1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
//! Everything in this module is more or less copied from [criterion.rs](https://github.com/bheisler/criterion.rs)
//! with some rewrites to make it fit, the license is included in this file's directory
use crate::output::analysis::random::Rng;
use crate::output::wrap_yellow;
use std::time::Duration;

/// Struct containing all of the configuration options for a benchmark.
pub struct BenchmarkConfig {
    /// How long the bench 'should' run, `num_samples` is prioritized so benching will take
    /// longer to be able to collect `num_samples` if the code to be benched is slower
    /// than this time limit allowed.
    pub measurement_time: Duration,
    /// How many resamples should be done
    pub num_resamples: usize,
    /// Recommended at least 50, above 100 <https://en.wikipedia.org/wiki/Bootstrapping_(statistics)#Recommendations>
    /// doesn't seem to yield a significantly different result
    pub num_samples: usize,
    /// How long the bench should warm up
    pub warm_up_time: Duration,
    /// Puts results in target/tiny-bench/label/.. if target can be found.
    /// used for comparing previous runs
    pub dump_results_to_disk: bool,

    /// Sets a hard ceiling on max iterations, overriding the heuristic calculations for iteration
    /// count. A rule of thumb; if this is used, the results are unlikely to be statistically
    /// significant.
    pub max_iterations: Option<u64>,
}

impl Default for BenchmarkConfig {
    fn default() -> Self {
        BenchmarkConfig {
            measurement_time: Duration::from_secs(5),
            num_resamples: 100_000,
            num_samples: 100,
            warm_up_time: Duration::from_secs(3),
            dump_results_to_disk: true,
            max_iterations: None,
        }
    }
}

pub(crate) fn calculate_iterations(
    warmup_mean_execution_time: f64,
    num_samples: u64,
    target_time: Duration,
) -> Vec<u64> {
    let met = warmup_mean_execution_time;
    let m_ns = target_time.as_nanos();
    // Solve: [d + 2*d + 3*d + ... + n*d] * met = m_ns

    let total_runs = num_samples * (num_samples + 1) / 2;
    let d = ((m_ns as f64 / met / total_runs as f64).ceil() as u64).max(1);
    let expected_nanoseconds = total_runs as f64 * d as f64 * met;
    if d == 1 {
        let actual_time = Duration::from_nanos(expected_nanoseconds as u64);
        println!(
            "{} You may wish to increase target time to {:.1?} or lower the requested number of samples",
            wrap_yellow(&format!(
                "Unable to complete {num_samples} samples in {target_time:.1?}"
            )),
            actual_time
        );
    }

    (1..=num_samples).map(|a| a * d).collect()
}

pub(crate) fn calculate_t_value(sample_a: &[f64], sample_b: &[f64]) -> f64 {
    let a_mean = calculate_mean(sample_a);
    let b_mean = calculate_mean(sample_b);
    let a_var = calculate_variance(sample_a, a_mean);
    let b_var = calculate_variance(sample_b, b_mean);
    let a_len = sample_a.len() as f64;
    let b_len = sample_b.len() as f64;
    let mean_diff = a_mean - b_mean;
    let d = (a_var / a_len + b_var / b_len).sqrt();
    mean_diff / d
}

pub(crate) fn calculate_mean(a: &[f64]) -> f64 {
    a.iter().sum::<f64>() / a.len() as f64
}

pub(crate) fn calculate_variance(sample: &[f64], mean: f64) -> f64 {
    let sum = sample
        .iter()
        .copied()
        .map(|val| (val - mean).powi(2))
        .sum::<f64>();
    sum / (sample.len() as f64 - 1f64) // use n - 1 when measuring variance from a sample
}

pub(crate) fn resample(sample_a: &[f64], sample_b: &[f64], times: usize) -> Vec<f64> {
    let a_len = sample_a.len();
    let mut combined = Vec::with_capacity(a_len + sample_b.len());
    combined.extend_from_slice(sample_a);
    combined.extend_from_slice(sample_b);
    let mut rng = Rng::new();
    let combined_len = combined.len();
    let mut distributions = Vec::new();
    for _ in 0..times {
        let mut sample = Vec::with_capacity(combined_len);
        for _ in 0..combined_len {
            let index = (rng.next() % combined.len() as u64) as usize;
            sample.push(combined[index]);
        }
        let sample_a = Vec::from(&sample[..a_len]);
        let sample_b = Vec::from(&sample[a_len..]);
        let t = calculate_t_value(&sample_a, &sample_b);
        distributions.push(t);
    }
    distributions
}

pub(crate) fn calculate_p_value(total_t: f64, distribution: &[f64]) -> f64 {
    let hits = distribution.iter().filter(|x| x < &&total_t).count();
    let tails = 2; // I don't know what this is, Two-tailed significance testing something something
    let min = std::cmp::min(hits, distribution.len() - hits);
    (min * tails) as f64 / distribution.len() as f64
}

#[inline]
pub(crate) fn calculate_median(sample: &mut [f64]) -> f64 {
    sample.sort_by(f64::total_cmp);
    sample.get(sample.len() / 2).copied().unwrap_or_default()
}

pub(crate) struct SamplingDataSimpleAnalysis {
    pub(crate) elapsed: u128,
    pub(crate) min: f64,
    pub(crate) max: f64,
    pub(crate) average: f64,
    pub(crate) median: f64,
    pub(crate) variance: f64,
    pub(crate) stddev: f64,
    pub(crate) per_sample_average: Vec<f64>,
}

#[cfg(test)]
mod tests {
    use crate::output::analysis::criterion::{
        calculate_mean, calculate_t_value, calculate_variance,
    };

    #[test]
    fn calculates_mean() {
        let data = vec![46.0, 69.0, 32.0, 60.0, 52.0, 41.0];
        assert!(calculate_mean(&data) - 50.0 < 0.0000_001);
    }

    #[test]
    fn calculates_variance() {
        let data = vec![46.0, 69.0, 32.0, 60.0, 52.0, 41.0];
        assert!(calculate_variance(&data, 50.0) - 177.2 < 0.00001);
    }

    #[test]
    fn calculate_t() {
        let sample_a = vec![19.7, 20.4, 19.6, 17.8, 18.5, 18.9, 18.3, 18.9, 19.5, 21.95];
        let sample_b = vec![
            28.3, 26.7, 20.1, 23.3, 25.2, 22.1, 17.7, 27.6, 20.6, 13.7, 23.2, 17.5, 20.6, 18.0,
            23.9, 21.6, 24.3, 20.4, 23.9, 13.3,
        ];
        assert!(calculate_t_value(&sample_a, &sample_b).abs() - 2.24787 < 0.0001);
    }
}