1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
use std::fmt; use failure::Error; use unicode_normalization::UnicodeNormalization; use crate::crypto::{gen_random_bytes, sha256_first_byte}; use crate::error::ErrorKind; use crate::language::Language; use crate::mnemonic_type::MnemonicType; use crate::util::{checksum, BitWriter, IterExt}; /// The primary type in this crate, most tasks require creating or using one. /// /// To create a *new* [`Mnemonic`][Mnemonic] from a randomly generated key, call [`Mnemonic::new()`][Mnemonic::new()]. /// /// To get a [`Mnemonic`][Mnemonic] instance for an existing mnemonic phrase, including /// those generated by other software or hardware wallets, use [`Mnemonic::from_phrase()`][Mnemonic::from_phrase()]. /// /// You can get the HD wallet [`Seed`][Seed] from a [`Mnemonic`][Mnemonic] by calling [`Seed::new()`][Seed::new()]. /// From there you can either get the raw byte value with [`Seed::as_bytes()`][Seed::as_bytes()], or the hex /// representation using Rust formatting: `format!("{:X}", seed)`. /// /// You can also get the original entropy value back from a [`Mnemonic`][Mnemonic] with [`Mnemonic::entropy()`][Mnemonic::entropy()], /// but beware that the entropy value is **not the same thing** as an HD wallet seed, and should /// *never* be used that way. /// /// [Mnemonic]: ./mnemonic/struct.Mnemonic.html /// [Mnemonic::new()]: ./mnemonic/struct.Mnemonic.html#method.new /// [Mnemonic::from_phrase()]: ./mnemonic/struct.Mnemonic.html#method.from_phrase /// [Mnemonic::entropy()]: ./mnemonic/struct.Mnemonic.html#method.entropy /// [Seed]: ./seed/struct.Seed.html /// [Seed::new()]: ./seed/struct.Seed.html#method.new /// [Seed::as_bytes()]: ./seed/struct.Seed.html#method.as_bytes /// #[derive(Clone)] pub struct Mnemonic { phrase: String, lang: Language, entropy: Vec<u8>, } impl Mnemonic { /// Generates a new [`Mnemonic`][Mnemonic] /// /// Use [`Mnemonic::phrase()`][Mnemonic::phrase()] to get an `str` slice of the generated phrase. /// /// # Example /// /// ``` /// use bip39::{Mnemonic, MnemonicType, Language}; /// /// let mnemonic = Mnemonic::new(MnemonicType::Words12, Language::English); /// let phrase = mnemonic.phrase(); /// /// println!("phrase: {}", phrase); /// /// assert_eq!(phrase.split(" ").count(), 12); /// ``` /// /// [Mnemonic]: ./mnemonic/struct.Mnemonic.html /// [Mnemonic::phrase()]: ./mnemonic/struct.Mnemonic.html#method.phrase pub fn new(mtype: MnemonicType, lang: Language) -> Mnemonic { let entropy = gen_random_bytes(mtype.entropy_bits() / 8); Mnemonic::from_entropy_unchecked(entropy, lang) } /// Create a [`Mnemonic`][Mnemonic] from pre-generated entropy /// /// # Example /// /// ``` /// use bip39::{Mnemonic, MnemonicType, Language}; /// /// let entropy = &[0x33, 0xE4, 0x6B, 0xB1, 0x3A, 0x74, 0x6E, 0xA4, 0x1C, 0xDD, 0xE4, 0x5C, 0x90, 0x84, 0x6A, 0x79]; /// let mnemonic = Mnemonic::from_entropy(entropy, Language::English).unwrap(); /// /// assert_eq!("crop cash unable insane eight faith inflict route frame loud box vibrant", mnemonic.phrase()); /// assert_eq!("33E46BB13A746EA41CDDE45C90846A79", format!("{:X}", mnemonic)); /// ``` /// /// [Mnemonic]: ../mnemonic/struct.Mnemonic.html pub fn from_entropy(entropy: &[u8], lang: Language) -> Result<Mnemonic, Error> { // Validate entropy size MnemonicType::for_key_size(entropy.len() * 8)?; Ok(Self::from_entropy_unchecked(entropy, lang)) } fn from_entropy_unchecked<E>(entropy: E, lang: Language) -> Mnemonic where E: Into<Vec<u8>>, { let entropy = entropy.into(); let wordlist = lang.wordlist(); let checksum_byte = sha256_first_byte(&entropy); // First, create a byte iterator for the given entropy and the first byte of the // hash of the entropy that will serve as the checksum (up to 8 bits for biggest // entropy source). // // Then we transform that into a bits iterator that returns 11 bits at a // time (as u16), which we can map to the words on the `wordlist`. // // Given the entropy is of correct size, this ought to give us the correct word // count. let phrase = entropy .iter() .chain(Some(&checksum_byte)) .bits() .map(|bits| wordlist.get_word(bits)) .join(" "); Mnemonic { phrase, lang, entropy, } } /// Create a [`Mnemonic`][Mnemonic] from an existing mnemonic phrase /// /// The phrase supplied will be checked for word length and validated according to the checksum /// specified in BIP0039 /// /// # Example /// /// ``` /// use bip39::{Mnemonic, Language}; /// /// let phrase = "park remain person kitchen mule spell knee armed position rail grid ankle"; /// let mnemonic = Mnemonic::from_phrase(phrase, Language::English).unwrap(); /// /// assert_eq!(phrase, mnemonic.phrase()); /// ``` /// /// [Mnemonic]: ../mnemonic/struct.Mnemonic.html pub fn from_phrase(phrase: &str, lang: Language) -> Result<Mnemonic, Error> { let phrase = phrase .split_whitespace() .map(|w| w.nfkd()) .join::<String>(" "); // this also validates the checksum and phrase length before returning the entropy so we // can store it. We don't use the validate function here to avoid having a public API that // takes a phrase string and returns the entropy directly. let entropy = Mnemonic::phrase_to_entropy(&phrase, lang)?; let mnemonic = Mnemonic { phrase, lang, entropy, }; Ok(mnemonic) } /// Validate a mnemonic phrase /// /// The phrase supplied will be checked for word length and validated according to the checksum /// specified in BIP0039. /// /// # Example /// /// ``` /// use bip39::{Mnemonic, Language}; /// /// let test_mnemonic = "park remain person kitchen mule spell knee armed position rail grid ankle"; /// /// assert!(Mnemonic::validate(test_mnemonic, Language::English).is_ok()); /// ``` pub fn validate(phrase: &str, lang: Language) -> Result<(), Error> { Mnemonic::phrase_to_entropy(phrase, lang)?; Ok(()) } /// Calculate the checksum, verify it and return the entropy /// /// Only intended for internal use, as returning a `Vec<u8>` that looks a bit like it could be /// used as the seed is likely to cause problems for someone eventually. All the other functions /// that return something like that are explicit about what it is and what to use it for. fn phrase_to_entropy(phrase: &str, lang: Language) -> Result<Vec<u8>, Error> { let wordmap = lang.wordmap(); // Preallocate enough space for the longest possible word list let mut bits = BitWriter::with_capacity(264); for word in phrase.split(" ") { bits.push(wordmap.get_bits(&word)?); } let mtype = MnemonicType::for_word_count(bits.len() / 11)?; debug_assert!( bits.len() == mtype.total_bits(), "Insufficient amount of bits to validate" ); let mut entropy = bits.into_bytes(); let entropy_bytes = mtype.entropy_bits() / 8; let actual_checksum = checksum(entropy[entropy_bytes], mtype.checksum_bits()); // Truncate to get rid of the byte containing the checksum entropy.truncate(entropy_bytes); let checksum_byte = sha256_first_byte(&entropy); let expected_checksum = checksum(checksum_byte, mtype.checksum_bits()); if actual_checksum != expected_checksum { Err(ErrorKind::InvalidChecksum)?; } Ok(entropy) } /// Get the mnemonic phrase as a string reference. pub fn phrase(&self) -> &str { &self.phrase } /// Consume the `Mnemonic` and return the phrase as a `String`. /// /// This operation doesn't perform any allocations. pub fn into_phrase(self) -> String { self.phrase } /// Get the original entropy value of the mnemonic phrase as a slice. /// /// # Example /// /// ``` /// use bip39::{Mnemonic, Language}; /// /// let phrase = "park remain person kitchen mule spell knee armed position rail grid ankle"; /// /// let mnemonic = Mnemonic::from_phrase(phrase, Language::English).unwrap(); /// /// let entropy: &[u8] = mnemonic.entropy(); /// ``` /// /// **Note:** You shouldn't use the generated entropy as secrets, for that generate a new /// `Seed` from the `Mnemonic`. pub fn entropy(&self) -> &[u8] { &self.entropy } /// Get the [`Language`][Language] /// /// [Language]: ../language/struct.Language.html pub fn language(&self) -> Language { self.lang } } impl AsRef<str> for Mnemonic { fn as_ref(&self) -> &str { self.phrase() } } impl fmt::Display for Mnemonic { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(self.phrase(), f) } } impl fmt::Debug for Mnemonic { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(self.phrase(), f) } } impl fmt::LowerHex for Mnemonic { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { if f.alternate() { f.write_str("0x")?; } for byte in self.entropy() { write!(f, "{:02x}", byte)?; } Ok(()) } } impl fmt::UpperHex for Mnemonic { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { if f.alternate() { f.write_str("0x")?; } for byte in self.entropy() { write!(f, "{:02X}", byte)?; } Ok(()) } } impl From<Mnemonic> for String { fn from(val: Mnemonic) -> String { val.into_phrase() } } #[cfg(test)] mod test { use super::*; #[test] fn back_to_back() { let m1 = Mnemonic::new(MnemonicType::Words12, Language::English); let m2 = Mnemonic::from_phrase(m1.phrase(), Language::English).unwrap(); let m3 = Mnemonic::from_entropy(m1.entropy(), Language::English).unwrap(); assert_eq!(m1.entropy(), m2.entropy(), "Entropy must be the same"); assert_eq!(m1.entropy(), m3.entropy(), "Entropy must be the same"); assert_eq!(m1.phrase(), m2.phrase(), "Phrase must be the same"); assert_eq!(m1.phrase(), m3.phrase(), "Phrase must be the same"); } #[test] fn mnemonic_from_entropy() { let entropy = &[ 0x33, 0xE4, 0x6B, 0xB1, 0x3A, 0x74, 0x6E, 0xA4, 0x1C, 0xDD, 0xE4, 0x5C, 0x90, 0x84, 0x6A, 0x79, ]; let phrase = "crop cash unable insane eight faith inflict route frame loud box vibrant"; let mnemonic = Mnemonic::from_entropy(entropy, Language::English).unwrap(); assert_eq!(phrase, mnemonic.phrase()); } #[test] fn mnemonic_from_phrase() { let entropy = &[ 0x33, 0xE4, 0x6B, 0xB1, 0x3A, 0x74, 0x6E, 0xA4, 0x1C, 0xDD, 0xE4, 0x5C, 0x90, 0x84, 0x6A, 0x79, ]; let phrase = "crop cash unable insane eight faith inflict route frame loud box vibrant"; let mnemonic = Mnemonic::from_phrase(phrase, Language::English).unwrap(); assert_eq!(entropy, mnemonic.entropy()); } #[test] fn mnemonic_format() { let mnemonic = Mnemonic::new(MnemonicType::Words15, Language::English); assert_eq!(mnemonic.phrase(), format!("{}", mnemonic)); } #[test] fn mnemonic_hex_format() { let entropy = &[ 0x03, 0xE4, 0x6B, 0xB1, 0x3A, 0x74, 0x6E, 0xA4, 0x1C, 0xDD, 0xE4, 0x5C, 0x90, 0x84, 0x6A, 0x79, ]; let mnemonic = Mnemonic::from_entropy(entropy, Language::English).unwrap(); assert_eq!( format!("{:x}", mnemonic), "03e46bb13a746ea41cdde45c90846a79" ); assert_eq!( format!("{:X}", mnemonic), "03E46BB13A746EA41CDDE45C90846A79" ); assert_eq!( format!("{:#x}", mnemonic), "0x03e46bb13a746ea41cdde45c90846a79" ); assert_eq!( format!("{:#X}", mnemonic), "0x03E46BB13A746EA41CDDE45C90846A79" ); } }