
status: Arc<AtomicU8>,
timestamp: Timestamp,
buffer: Buffer,
rpc: Arc<PdC>,
options: TransactionOptions,
is_heartbeat_started: bool,
start_instant: Instant,
phantom: PhantomData<Cod>,
}
impl<Cod: Codec, PdC: PdClient<Codec = Cod>> Transaction<Cod, PdC> {
pub(crate) fn new(
timestamp: Timestamp,
rpc: Arc<PdC>,
options: TransactionOptions,
) -> Transaction<Cod, PdC> {
let status = if options.read_only {
TransactionStatus::ReadOnly
} else {
TransactionStatus::Active
};
Transaction {
status: Arc::new(AtomicU8::new(status as u8)),
timestamp,
buffer: Buffer::new(options.is_pessimistic()),
rpc,
options,
is_heartbeat_started: false,
start_instant: std::time::Instant::now(),
phantom: PhantomData,
}
}
/// Create a new 'get' request
///
/// Once resolved this request will result in the fetching of the value associated with the
/// given key.
///
/// Retuning `Ok(None)` indicates the key does not exist in TiKV.
///
/// # Examples
/// ```rust,no_run
/// # use tikv_client::{Value, Config, TransactionClient};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = TransactionClient::new(vec!["192.168.0.100", "192.168.0.101"]).await.unwrap();
/// let mut txn = client.begin_optimistic().await.unwrap();
/// let key = "TiKV".to_owned();
/// let result: Option<Value> = txn.get(key).await.unwrap();
/// # });
/// ```
pub async fn get(&mut self, key: impl Into<Key>) -> Result<Option<Value>> {
debug!("invoking transactional get request");
self.check_allow_operation().await?;
let timestamp = self.timestamp.clone();
let rpc = self.rpc.clone();
let key = key.into();
let retry_options = self.options.retry_options.clone();
self.buffer
.get_or_else(key, |key| async move {
let request = new_get_request(key, timestamp);
let encoded_req = EncodedRequest::new(request, rpc.get_codec());
let plan = PlanBuilder::new(rpc, encoded_req)
.resolve_lock(retry_options.lock_backoff)
.retry_multi_region(DEFAULT_REGION_BACKOFF)
.merge(CollectSingle)
.post_process_default()
.plan();
plan.execute().await
})
.await
}
/// Create a `get for update` request.
///
/// The request reads and "locks" a key. It is similar to `SELECT ... FOR
/// UPDATE` in TiDB, and has different behavior in optimistic and
/// pessimistic transactions.
///
/// # Optimistic transaction
///
/// It reads at the "start timestamp" and caches the value, just like normal
/// get requests. The lock is written in prewrite and commit, so it cannot
/// prevent concurrent transactions from writing the same key, but can only
/// prevent itself from committing.
///
/// # Pessimistic transaction
///
/// It reads at the "current timestamp" and thus does not cache the value.
/// So following read requests won't be affected by the `get_for_udpate`.
/// A lock will be acquired immediately with this request, which prevents
/// concurrent transactions from mutating the keys.
///
/// The "current timestamp" (also called `for_update_ts` of the request) is fetched from PD.
///
/// Note: The behavior of this command under pessimistic transaction does not follow snapshot.
/// It reads the latest value (using current timestamp), and the value is not cached in the
/// local buffer. So normal `get`-like commands after `get_for_update` will not be influenced,
/// they still read values at the transaction's `start_ts`.
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Value, Config, TransactionClient};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = TransactionClient::new(vec!["192.168.0.100", "192.168.0.101"]).await.unwrap();
/// let mut txn = client.begin_pessimistic().await.unwrap();
/// let key = "TiKV".to_owned();
/// let result: Value = txn.get_for_update(key).await.unwrap().unwrap();
/// // now the key "TiKV" is locked, other transactions cannot modify it
/// // Finish the transaction...
/// txn.commit().await.unwrap();
/// # });
/// ```
pub async fn get_for_update(&mut self, key: impl Into<Key>) -> Result<Option<Value>> {
debug!("invoking transactional get_for_update request");
self.check_allow_operation().await?;
if !self.is_pessimistic() {
let key = key.into();
self.lock_keys(iter::once(key.clone())).await?;
self.get(key).await
} else {
let mut pairs = self.pessimistic_lock(iter::once(key.into()), true).await?;
debug_assert!(pairs.len() <= 1);
match pairs.pop() {
Some(pair) => Ok(Some(pair.1)),
None => Ok(None),
}
}
}
/// Check whether a key exists.
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Value, Config, TransactionClient};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = TransactionClient::new(vec!["192.168.0.100", "192.168.0.101"]).await.unwrap();
/// let mut txn = client.begin_pessimistic().await.unwrap();
/// let exists = txn.key_exists("k1".to_owned()).await.unwrap();
/// txn.commit().await.unwrap();
/// # });
/// ```
pub async fn key_exists(&mut self, key: impl Into<Key>) -> Result<bool> {
debug!("invoking transactional key_exists request");
Ok(self.get(key).await?.is_some())
}
/// Create a new 'batch get' request.
///
/// Once resolved this request will result in the fetching of the values associated with the
/// given keys.
///
/// Non-existent entries will not appear in the result. The order of the keys is not retained in
/// the result.
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Key, Value, Config, TransactionClient};
/// # use futures::prelude::*;
/// # use std::collections::HashMap;
/// # futures::executor::block_on(async {
/// # let client = TransactionClient::new(vec!["192.168.0.100", "192.168.0.101"]).await.unwrap();
/// let mut txn = client.begin_optimistic().await.unwrap();
/// let keys = vec!["TiKV".to_owned(), "TiDB".to_owned()];
/// let result: HashMap<Key, Value> = txn
/// .batch_get(keys)
/// .await
/// .unwrap()
/// .map(|pair| (pair.0, pair.1))
/// .collect();
/// // Finish the transaction...
/// txn.commit().await.unwrap();
/// # });
/// ```
pub async fn batch_get(
&mut self,
keys: impl IntoIterator<Item = impl Into<Key>>,
) -> Result<impl Iterator<Item = KvPair>> {
debug!("invoking transactional batch_get request");
self.check_allow_operation().await?;
let timestamp = self.timestamp.clone();
let rpc = self.rpc.clone();
let retry_options = self.options.retry_options.clone();
self.buffer
.batch_get_or_else(keys.into_iter().map(|k| k.into()), move |keys| async move {
let request = new_batch_get_request(keys, timestamp);
let encoded_req = EncodedRequest::new(request, rpc.get_codec());
let plan = PlanBuilder::new(rpc, encoded_req)
.resolve_lock(retry_options.lock_backoff)
.retry_multi_region(retry_options.region_backoff)
.merge(Collect)
.plan();
plan.execute()
.await
.map(|r| r.into_iter().map(Into::into).collect())
})
.await
}
/// Create a new 'batch get for update' request.
///
/// Similar to [`get_for_update`](Transaction::get_for_update), but it works
/// for a batch of keys.
///
/// Non-existent entries will not appear in the result. The order of the
/// keys is not retained in the result.
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Key, Value, Config, TransactionClient, KvPair};
/// # use futures::prelude::*;
/// # use std::collections::HashMap;
/// # futures::executor::block_on(async {
/// # let client = TransactionClient::new(vec!["192.168.0.100", "192.168.0.101"]).await.unwrap();
/// let mut txn = client.begin_pessimistic().await.unwrap();
/// let keys = vec!["foo".to_owned(), "bar".to_owned()];
/// let result: Vec<KvPair> = txn
/// .batch_get_for_update(keys)
/// .await
/// .unwrap();
/// // now "foo" and "bar" are both locked
/// // Finish the transaction...
/// txn.commit().await.unwrap();
/// # });
/// ```
pub async fn batch_get_for_update(
&mut self,
keys: impl IntoIterator<Item = impl Into<Key>>,
) -> Result<Vec<KvPair>> {
debug!("invoking transactional batch_get_for_update request");
self.check_allow_operation().await?;
let keys: Vec<Key> = keys.into_iter().map(|k| k.into()).collect();
if !self.is_pessimistic() {
self.lock_keys(keys.clone()).await?;
Ok(self.batch_get(keys).await?.collect())
} else {
self.pessimistic_lock(keys, true).await
}
}
/// Create a new 'scan' request.
///
/// Once resolved this request will result in a `Vec` of all key-value pairs that lie in the
/// specified range.
///
/// If the number of eligible key-value pairs are greater than `limit`,
/// only the first `limit` pairs are returned, ordered by key.
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Key, KvPair, Value, Config, TransactionClient};
/// # use futures::prelude::*;
/// # use std::collections::HashMap;
/// # futures::executor::block_on(async {
/// # let client = TransactionClient::new(vec!["192.168.0.100", "192.168.0.101"]).await.unwrap();
/// let mut txn = client.begin_optimistic().await.unwrap();
/// let key1: Key = b"foo".to_vec().into();
/// let key2: Key = b"bar".to_vec().into();
/// let result: Vec<KvPair> = txn
/// .scan(key1..key2, 10)
/// .await
/// .unwrap()
/// .collect();
/// // Finish the transaction...
/// txn.commit().await.unwrap();
/// # });
/// ```
pub async fn scan(
&mut self,
range: impl Into<BoundRange>,
limit: u32,
) -> Result<impl Iterator<Item = KvPair>> {
debug!("invoking transactional scan request");
self.scan_inner(range, limit, false, false).await
}
/// Create a new 'scan' request that only returns the keys.
///
/// Once resolved this request will result in a `Vec` of keys that lies in the specified range.
///
/// If the number of eligible keys are greater than `limit`,
/// only the first `limit` keys are returned, ordered by key.
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Key, KvPair, Value, Config, TransactionClient};
/// # use futures::prelude::*;
/// # use std::collections::HashMap;
/// # futures::executor::block_on(async {
/// # let client = TransactionClient::new(vec!["192.168.0.100", "192.168.0.101"]).await.unwrap();
/// let mut txn = client.begin_optimistic().await.unwrap();
/// let key1: Key = b"foo".to_vec().into();
/// let key2: Key = b"bar".to_vec().into();
/// let result: Vec<Key> = txn
/// .scan_keys(key1..key2, 10)
/// .await
/// .unwrap()
/// .collect();
/// // Finish the transaction...
/// txn.commit().await.unwrap();
/// # });
/// ```
pub async fn scan_keys(
&mut self,
range: impl Into<BoundRange>,
limit: u32,
) -> Result<impl Iterator<Item = Key>> {
debug!("invoking transactional scan_keys request");
Ok(self
.scan_inner(range, limit, true, false)
.await?
.map(KvPair::into_key))
}
/// Create a 'scan_reverse' request.
///
/// Similar to [`scan`](Transaction::scan), but scans in the reverse direction.
pub async fn scan_reverse(
&mut self,
range: impl Into<BoundRange>,
limit: u32,
) -> Result<impl Iterator<Item = KvPair>> {
debug!("invoking transactional scan_reverse request");
self.scan_inner(range, limit, false, true).await
}
/// Create a 'scan_keys_reverse' request.
///
/// Similar to [`scan`](Transaction::scan_keys), but scans in the reverse direction.
pub async fn scan_keys_reverse(
&mut self,
range: impl Into<BoundRange>,
limit: u32,
) -> Result<impl Iterator<Item = Key>> {
debug!("invoking transactional scan_keys_reverse request");
Ok(self
.scan_inner(range, limit, true, true)
.await?
.map(KvPair::into_key))
}
/// Sets the value associated with the given key.
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Key, Value, Config, TransactionClient};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = TransactionClient::new(vec!["192.168.0.100", "192.168.0.101"]).await.unwrap();
/// let mut txn = client.begin_optimistic().await.unwrap();
/// let key = "foo".to_owned();
/// let val = "FOO".to_owned();
/// txn.put(key, val);
/// txn.commit().await.unwrap();
/// # });
/// ```
pub async fn put(&mut self, key: impl Into<Key>, value: impl Into<Value>) -> Result<()> {
debug!("invoking transactional put request");
self.check_allow_operation().await?;
let key = key.into();
if self.is_pessimistic() {
self.pessimistic_lock(iter::once(key.clone()), false)
.await?;
}
self.buffer.put(key, value.into());
Ok(())
}
/// Inserts the value associated with the given key.
///
/// Similar to [`put'], but it has an additional constraint that the key should not exist
/// before this operation.
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Key, Value, Config, TransactionClient};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = TransactionClient::new(vec!["192.168.0.100", "192.168.0.101"]).await.unwrap();
/// let mut txn = client.begin_optimistic().await.unwrap();
/// let key = "foo".to_owned();
/// let val = "FOO".to_owned();
/// txn.insert(key, val);
/// txn.commit().await.unwrap();
/// # });
/// ```
pub async fn insert(&mut self, key: impl Into<Key>, value: impl Into<Value>) -> Result<()> {
debug!("invoking transactional insert request");
self.check_allow_operation().await?;
let key = key.into();
if self.buffer.get(&key).is_some() {
return Err(Error::DuplicateKeyInsertion);
}
if self.is_pessimistic() {
self.pessimistic_lock(
iter::once((key.clone(), kvrpcpb::Assertion::NotExist)),
false,
)
.await?;
}
self.buffer.insert(key, value.into());
Ok(())
}
/// Deletes the given key and its value from the database.
///
/// Deleting a non-existent key will not result in an error.
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Key, Config, TransactionClient};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = TransactionClient::new(vec!["192.168.0.100", "192.168.0.101"]).await.unwrap();
/// let mut txn = client.begin_optimistic().await.unwrap();
/// let key = "foo".to_owned();
/// txn.delete(key);
/// txn.commit().await.unwrap();
/// # });
/// ```
pub async fn delete(&mut self, key: impl Into<Key>) -> Result<()> {
debug!("invoking transactional delete request");
self.check_allow_operation().await?;
let key = key.into();
if self.is_pessimistic() {
self.pessimistic_lock(iter::once(key.clone()), false)
.await?;
}
self.buffer.delete(key);
Ok(())
}
/// Batch mutate the database.
///
/// Only `Put` and `Delete` are supported.
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Key, Config, TransactionClient, proto::kvrpcpb};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = TransactionClient::new(vec!["192.168.0.100", "192.168.0.101"]).await.unwrap();
/// let mut txn = client.begin_optimistic().await.unwrap();
/// let mutations = vec![
/// kvrpcpb::Mutation {
/// op: kvrpcpb::Op::Del.into(),
/// key: b"k0".to_vec(),
/// ..Default::default()
/// },
/// kvrpcpb::Mutation {
/// op: kvrpcpb::Op::Put.into(),
/// key: b"k1".to_vec(),
/// value: b"v1".to_vec(),
/// ..Default::default()
/// },
/// ];
/// txn.batch_mutate(mutations).await.unwrap();
/// txn.commit().await.unwrap();
/// # });
/// ```
pub async fn batch_mutate(
&mut self,
mutations: impl IntoIterator<Item = kvrpcpb::Mutation>,
) -> Result<()> {
debug!("invoking transactional batch mutate request");
self.check_allow_operation().await?;
if self.is_pessimistic() {
let mutations: Vec<kvrpcpb::Mutation> = mutations.into_iter().collect();
self.pessimistic_lock(mutations.iter().map(|m| Key::from(m.key.clone())), false)
.await?;
for m in mutations {
self.buffer.mutate(m);
}
} else {
for m in mutations.into_iter() {
self.buffer.mutate(m);
}
}
Ok(())
}
/// Lock the given keys without mutating their values.
///
/// In optimistic mode, write conflicts are not checked until commit.
/// So use this command to indicate that
/// "I do not want to commit if the value associated with this key has been modified".
/// It's useful to avoid the *write skew* anomaly.
///
/// In pessimistic mode, it is similar to [`batch_get_for_update`](Transaction::batch_get_for_update),
/// except that it does not read values.
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Config, TransactionClient};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = TransactionClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let mut txn = client.begin_optimistic().await.unwrap();
/// txn.lock_keys(vec!["TiKV".to_owned(), "Rust".to_owned()]);
/// // ... Do some actions.
/// txn.commit().await.unwrap();
/// # });
/// ```
pub async fn lock_keys(
&mut self,
keys: impl IntoIterator<Item = impl Into<Key>>,
) -> Result<()> {
debug!("invoking transactional lock_keys request");
self.check_allow_operation().await?;
match self.options.kind {
TransactionKind::Optimistic => {
for key in keys {
self.buffer.lock(key.into());
}
}
TransactionKind::Pessimistic(_) => {
self.pessimistic_lock(keys.into_iter().map(|k| k.into()), false)
.await?;
}
}
Ok(())
}
/// Commits the actions of the transaction. On success, we return the commit timestamp (or
/// `None` if there was nothing to commit).
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Config, Timestamp, TransactionClient};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = TransactionClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let mut txn = client.begin_optimistic().await.unwrap();
/// // ... Do some actions.
/// let result: Timestamp = txn.commit().await.unwrap().unwrap();
/// # });
/// ```
pub async fn commit(&mut self) -> Result<Option<Timestamp>> {
debug!("commiting transaction");
if !self.transit_status(
|status| {
matches!(
status,
TransactionStatus::StartedCommit | TransactionStatus::Active
)
},
TransactionStatus::StartedCommit,
) {
return Err(Error::OperationAfterCommitError);
}
let primary_key = self.buffer.get_primary_key();
let mutations = self.buffer.to_proto_mutations();
if mutations.is_empty() {
assert!(primary_key.is_none());
return Ok(None);
}
self.start_auto_heartbeat().await;
let res = Committer::new(
primary_key,
mutations,
self.timestamp.clone(),
self.rpc.clone(),
self.options.clone(),
self.buffer.get_write_size() as u64,
self.start_instant,
)
.commit()
.await;
if res.is_ok() {
self.set_status(TransactionStatus::Committed);
}
res
}
/// Rollback the transaction.
///
/// If it succeeds, all mutations made by this transaction will be discarded.
///
/// # Examples
///
/// ```rust,no_run
/// # use tikv_client::{Config, Timestamp, TransactionClient};
/// # use futures::prelude::*;
/// # futures::executor::block_on(async {
/// # let client = TransactionClient::new(vec!["192.168.0.100"]).await.unwrap();
/// let mut txn = client.begin_optimistic().await.unwrap();
/// // ... Do some actions.
/// txn.rollback().await.unwrap();
/// # });
/// ```
pub async fn rollback(&mut self) -> Result<()> {
debug!("rolling back transaction");
if !self.transit_status(
|status| {
matches!(
status,
TransactionStatus::StartedRollback
| TransactionStatus::Active
| TransactionStatus::StartedCommit
)
},
TransactionStatus::StartedRollback,
) {
return Err(Error::OperationAfterCommitError);
}
let primary_key = self.buffer.get_primary_key();
let mutations = self.buffer.to_proto_mutations();
let res = Committer::new(
primary_key,
mutations,
self.timestamp.clone(),
self.rpc.clone(),
self.options.clone(),
self.buffer.get_write_size() as u64,
self.start_instant,
)
.rollback()
.await;
if res.is_ok() {
self.set_status(TransactionStatus::Rolledback);
}
res
}
/// Get the start timestamp of this transaction.
pub fn start_timestamp(&self) -> Timestamp {
self.timestamp.clone()
}
/// Send a heart beat message to keep the transaction alive on the server and update its TTL.
///
/// Returns the TTL set on the transaction's locks by TiKV.
#[doc(hidden)]
pub async fn send_heart_beat(&mut self) -> Result<u64> {
debug!("sending heart_beat");
self.check_allow_operation().await?;
let primary_key = match self.buffer.get_primary_key() {
Some(k) => k,
None => return Err(Error::NoPrimaryKey),
};
let request = new_heart_beat_request(
self.timestamp.clone(),
primary_key,
self.start_instant.elapsed().as_millis() as u64 + MAX_TTL,
);
let encoded_req = EncodedRequest::new(request, self.rpc.get_codec());
let plan = PlanBuilder::new(self.rpc.clone(), encoded_req)
.resolve_lock(self.options.retry_options.lock_backoff.clone())
.retry_multi_region(self.options.retry_options.region_backoff.clone())
.merge(CollectSingle)
.post_process_default()
.plan();
plan.execute().await
}
async fn scan_inner(
&mut self,
range: impl Into<BoundRange>,
limit: u32,
key_only: bool,
reverse: bool,
) -> Result<impl Iterator<Item = KvPair>> {
self.check_allow_operation().await?;
let timestamp = self.timestamp.clone();
let rpc = self.rpc.clone();
let retry_options = self.options.retry_options.clone();
self.buffer
.scan_and_fetch(
range.into(),
limit,
!key_only,
reverse,
move |new_range, new_limit| async move {
let request =
new_scan_request(new_range, timestamp, new_limit, key_only, reverse);
let encoded_req = EncodedRequest::new(request, rpc.get_codec());
let plan = PlanBuilder::new(rpc, encoded_req)
.resolve_lock(retry_options.lock_backoff)
.retry_multi_region(retry_options.region_backoff)
.merge(Collect)
.plan();
plan.execute()
.await
.map(|r| r.into_iter().map(Into::into).collect())
},
)
.await
}
/// Pessimistically lock the keys, and optionally retrieve corresponding values.
/// If a key does not exist, the corresponding pair will not appear in the result.
///
/// Once resolved it acquires locks on the keys in TiKV.
/// A lock prevents other transactions from mutating the entry until it is released.
///
/// # Panics
///
/// Only valid for pessimistic transactions, panics if called on an optimistic transaction.
async fn pessimistic_lock(
&mut self,
keys: impl IntoIterator<Item = impl PessimisticLock>,
need_value: bool,
) -> Result<Vec<KvPair>> {
debug!("acquiring pessimistic lock");
assert!(
matches!(self.options.kind, TransactionKind::Pessimistic(_)),
"`pessimistic_lock` is only valid to use with pessimistic transactions"
);
let keys: Vec<_> = keys.into_iter().collect();
if keys.is_empty() {
return Ok(vec![]);
}
let first_key = keys[0].clone().key();
// we do not set the primary key here, because pessimistic lock request
// can fail, in which case the keys may not be part of the transaction.
let primary_lock = self
.buffer
.get_primary_key()
.unwrap_or_else(|| first_key.clone());
let for_update_ts = self.rpc.clone().get_timestamp().await?;
self.options.push_for_update_ts(for_update_ts.clone());
let request = new_pessimistic_lock_request(
keys.clone().into_iter(),
primary_lock,
self.timestamp.clone(),
MAX_TTL,
for_update_ts.clone(),
need_value,
);
let encoded_req = EncodedRequest::new(request, self.rpc.get_codec());
let plan = PlanBuilder::new(self.rpc.clone(), encoded_req)
.resolve_lock(self.options.retry_options.lock_backoff.clone())
.preserve_shard()
.retry_multi_region_preserve_results(self.options.retry_options.region_backoff.clone())
.merge(CollectWithShard)
.plan();
let pairs = plan.execute().await;
if let Err(err) = pairs {
match err {
Error::PessimisticLockError {
inner,
success_keys,
} if !success_keys.is_empty() => {
let keys = success_keys.into_iter().map(Key::from);
self.pessimistic_lock_rollback(keys, self.timestamp.clone(), for_update_ts)
.await?;
Err(*inner)
}
_ => Err(err),
}
} else {
// primary key will be set here if needed
self.buffer.primary_key_or(&first_key);
self.start_auto_heartbeat().await;
for key in keys {
self.buffer.lock(key.key());
}
pairs
}
}
/// Rollback pessimistic lock
async fn pessimistic_lock_rollback(
&mut self,
keys: impl Iterator<Item = Key>,
start_version: Timestamp,
for_update_ts: Timestamp,
) -> Result<()> {
debug!("rollback pessimistic lock");
let keys: Vec<_> = keys.into_iter().collect();
if keys.is_empty() {
return Ok(());
}
let req = new_pessimistic_rollback_request(
keys.clone().into_iter(),
start_version,
for_update_ts,
);
let encoded_req = EncodedRequest::new(req, self.rpc.get_codec());
let plan = PlanBuilder::new(self.rpc.clone(), encoded_req)
.resolve_lock(self.options.retry_options.lock_backoff.clone())
.retry_multi_region(self.options.retry_options.region_backoff.clone())
.extract_error()
.plan();
plan.execute().await?;
for key in keys {
self.buffer.unlock(&key);
}
Ok(())
}
/// Checks if the transaction can perform arbitrary operations.
async fn check_allow_operation(&self) -> Result<()> {
match self.get_status() {
TransactionStatus::ReadOnly | TransactionStatus::Active => Ok(()),
TransactionStatus::Committed
| TransactionStatus::Rolledback
| TransactionStatus::StartedCommit
| TransactionStatus::StartedRollback
| TransactionStatus::Dropped => Err(Error::OperationAfterCommitError),
}
}
fn is_pessimistic(&self) -> bool {
matches!(self.options.kind, TransactionKind::Pessimistic(_))
}
async fn start_auto_heartbeat(&mut self) {
debug!("starting auto_heartbeat");
if !self.options.heartbeat_option.is_auto_heartbeat() || self.is_heartbeat_started {
return;
}
self.is_heartbeat_started = true;
let status = self.status.clone();
let primary_key = self
.buffer
.get_primary_key()
.expect("Primary key should exist");
let start_ts = self.timestamp.clone();
let region_backoff = self.options.retry_options.region_backoff.clone();
let rpc = self.rpc.clone();
let heartbeat_interval = match self.options.heartbeat_option {
HeartbeatOption::NoHeartbeat => DEFAULT_HEARTBEAT_INTERVAL,
HeartbeatOption::FixedTime(heartbeat_interval) => heartbeat_interval,
};
let start_instant = self.start_instant;
let heartbeat_task = async move {
loop {
tokio::time::sleep(heartbeat_interval).await;
{
let status: TransactionStatus = status.load(atomic::Ordering::Acquire).into();
if matches!(
status,
TransactionStatus::Rolledback
| TransactionStatus::Committed
| TransactionStatus::Dropped
) {
break;
}
}
let request = new_heart_beat_request(
start_ts.clone(),
primary_key.clone(),
start_instant.elapsed().as_millis() as u64 + MAX_TTL,
);
let encoded_req = EncodedRequest::new(request, rpc.get_codec());
let plan = PlanBuilder::new(rpc.clone(), encoded_req)
.retry_multi_region(region_backoff.clone())
.merge(CollectSingle)
.plan();
plan.execute().await?;
}
Ok::<(), Error>(())
};
tokio::spawn(async {
if let Err(err) = heartbeat_task.await {
log::error!("Error: While sending heartbeat. {}", err);
}
});
}
fn get_status(&self) -> TransactionStatus {
self.status.load(atomic::Ordering::Acquire).into()
}
fn set_status(&self, status: TransactionStatus) {
self.status.store(status as u8, atomic::Ordering::Release);
}
fn transit_status<F>(&self, check_status: F, next: TransactionStatus) -> bool
where
F: Fn(TransactionStatus) -> bool,
{
let mut current = self.get_status();
while check_status(current) {
if current == next {
return true;
}
match self.status.compare_exchange_weak(
current as u8,
next as u8,
atomic::Ordering::AcqRel,
atomic::Ordering::Acquire,
) {
Ok(_) => return true,
Err(x) => current = x.into(),
}
}
false
}
}
impl<Cod: Codec, PdC: PdClient<Codec = Cod>> Drop for Transaction<Cod, PdC> {
fn drop(&mut self) {
debug!("dropping transaction");
if std::thread::panicking() {
return;
}
if self.get_status() == TransactionStatus::Active {
match self.options.check_level {
CheckLevel::Panic => {
panic!("Dropping an active transaction. Consider commit or rollback it.")
}
CheckLevel::Warn => {
warn!("Dropping an active transaction. Consider commit or rollback it.")
}
CheckLevel::None => {}
}
}
self.set_status(TransactionStatus::Dropped);
}
}
/// The default max TTL of a lock in milliseconds. Also called `ManagedLockTTL` in TiDB.
const MAX_TTL: u64 = 20000;
/// The default TTL of a lock in milliseconds.
const DEFAULT_LOCK_TTL: u64 = 3000;
/// The default heartbeat interval
const DEFAULT_HEARTBEAT_INTERVAL: Duration = Duration::from_millis(MAX_TTL / 2);
/// TiKV recommends each RPC packet should be less than around 1MB. We keep KV size of
/// each request below 16KB.
pub const TXN_COMMIT_BATCH_SIZE: u64 = 16 * 1024;
const TTL_FACTOR: f64 = 6000.0;
/// Optimistic or pessimistic transaction.
#[derive(Clone, PartialEq, Debug)]
pub enum TransactionKind {
Optimistic,
/// Argument is the transaction's for_update_ts
Pessimistic(Timestamp),
}
/// Options for configuring a transaction.
///
/// `TransactionOptions` has a builder-style API.
#[derive(Clone, PartialEq, Debug)]
pub struct TransactionOptions {
/// Optimistic or pessimistic (default) transaction.
kind: TransactionKind,
/// Try using 1pc rather than 2pc (default is to always use 2pc).
try_one_pc: bool,
/// Try to use async commit (default is not to).
async_commit: bool,
/// Is the transaction read only? (Default is no).
read_only: bool,
/// How to retry in the event of certain errors.
retry_options: RetryOptions,
/// What to do if the transaction is dropped without an attempt to commit or rollback
check_level: CheckLevel,
#[doc(hidden)]
heartbeat_option: HeartbeatOption,
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum HeartbeatOption {
NoHeartbeat,
FixedTime(Duration),
}
impl Default for TransactionOptions {
fn default() -> TransactionOptions {
Self::new_pessimistic()
}
}
impl TransactionOptions {
/// Default options for an optimistic transaction.
pub fn new_optimistic() -> TransactionOptions {
TransactionOptions {
kind: TransactionKind::Optimistic,
try_one_pc: false,
async_commit: false,
read_only: false,
retry_options: RetryOptions::default_optimistic(),
check_level: CheckLevel::Panic,
heartbeat_option: HeartbeatOption::FixedTime(DEFAULT_HEARTBEAT_INTERVAL),
}
}
/// Default options for a pessimistic transaction.
pub fn new_pessimistic() -> TransactionOptions {
TransactionOptions {
kind: TransactionKind::Pessimistic(Timestamp::from_version(0)),
try_one_pc: false,
async_commit: false,
read_only: false,
retry_options: RetryOptions::default_pessimistic(),
check_level: CheckLevel::Panic,
heartbeat_option: HeartbeatOption::FixedTime(DEFAULT_HEARTBEAT_INTERVAL),
}
}
/// Try to use async commit.
#[must_use]
pub fn use_async_commit(mut self) -> TransactionOptions {
self.async_commit = true;
self
}
/// Try to use 1pc.
#[must_use]
pub fn try_one_pc(mut self) -> TransactionOptions {
self.try_one_pc = true;
self
}
/// Make the transaction read only.
#[must_use]
pub fn read_only(mut self) -> TransactionOptions {
self.read_only = true;
self
}
/// Don't automatically resolve locks and retry if keys are locked.
#[must_use]
pub fn no_resolve_locks(mut self) -> TransactionOptions {
self.retry_options.lock_backoff = Backoff::no_backoff();
self
}
/// Don't automatically resolve regions with PD if we have outdated region information.
#[must_use]
pub fn no_resolve_regions(mut self) -> TransactionOptions {
self.retry_options.region_backoff = Backoff::no_backoff();
self
}
/// Set RetryOptions.
#[must_use]
pub fn retry_options(mut self, options: RetryOptions) -> TransactionOptions {
self.retry_options = options;
self
}
/// Set the behavior when dropping a transaction without an attempt to commit or rollback it.
#[must_use]
pub fn drop_check(mut self, level: CheckLevel) -> TransactionOptions {
self.check_level = level;
self
}
fn push_for_update_ts(&mut self, for_update_ts: Timestamp) {
match &mut self.kind {
TransactionKind::Optimistic => unreachable!(),
TransactionKind::Pessimistic(old_for_update_ts) => {
self.kind = TransactionKind::Pessimistic(Timestamp::from_version(std::cmp::max(
old_for_update_ts.version(),
for_update_ts.version(),
)));
}
}
}
#[must_use]
pub fn heartbeat_option(mut self, heartbeat_option: HeartbeatOption) -> TransactionOptions {
self.heartbeat_option = heartbeat_option;
self
}
// Returns true if these options describe a pessimistic transaction.
pub fn is_pessimistic(&self) -> bool {
match self.kind {
TransactionKind::Pessimistic(_) => true,
TransactionKind::Optimistic => false,
}
}
}
/// Determines what happens when a transaction is dropped without being rolled back or committed.
///
/// The default is to panic.
#[derive(Clone, Eq, PartialEq, Debug)]
pub enum CheckLevel {
/// The program will panic.
///
/// Note that if the thread is already panicking, then we will not double-panic and abort, but
/// just ignore the issue.
Panic,
/// Log a warning.
Warn,
/// Do nothing
None,
}
impl HeartbeatOption {
pub fn is_auto_heartbeat(&self) -> bool {
!matches!(self, HeartbeatOption::NoHeartbeat)
}
}
/// A struct wrapping the details of two-phase commit protocol (2PC).
///
/// The two phases are `prewrite` and `commit`.
/// Generally, the `prewrite` phase is to send data to all regions and write them.
/// The `commit` phase is to mark all written data as successfully committed.
///
/// The committer implements `prewrite`, `commit` and `rollback` functions.
#[allow(clippy::too_many_arguments)]
#[derive(new)]
struct Committer<PdC: PdClient = PdRpcClient> {
primary_key: Option<Key>,
mutations: Vec<kvrpcpb::Mutation>,
start_version: Timestamp,
rpc: Arc<PdC>,
options: TransactionOptions,
#[new(default)]
undetermined: bool,
write_size: u64,
start_instant: Instant,
}
impl<PdC: PdClient> Committer<PdC> {
async fn commit(mut self) -> Result<Option<Timestamp>> {
debug!("committing");
let min_commit_ts = self.prewrite().await?;
fail_point!("after-prewrite", |_| {
Err(Error::StringError(
"failpoint: after-prewrite return error".to_owned(),
))
});
// If we didn't use 1pc, prewrite will set `try_one_pc` to false.
if self.options.try_one_pc {
return Ok(min_commit_ts);
}
let commit_ts = if self.options.async_commit {
// FIXME: min_commit_ts == 0 => fallback to normal 2PC
min_commit_ts.unwrap()
} else {
match self.commit_primary().await {
Ok(commit_ts) => commit_ts,
Err(e) => {
return if self.undetermined {
Err(Error::UndeterminedError(Box::new(e)))
} else {
Err(e)
};
}
}
};
tokio::spawn(self.commit_secondary(commit_ts.clone()).map(|res| {
if let Err(e) = res {
log::warn!("Failed to commit secondary keys: {}", e);
}
}));
Ok(Some(commit_ts))
}
async fn prewrite(&mut self) -> Result<Option<Timestamp>> {
debug!("prewriting");
let primary_lock = self.primary_key.clone().unwrap();
let elapsed = self.start_instant.elapsed().as_millis() as u64;
let lock_ttl = self.calc_txn_lock_ttl();
let mut request = match &self.options.kind {
TransactionKind::Optimistic => new_prewrite_request(
self.mutations.clone(),
primary_lock,
self.start_version.clone(),
lock_ttl + elapsed,
),
TransactionKind::Pessimistic(for_update_ts) => new_pessimistic_prewrite_request(
self.mutations.clone(),
primary_lock,
self.start_version.clone(),
lock_ttl + elapsed,
for_update_ts.clone(),
),
};
request.use_async_commit = self.options.async_commit;
request.try_one_pc = self.options.try_one_pc;
request.secondaries = self
.mutations
.iter()
.filter(|m| self.primary_key.as_ref().unwrap() != m.key.as_ref())
.map(|m| m.key.clone())
.collect();
// FIXME set max_commit_ts and min_commit_ts
let encoded_req = EncodedRequest::new(request, self.rpc.get_codec());
let plan = PlanBuilder::new(self.rpc.clone(), encoded_req)
.resolve_lock(self.options.retry_options.lock_backoff.clone())
.retry_multi_region(self.options.retry_options.region_backoff.clone())
.merge(CollectError)
.extract_error()
.plan();
let response = plan.execute().await?;
if self.options.try_one_pc && response.len() == 1 {
if response[0].one_pc_commit_ts == 0 {
return Err(Error::OnePcFailure);
}
return Ok(Timestamp::try_from_version(response[0].one_pc_commit_ts));
}
self.options.try_one_pc = false;
let min_commit_ts = response
.iter()
.map(|r| {
assert_eq!(r.one_pc_commit_ts, 0);
r.min_commit_ts
})
.max()
.map(Timestamp::from_version);
Ok(min_commit_ts)
}
/// Commits the primary key and returns the commit version
async fn commit_primary(&mut self) -> Result<Timestamp> {
debug!("committing primary");
let primary_key = self.primary_key.clone().into_iter();
let commit_version = self.rpc.clone().get_timestamp().await?;
let req = new_commit_request(
primary_key,
self.start_version.clone(),
commit_version.clone(),
);
let encoded_req = EncodedRequest::new(req, self.rpc.get_codec());
let plan = PlanBuilder::new(self.rpc.clone(), encoded_req)
.resolve_lock(self.options.retry_options.lock_backoff.clone())
.retry_multi_region(self.options.retry_options.region_backoff.clone())
.extract_error()
.plan();
plan.execute()
.inspect_err(|e| {
// We don't know whether the transaction is committed or not if we fail to receive
// the response. Then, we mark the transaction as undetermined and propagate the
// error to the user.
if let Error::Grpc(_) = e {
self.undetermined = true;
}
})
.await?;
Ok(commit_version)
}
async fn commit_secondary(self, commit_version: Timestamp) -> Result<()> {
debug!("committing secondary");
let mutations_len = self.mutations.len();
let primary_only = mutations_len == 1;
#[cfg(not(feature = "integration-tests"))]
let mutations = self.mutations.into_iter();
#[cfg(feature = "integration-tests")]
let mutations = self.mutations.into_iter().take({
// Truncate mutation to a new length as `percent/100`.
// Return error when truncate to zero.
let fp = || -> Result<usize> {
let mut new_len = mutations_len;
fail_point!("before-commit-secondary", |percent| {
let percent = percent.unwrap().parse::<usize>().unwrap();
new_len = mutations_len * percent / 100;
if new_len == 0 {
Err(Error::StringError(
"failpoint: before-commit-secondary return error".to_owned(),
))
} else {
debug!(
"failpoint: before-commit-secondary truncate mutation {} -> {}",
mutations_len, new_len
);
Ok(new_len)
}
});
Ok(new_len)
};
fp()?
});
let req = if self.options.async_commit {
let keys = mutations.map(|m| m.key.into());
new_commit_request(keys, self.start_version, commit_version)
} else if primary_only {
return Ok(());
} else {
let primary_key = self.primary_key.unwrap();
let keys = mutations
.map(|m| m.key.into())
.filter(|key| &primary_key != key);
new_commit_request(keys, self.start_version, commit_version)
};
let encoded_req = EncodedRequest::new(req, self.rpc.get_codec());
let plan = PlanBuilder::new(self.rpc, encoded_req)
.resolve_lock(self.options.retry_options.lock_backoff)
.retry_multi_region(self.options.retry_options.region_backoff)
.extract_error()
.plan();
plan.execute().await?;
Ok(())
}
async fn rollback(self) -> Result<()> {
debug!("rolling back");
if self.options.kind == TransactionKind::Optimistic && self.mutations.is_empty() {
return Ok(());
}
let keys = self
.mutations
.into_iter()
.map(|mutation| mutation.key.into());
match self.options.kind {
TransactionKind::Optimistic => {
let req = new_batch_rollback_request(keys, self.start_version);
let encoded_req = EncodedRequest::new(req, self.rpc.get_codec());
let plan = PlanBuilder::new(self.rpc, encoded_req)
.resolve_lock(self.options.retry_options.lock_backoff)
.retry_multi_region(self.options.retry_options.region_backoff)
.extract_error()
.plan();
plan.execute().await?;
}
TransactionKind::Pessimistic(for_update_ts) => {
let req = new_pessimistic_rollback_request(keys, self.start_version, for_update_ts);
let encoded_req = EncodedRequest::new(req, self.rpc.get_codec());
let plan = PlanBuilder::new(self.rpc, encoded_req)
.resolve_lock(self.options.retry_options.lock_backoff)
.retry_multi_region(self.options.retry_options.region_backoff)
.extract_error()
.plan();
plan.execute().await?;
}
}
Ok(())
}
fn calc_txn_lock_ttl(&mut self) -> u64 {
let mut lock_ttl = DEFAULT_LOCK_TTL;
if self.write_size > TXN_COMMIT_BATCH_SIZE {
let size_mb = self.write_size as f64 / 1024.0 / 1024.0;
lock_ttl = (TTL_FACTOR * size_mb.sqrt()) as u64;
lock_ttl = lock_ttl.clamp(DEFAULT_LOCK_TTL, MAX_TTL);
}
lock_ttl
}
}
#[derive(PartialEq, Eq, Clone, Copy)]
#[repr(u8)]
enum TransactionStatus {
/// The transaction is read-only [`Snapshot`](super::Snapshot), no need to commit or rollback or panic on drop.
ReadOnly = 0,
/// The transaction have not been committed or rolled back.
Active = 1,
/// The transaction has committed.
Committed = 2,
/// The transaction has tried to commit. Only `commit` is allowed.
StartedCommit = 3,
/// The transaction has rolled back.
Rolledback = 4,
/// The transaction has tried to rollback. Only `rollback` is allowed.
StartedRollback = 5,
/// The transaction has been dropped.
Dropped = 6,
}
impl From<u8> for TransactionStatus {
fn from(num: u8) -> Self {
match num {
0 => TransactionStatus::ReadOnly,
1 => TransactionStatus::Active,
2 => TransactionStatus::Committed,
3 => TransactionStatus::StartedCommit,
4 => TransactionStatus::Rolledback,
5 => TransactionStatus::StartedRollback,
6 => TransactionStatus::Dropped,
_ => panic!("Unknown transaction status {}", num),
}
}
}
#[cfg(test)]
mod tests {
use std::any::Any;
use std::io;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering;
use std::sync::Arc;
use std::time::Duration;
use fail::FailScenario;
use crate::mock::MockKvClient;
use crate::mock::MockPdClient;
use crate::proto::kvrpcpb;
use crate::proto::pdpb::Timestamp;
use crate::transaction::HeartbeatOption;
use crate::Transaction;
use crate::TransactionOptions;
#[tokio::test]
async fn test_optimistic_heartbeat() -> Result<(), io::Error> {
let scenario = FailScenario::setup();
fail::cfg("after-prewrite", "sleep(1500)").unwrap();
let heartbeats = Arc::new(AtomicUsize::new(0));
let heartbeats_cloned = heartbeats.clone();
let pd_client = Arc::new(MockPdClient::new(MockKvClient::with_dispatch_hook(
move |req: &dyn Any| {
if req.downcast_ref::<kvrpcpb::TxnHeartBeatRequest>().is_some() {
heartbeats_cloned.fetch_add(1, Ordering::SeqCst);
Ok(Box::<kvrpcpb::TxnHeartBeatResponse>::default() as Box<dyn Any>)
} else if req.downcast_ref::<kvrpcpb::PrewriteRequest>().is_some() {
Ok(Box::<kvrpcpb::PrewriteResponse>::default() as Box<dyn Any>)
} else {
Ok(Box::<kvrpcpb::CommitResponse>::default() as Box<dyn Any>)
}
},
)));
let key1 = "key1".to_owned();
let mut heartbeat_txn = Transaction::new(
Timestamp::default(),
pd_client,
TransactionOptions::new_optimistic()
.heartbeat_option(HeartbeatOption::FixedTime(Duration::from_secs(1))),
);
heartbeat_txn.put(key1.clone(), "foo").await.unwrap();
let heartbeat_txn_handle = tokio::task::spawn_blocking(move || {
assert!(futures::executor::block_on(heartbeat_txn.commit()).is_ok())
});
assert_eq!(heartbeats.load(Ordering::SeqCst), 0);
heartbeat_txn_handle.await.unwrap();
assert_eq!(heartbeats.load(Ordering::SeqCst), 1);
scenario.teardown();
Ok(())
}
#[tokio::test]
async fn test_pessimistic_heartbeat() -> Result<(), io::Error> {
let heartbeats = Arc::new(AtomicUsize::new(0));
let heartbeats_cloned = heartbeats.clone();
let pd_client = Arc::new(MockPdClient::new(MockKvClient::with_dispatch_hook(
move |req: &dyn Any| {
if req.downcast_ref::<kvrpcpb::TxnHeartBeatRequest>().is_some() {
heartbeats_cloned.fetch_add(1, Ordering::SeqCst);
Ok(Box::<kvrpcpb::TxnHeartBeatResponse>::default() as Box<dyn Any>)
} else if req.downcast_ref::<kvrpcpb::PrewriteRequest>().is_some() {
Ok(Box::<kvrpcpb::PrewriteResponse>::default() as Box<dyn Any>)
} else if req
.downcast_ref::<kvrpcpb::PessimisticLockRequest>()
.is_some()
{
Ok(Box::<kvrpcpb::PessimisticLockResponse>::default() as Box<dyn Any>)
} else {
Ok(Box::<kvrpcpb::CommitResponse>::default() as Box<dyn Any>)
}
},
)));
let key1 = "key1".to_owned();
let mut heartbeat_txn = Transaction::new(
Timestamp::default(),
pd_client,
TransactionOptions::new_pessimistic()
.heartbeat_option(HeartbeatOption::FixedTime(Duration::from_secs(1))),
);
heartbeat_txn.put(key1.clone(), "foo").await.unwrap();
assert_eq!(heartbeats.load(Ordering::SeqCst), 0);
tokio::time::sleep(tokio::time::Duration::from_millis(1500)).await;
assert_eq!(heartbeats.load(Ordering::SeqCst), 1);
let heartbeat_txn_handle = tokio::spawn(async move {
assert!(heartbeat_txn.commit().await.is_ok());
});
heartbeat_txn_handle.await.unwrap();
Ok(())
}
}