1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
// Copyright 2014 Google Inc.
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// This module is a mix of SkDashPath, SkDashPathEffect, SkContourMeasure and SkPathMeasure.

use alloc::vec::Vec;

use arrayref::array_ref;

use crate::{Path, PathSegment, PathSegmentsIter, Point, PathBuilder};

use crate::floating_point::{NormalizedF32, NonZeroPositiveF32, FiniteF32, NormalizedF32Exclusive};
use crate::path::PathVerb;
use crate::path_geometry;
use crate::scalar::Scalar;

#[cfg(all(not(feature = "std"), feature = "libm"))]
use crate::scalar::FloatExt;

/// A stroke dashing properties.
///
/// Contains an array of pairs, where the first number indicates an "on" interval
/// and the second one indicates an "off" interval;
/// a dash offset value and internal properties.
///
/// # Guarantees
///
/// - The dash array always have an even number of values.
/// - All dash array values are finite and >= 0.
/// - There is at least two dash array values.
/// - The sum of all dash array values is positive and finite.
/// - Dash offset is finite.
#[derive(Clone, PartialEq, Debug)]
pub struct StrokeDash {
    array: Vec<f32>,
    offset: f32,
    interval_len: NonZeroPositiveF32,
    first_len: f32, // TODO: PositiveF32
    first_index: usize,
}

impl StrokeDash {
    /// Creates a new stroke dashing object.
    pub fn new(dash_array: Vec<f32>, dash_offset: f32) -> Option<Self> {
        let dash_offset = FiniteF32::new(dash_offset)?;

        if dash_array.len() < 2 || dash_array.len() % 2 != 0 {
            return None;
        }

        if dash_array.iter().any(|n| *n < 0.0) {
            return None;
        }

        let interval_len: f32 = dash_array.iter().sum();
        let interval_len = NonZeroPositiveF32::new(interval_len)?;

        let dash_offset = adjust_dash_offset(dash_offset.get(), interval_len.get());
        debug_assert!(dash_offset >= 0.0);
        debug_assert!(dash_offset < interval_len.get());

        let (first_len, first_index) = find_first_interval(&dash_array, dash_offset);
        debug_assert!(first_len >= 0.0);
        debug_assert!(first_index < dash_array.len());

        Some(StrokeDash {
            array: dash_array,
            offset: dash_offset,
            interval_len,
            first_len,
            first_index,
        })
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use alloc::vec;

    #[test]
    fn test() {
        assert_eq!(StrokeDash::new(vec![], 0.0), None);
        assert_eq!(StrokeDash::new(vec![1.0], 0.0), None);
        assert_eq!(StrokeDash::new(vec![1.0, 2.0, 3.0], 0.0), None);
        assert_eq!(StrokeDash::new(vec![1.0, -2.0], 0.0), None);
        assert_eq!(StrokeDash::new(vec![0.0, 0.0], 0.0), None);
        assert_eq!(StrokeDash::new(vec![1.0, -1.0], 0.0), None);
        assert_eq!(StrokeDash::new(vec![1.0, 1.0], f32::INFINITY), None);
        assert_eq!(StrokeDash::new(vec![1.0, f32::INFINITY], 0.0), None);
    }

    #[test]
    fn bug_26() {
        let mut pb = PathBuilder::new();
        pb.move_to(665.54,287.3);
        pb.line_to(675.67,273.04);
        pb.line_to(675.52,271.32);
        pb.line_to(674.79,269.61);
        pb.line_to(674.05,268.04);
        pb.line_to(672.88,266.47);
        pb.line_to(671.27,264.9);
        let path = pb.finish().unwrap();

        let stroke_dash = StrokeDash::new(vec![6.0, 4.5], 0.0).unwrap();

        assert!(dash(&path, &stroke_dash, 1.0).is_some());
    }
}


// Adjust phase to be between 0 and len, "flipping" phase if negative.
// e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80.
fn adjust_dash_offset(mut offset: f32, len: f32) -> f32 {
    if offset < 0.0 {
        offset = -offset;
        if offset > len {
            offset %= len;
        }

        offset = len - offset;

        // Due to finite precision, it's possible that phase == len,
        // even after the subtract (if len >>> phase), so fix that here.
        debug_assert!(offset <= len);
        if offset == len {
            offset = 0.0;
        }

        offset
    } else if offset >= len {
        offset % len
    } else {
        offset
    }
}

fn find_first_interval(dash_array: &[f32], mut dash_offset: f32) -> (f32, usize) {
    for i in 0..dash_array.len() {
        let gap = dash_array[i];
        if dash_offset > gap || (dash_offset == gap && gap != 0.0) {
            dash_offset -= gap;
        } else {
            return (gap - dash_offset, i);
        }
    }

    // If we get here, phase "appears" to be larger than our length. This
    // shouldn't happen with perfect precision, but we can accumulate errors
    // during the initial length computation (rounding can make our sum be too
    // big or too small. In that event, we just have to eat the error here.
    (dash_array[0], 0)
}

pub fn dash(src: &Path, dash: &StrokeDash, res_scale: f32) -> Option<Path> {
    // We do not support the `cull_path` branch here.
    // Skia has a lot of code for cases when a path contains only a single zero-length line
    // or when a path is a rect. Not sure why.
    // We simply ignoring it for the sake of simplicity.

    // We also doesn't support the `SpecialLineRec` case.
    // I have no idea what the point in it.

    fn is_even(x: usize) -> bool {
        x % 2 == 0
    }

    let mut pb = PathBuilder::new();
    let mut dash_count = 0.0;
    for contour in ContourMeasureIter::new(src, res_scale) {
        let mut skip_first_segment = contour.is_closed;
        let mut added_segment = false;
        let length = contour.length;
        let mut index = dash.first_index;

        // Since the path length / dash length ratio may be arbitrarily large, we can exert
        // significant memory pressure while attempting to build the filtered path. To avoid this,
        // we simply give up dashing beyond a certain threshold.
        //
        // The original bug report (http://crbug.com/165432) is based on a path yielding more than
        // 90 million dash segments and crashing the memory allocator. A limit of 1 million
        // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the
        // maximum dash memory overhead at roughly 17MB per path.
        const MAX_DASH_COUNT: usize = 1000000;
        dash_count += length * (dash.array.len() >> 1) as f32 / dash.interval_len.get();
        if dash_count > MAX_DASH_COUNT as f32 {
            return None;
        }

        // Using double precision to avoid looping indefinitely due to single precision rounding
        // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest.
        let mut distance = 0.0;
        let mut d_len = dash.first_len;

        while distance < length {
            debug_assert!(d_len >= 0.0);
            added_segment = false;
            if is_even(index) && !skip_first_segment {
                added_segment = true;
                contour.push_segment(distance as f32, (distance + d_len) as f32, true, &mut pb);
            }

            distance += d_len;

            // clear this so we only respect it the first time around
            skip_first_segment = false;

            // wrap around our intervals array if necessary
            index += 1;
            debug_assert!(index <= dash.array.len());
            if index == dash.array.len() {
                index = 0;
            }

            // fetch our next d_len
            d_len = dash.array[index];
        }

        // extend if we ended on a segment and we need to join up with the (skipped) initial segment
        if contour.is_closed && is_even(dash.first_index) && dash.first_len >= 0.0 {
            contour.push_segment(0.0, dash.first_len, !added_segment, &mut pb);
        }
    }

    pb.finish()
}


const MAX_T_VALUE: u32 = 0x3FFFFFFF;

struct ContourMeasureIter<'a> {
    iter: PathSegmentsIter<'a>,
    tolerance: f32,
}

impl<'a> ContourMeasureIter<'a> {
    fn new(path: &'a Path, res_scale: f32) -> Self {
        // can't use tangents, since we need [0..1..................2] to be seen
        // as definitely not a line (it is when drawn, but not parametrically)
        // so we compare midpoints
        const CHEAP_DIST_LIMIT: f32 = 0.5; // just made this value up

        ContourMeasureIter {
            iter: path.segments(),
            tolerance: CHEAP_DIST_LIMIT * res_scale.invert()
        }
    }
}

impl Iterator for ContourMeasureIter<'_> {
    type Item = ContourMeasure;

    // If it encounters a zero-length contour, it is skipped.
    fn next(&mut self) -> Option<Self::Item> {
        // Note:
        // as we accumulate distance, we have to check that the result of +=
        // actually made it larger, since a very small delta might be > 0, but
        // still have no effect on distance (if distance >>> delta).
        //
        // We do this check below, and in compute_quad_segs and compute_cubic_segs

        let mut contour = ContourMeasure::default();

        let mut point_index = 0;
        let mut distance = 0.0;
        let mut have_seen_close = false;
        let mut prev_p = Point::zero();
        while let Some(seg) = self.iter.next() {
            match seg {
                PathSegment::MoveTo(p0) => {
                    contour.points.push(p0);
                    prev_p = p0;
                }
                PathSegment::LineTo(p0) => {
                    let prev_d = distance;
                    distance = contour.compute_line_seg(
                        prev_p, p0, distance, point_index);

                    if distance > prev_d {
                        contour.points.push(p0);
                        point_index += 1;
                    }

                    prev_p = p0;
                }
                PathSegment::QuadTo(p0, p1) => {
                    let prev_d = distance;
                    distance = contour.compute_quad_segs(
                        prev_p, p0, p1, distance, 0, MAX_T_VALUE, point_index, self.tolerance);

                    if distance > prev_d {
                        contour.points.push(p0);
                        contour.points.push(p1);
                        point_index += 2;
                    }

                    prev_p = p1;
                }
                PathSegment::CubicTo(p0, p1, p2) => {
                    let prev_d = distance;
                    distance = contour.compute_cubic_segs(
                        prev_p, p0, p1, p2, distance, 0, MAX_T_VALUE, point_index, self.tolerance);

                    if distance > prev_d {
                        contour.points.push(p0);
                        contour.points.push(p1);
                        contour.points.push(p2);
                        point_index += 3;
                    }

                    prev_p = p2;
                }
                PathSegment::Close => {
                    have_seen_close = true;
                }
            }

            // TODO: to contour iter?
            if self.iter.next_verb() == Some(PathVerb::Move) {
                break;
            }
        }

        if !distance.is_finite() {
            return None;
        }

        if have_seen_close {
            let prev_d = distance;
            let first_pt = contour.points[0];
            distance = contour.compute_line_seg(
                contour.points[point_index], first_pt, distance, point_index);

            if distance > prev_d {
                contour.points.push(first_pt);
            }
        }

        contour.length = distance;
        contour.is_closed = have_seen_close;

        if contour.points.is_empty() {
            None
        } else {
            Some(contour)
        }
    }
}


#[derive(Copy, Clone, PartialEq, Debug)]
enum SegmentType {
    Line,
    Quad,
    Cubic,
}

#[derive(Copy, Clone, Debug)]
struct Segment {
    distance: f32, // total distance up to this point
    point_index: usize, // index into the ContourMeasure::points array
    t_value: u32,
    kind: SegmentType,
}

impl Segment {
    fn scalar_t(&self) -> f32 {
        debug_assert!(self.t_value <= MAX_T_VALUE);
        // 1/kMaxTValue can't be represented as a float, but it's close and the limits work fine.
        const MAX_T_RECIPROCAL: f32 = 1.0 / MAX_T_VALUE as f32;
        self.t_value as f32 * MAX_T_RECIPROCAL
    }
}


#[derive(Default, Debug)]
struct ContourMeasure {
    segments: Vec<Segment>,
    points: Vec<Point>,
    length: f32,
    is_closed: bool,
}

impl ContourMeasure {
    fn push_segment(
        &self,
        mut start_d: f32,
        mut stop_d: f32,
        start_with_move_to: bool,
        pb: &mut PathBuilder,
    ) -> Option<()> {
        if start_d < 0.0 {
            start_d = 0.0;
        }

        if stop_d > self.length {
            stop_d = self.length;
        }

        if !(start_d <= stop_d) {
            // catch NaN values as well
            return None;
        }

        if self.segments.is_empty() {
            return None;
        }

        let (seg_index, mut start_t) = self.distance_to_segment(start_d)?;
        let mut seg = self.segments[seg_index];

        let (stop_seg_index, stop_t) = self.distance_to_segment(stop_d)?;
        let stop_seg = self.segments[stop_seg_index];

        debug_assert!(stop_seg_index <= stop_seg_index);
        let mut p = Point::zero();
        if start_with_move_to {
            compute_pos_tan(&self.points[seg.point_index..], seg.kind, start_t, Some(&mut p), None);
            pb.move_to(p.x, p.y);
        }

        if seg.point_index == stop_seg.point_index {
            segment_to(&self.points[seg.point_index..], seg.kind, start_t, stop_t, pb);
        } else {
            let mut new_seg_index = seg_index;
            loop {
                segment_to(&self.points[seg.point_index..], seg.kind, start_t, NormalizedF32::ONE, pb);

                let old_point_index = seg.point_index;
                loop {
                    new_seg_index += 1;
                    if self.segments[new_seg_index].point_index != old_point_index {
                        break;
                    }
                }
                seg = self.segments[new_seg_index];

                start_t = NormalizedF32::ZERO;

                if seg.point_index >= stop_seg.point_index {
                    break;
                }
            }

            segment_to(&self.points[seg.point_index..], seg.kind, NormalizedF32::ZERO, stop_t, pb);
        }

        Some(())
    }

    fn distance_to_segment(&self, distance: f32) -> Option<(usize, NormalizedF32)> {
        debug_assert!(distance >= 0.0 && distance <= self.length);

        let mut index = find_segment(&self.segments, distance);
        // don't care if we hit an exact match or not, so we xor index if it is negative
        index ^= index >> 31;
        let index = index as usize;
        let seg = self.segments[index];

        // now interpolate t-values with the prev segment (if possible)
        let mut start_t = 0.0;
        let mut start_d = 0.0;
        // check if the prev segment is legal, and references the same set of points
        if index > 0 {
            start_d = self.segments[index - 1].distance;
            if self.segments[index - 1].point_index == seg.point_index {
                debug_assert!(self.segments[index - 1].kind == seg.kind);
                start_t = self.segments[index - 1].scalar_t();
            }
        }

        debug_assert!(seg.scalar_t() > start_t);
        debug_assert!(distance >= start_d);
        debug_assert!(seg.distance > start_d);

        let t = start_t + (seg.scalar_t() - start_t) * (distance - start_d) / (seg.distance - start_d);
        let t = NormalizedF32::new(t)?;
        Some((index, t))
    }

    fn compute_line_seg(
        &mut self,
        p0: Point,
        p1: Point,
        mut distance: f32,
        point_index: usize,
    ) -> f32 {
        let d = p0.distance(p1);
        debug_assert!(d >= 0.0);
        let prev_d = distance;
        distance += d;
        if distance > prev_d {
            debug_assert!(point_index < self.points.len());
            self.segments.push(Segment {
                distance,
                point_index,
                t_value: MAX_T_VALUE,
                kind: SegmentType::Line,
            });
        }

        distance
    }

    fn compute_quad_segs(
        &mut self,
        p0: Point,
        p1: Point,
        p2: Point,
        mut distance: f32,
        min_t: u32,
        max_t: u32,
        point_index: usize,
        tolerance: f32,
    ) -> f32 {
        if t_span_big_enough(max_t - min_t) != 0 && quad_too_curvy(p0, p1, p2, tolerance) {
            let mut tmp = [Point::zero(); 5];
            let half_t = (min_t + max_t) >> 1;

            path_geometry::chop_quad_at(&[p0, p1, p2], NormalizedF32Exclusive::HALF, &mut tmp);
            distance = self.compute_quad_segs(
                tmp[0], tmp[1], tmp[2], distance, min_t, half_t, point_index, tolerance);
            distance = self.compute_quad_segs(
                tmp[2], tmp[3], tmp[4], distance, half_t, max_t, point_index, tolerance);
        } else {
            let d = p0.distance(p2);
            let prev_d = distance;
            distance += d;
            if distance > prev_d {
                debug_assert!(point_index < self.points.len());
                self.segments.push(Segment {
                    distance,
                    point_index,
                    t_value: max_t,
                    kind: SegmentType::Quad,
                });
            }
        }

        distance
    }

    fn compute_cubic_segs(
        &mut self,
        p0: Point,
        p1: Point,
        p2: Point,
        p3: Point,
        mut distance: f32,
        min_t: u32,
        max_t: u32,
        point_index: usize,
        tolerance: f32,
    ) -> f32 {
        if t_span_big_enough(max_t - min_t) != 0 && cubic_too_curvy(p0, p1, p2, p3, tolerance) {
            let mut tmp = [Point::zero(); 7];
            let half_t = (min_t + max_t) >> 1;

            path_geometry::chop_cubic_at2(&[p0, p1, p2, p3], NormalizedF32Exclusive::HALF, &mut tmp);
            distance = self.compute_cubic_segs(
                tmp[0], tmp[1], tmp[2], tmp[3], distance, min_t, half_t, point_index, tolerance);
            distance = self.compute_cubic_segs(
                tmp[3], tmp[4], tmp[5], tmp[6], distance, half_t, max_t, point_index, tolerance);
        } else {
            let d = p0.distance(p3);
            let prev_d = distance;
            distance += d;
            if distance > prev_d {
                debug_assert!(point_index < self.points.len());
                self.segments.push(Segment {
                    distance,
                    point_index,
                    t_value: max_t,
                    kind: SegmentType::Cubic,
                });
            }
        }

        distance
    }
}

fn find_segment(base: &[Segment], key: f32) -> i32 {
    let mut lo = 0u32;
    let mut hi = (base.len() - 1) as u32;

    while lo < hi {
        let mid = (hi + lo) >> 1;
        if base[mid as usize].distance < key {
            lo = mid + 1;
        } else {
            hi = mid;
        }
    }

    if base[hi as usize].distance < key {
        hi += 1;
        hi = !hi;
    } else if key < base[hi as usize].distance {
        hi = !hi;
    }

    hi as i32
}

fn compute_pos_tan(
    points: &[Point],
    seg_kind: SegmentType,
    t: NormalizedF32,
    pos: Option<&mut Point>,
    tangent: Option<&mut Point>,
) {
    match seg_kind {
        SegmentType::Line => {
            if let Some(pos) = pos {
                *pos = Point::from_xy(
                    interp(points[0].x, points[1].x, t),
                    interp(points[0].y, points[1].y, t),
                );
            }

            if let Some(tangent) = tangent {
                tangent.set_normalize(points[1].x - points[0].x, points[1].y - points[0].y);
            }
        }
        SegmentType::Quad => {
            let src = array_ref![points, 0, 3];
            if let Some(pos) = pos {
                *pos = path_geometry::eval_quad_at(src, t);
            }

            if let Some(tangent) = tangent {
                *tangent = path_geometry::eval_quad_tangent_at(src, t);
                tangent.normalize();
            }
        }
        SegmentType::Cubic => {
            let src = array_ref![points, 0, 4];
            if let Some(pos) = pos {
                *pos = path_geometry::eval_cubic_pos_at(src, t);
            }

            if let Some(tangent) = tangent {
                *tangent = path_geometry::eval_cubic_tangent_at(src, t);
                tangent.normalize();
            }
        }
    }
}

fn segment_to(
    points: &[Point],
    seg_kind: SegmentType,
    start_t: NormalizedF32,
    stop_t: NormalizedF32,
    pb: &mut PathBuilder,
) {
    debug_assert!(start_t <= stop_t);

    if start_t == stop_t {
        if let Some(pt) = pb.last_point() {
            // If the dash as a zero-length on segment, add a corresponding zero-length line.
            // The stroke code will add end caps to zero length lines as appropriate.
            pb.line_to(pt.x, pt.y);
        }

        return;
    }

    match seg_kind {
        SegmentType::Line => {
            if stop_t == NormalizedF32::ONE {
                pb.line_to(points[1].x, points[1].y);
            } else {
                pb.line_to(
                    interp(points[0].x, points[1].x, stop_t),
                    interp(points[0].y, points[1].y, stop_t),
                );
            }
        }
        SegmentType::Quad => {
            let mut tmp0 = [Point::zero(); 5];
            let mut tmp1 = [Point::zero(); 5];
            if start_t == NormalizedF32::ZERO {
                if stop_t == NormalizedF32::ONE {
                    pb.quad_to_pt(points[1], points[2]);
                } else {
                    let stop_t = NormalizedF32Exclusive::new_bounded(stop_t.get());
                    path_geometry::chop_quad_at(points, stop_t, &mut tmp0);
                    pb.quad_to_pt(tmp0[1], tmp0[2]);
                }
            } else {
                let start_tt = NormalizedF32Exclusive::new_bounded(start_t.get());
                path_geometry::chop_quad_at(points, start_tt, &mut tmp0);
                if stop_t == NormalizedF32::ONE {
                    pb.quad_to_pt(tmp0[3], tmp0[4]);
                } else {
                    let new_t = (stop_t.get() - start_t.get()) / (1.0 - start_t.get());
                    let new_t = NormalizedF32Exclusive::new_bounded(new_t);
                    path_geometry::chop_quad_at(&tmp0[2..], new_t, &mut tmp1);
                    pb.quad_to_pt(tmp1[1], tmp1[2]);
                }
            }
        }
        SegmentType::Cubic => {
            let mut tmp0 = [Point::zero(); 7];
            let mut tmp1 = [Point::zero(); 7];
            if start_t == NormalizedF32::ZERO {
                if stop_t == NormalizedF32::ONE {
                    pb.cubic_to_pt(points[1], points[2], points[3]);
                } else {
                    let stop_t = NormalizedF32Exclusive::new_bounded(stop_t.get());
                    path_geometry::chop_cubic_at2(array_ref![points, 0, 4], stop_t, &mut tmp0);
                    pb.cubic_to_pt(tmp0[1], tmp0[2], tmp0[3]);
                }
            } else {
                let start_tt = NormalizedF32Exclusive::new_bounded(start_t.get());
                path_geometry::chop_cubic_at2(array_ref![points, 0, 4], start_tt, &mut tmp0);
                if stop_t == NormalizedF32::ONE {
                    pb.cubic_to_pt(tmp0[4], tmp0[5], tmp0[6]);
                } else {
                    let new_t = (stop_t.get() - start_t.get()) / (1.0 - start_t.get());
                    let new_t = NormalizedF32Exclusive::new_bounded(new_t);
                    path_geometry::chop_cubic_at2(array_ref![tmp0, 3, 4], new_t, &mut tmp1);
                    pb.cubic_to_pt(tmp1[1], tmp1[2], tmp1[3]);
                }
            }
        }
    }
}

fn t_span_big_enough(t_span: u32) -> u32 {
    debug_assert!(t_span <= MAX_T_VALUE);
    t_span >> 10
}

fn quad_too_curvy(p0: Point, p1: Point, p2: Point, tolerance: f32) -> bool {
    // diff = (a/4 + b/2 + c/4) - (a/2 + c/2)
    // diff = -a/4 + b/2 - c/4
    let dx = (p1.x).half() - (p0.x + p2.x).half().half();
    let dy = (p1.y).half() - (p0.y + p2.y).half().half();

    let dist = dx.abs().max(dy.abs());
    dist > tolerance
}

fn cubic_too_curvy(p0: Point, p1: Point, p2: Point, p3: Point, tolerance: f32) -> bool {
    let n0 = cheap_dist_exceeds_limit(
        p1,
        interp_safe(p0.x, p3.x, 1.0 / 3.0),
        interp_safe(p0.y, p3.y, 1.0 / 3.0),
        tolerance,
    );

    let n1 = cheap_dist_exceeds_limit(
        p2,
        interp_safe(p0.x, p3.x, 2.0 / 3.0),
        interp_safe(p0.y, p3.y, 2.0 / 3.0),
        tolerance,
    );

    n0 || n1
}

fn cheap_dist_exceeds_limit(pt: Point, x: f32, y: f32, tolerance: f32) -> bool {
    let dist = (x - pt.x).abs().max((y - pt.y).abs());
    // just made up the 1/2
    dist > tolerance
}

/// Linearly interpolate between A and B, based on t.
///
/// If t is 0, return A. If t is 1, return B else interpolate.
fn interp(a: f32, b: f32, t: NormalizedF32) -> f32 {
    a + (b - a) * t.get()
}

fn interp_safe(a: f32, b: f32, t: f32) -> f32 {
    debug_assert!(t >= 0.0 && t <= 1.0);
    a + (b - a) * t
}