1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
// Copyright 2006 The Android Open Source Project
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use alloc::vec::Vec;

use crate::{Color, Transform, SpreadMode};

use crate::floating_point::NormalizedF32;
use crate::pipeline::{self, EvenlySpaced2StopGradientCtx, GradientColor, GradientCtx};
use crate::pipeline::RasterPipelineBuilder;
use crate::scalar::Scalar;

// The default SCALAR_NEARLY_ZERO threshold of .0024 is too big and causes regressions for svg
// gradients defined in the wild.
pub const DEGENERATE_THRESHOLD: f32 = 1.0 / (1 << 15) as f32;


/// A gradient point.
#[allow(missing_docs)]
#[derive(Clone, Copy, PartialEq, Debug)]
pub struct GradientStop {
    pub(crate) position: NormalizedF32,
    pub(crate) color: Color,
}

impl GradientStop {
    /// Creates a new gradient point.
    ///
    /// `position` will be clamped to a 0..=1 range.
    pub fn new(position: f32, color: Color) -> Self {
        GradientStop { position: NormalizedF32::new_bounded(position), color }
    }
}


#[derive(Clone, Debug)]
pub struct Gradient {
    stops: Vec<GradientStop>,
    tile_mode: SpreadMode,
    pub(crate) transform: Transform,
    points_to_unit: Transform,
    pub(crate) colors_are_opaque: bool,
    has_uniform_stops: bool,
}

impl Gradient {
    pub fn new(
        mut stops: Vec<GradientStop>,
        tile_mode: SpreadMode,
        transform: Transform,
        points_to_unit: Transform,
    ) -> Self {
        debug_assert!(stops.len() > 1);

        // Note: we let the caller skip the first and/or last position.
        // i.e. pos[0] = 0.3, pos[1] = 0.7
        // In these cases, we insert dummy entries to ensure that the final data
        // will be bracketed by [0, 1].
        // i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1
        let dummy_first = stops[0].position.get() != 0.0;
        let dummy_last = stops[stops.len() - 1].position.get() != 1.0;

        // Now copy over the colors, adding the dummies as needed.
        if dummy_first {
            stops.insert(0, GradientStop::new(0.0, stops[0].color));
        }

        if dummy_last {
            stops.push(GradientStop::new(1.0, stops[stops.len() - 1].color));
        }

        let colors_are_opaque = stops.iter().all(|p| p.color.is_opaque());

        // Pin the last value to 1.0, and make sure positions are monotonic.
        let start_index = if dummy_first { 0 } else { 1 };
        let mut prev = 0.0;
        let mut has_uniform_stops = true;
        let uniform_step = stops[start_index].position.get() - prev;
        for i in start_index..stops.len() {
            let curr = if i + 1 == stops.len() {
                // The last one must be zero.
                1.0
            } else {
                stops[i].position.get().bound(prev, 1.0)
            };

            has_uniform_stops &= uniform_step.is_nearly_equal(curr - prev);
            stops[i].position = NormalizedF32::new_bounded(curr);
            prev = curr;
        }

        Gradient {
            stops,
            tile_mode,
            transform,
            points_to_unit,
            colors_are_opaque,
            has_uniform_stops,
        }
    }

    pub fn push_stages(
        &self,
        p: &mut RasterPipelineBuilder,
        push_stages_pre: &dyn Fn(&mut RasterPipelineBuilder),
        push_stages_post: &dyn Fn(&mut RasterPipelineBuilder),
    ) -> Option<()> {
        p.push(pipeline::Stage::SeedShader);

        let ts = self.transform.invert()?;
        let ts = ts.post_concat(self.points_to_unit);
        p.push_transform(ts);

        push_stages_pre(p);

        match self.tile_mode {
            SpreadMode::Reflect => {
                p.push(pipeline::Stage::ReflectX1);
            }
            SpreadMode::Repeat => {
                p.push(pipeline::Stage::RepeatX1);
            }
            SpreadMode::Pad => {
                if self.has_uniform_stops {
                    // We clamp only when the stops are evenly spaced.
                    // If not, there may be hard stops, and clamping ruins hard stops at 0 and/or 1.
                    // In that case, we must make sure we're using the general "gradient" stage,
                    // which is the only stage that will correctly handle unclamped t.
                    p.push(pipeline::Stage::PadX1);
                }
            }
        }

        // The two-stop case with stops at 0 and 1.
        if self.stops.len() == 2 {
            debug_assert!(self.has_uniform_stops);

            let c0 = self.stops[0].color;
            let c1 = self.stops[1].color;

            p.ctx.evenly_spaced_2_stop_gradient = EvenlySpaced2StopGradientCtx {
                factor: GradientColor::new(
                    c1.red() - c0.red(),
                    c1.green() - c0.green(),
                    c1.blue() - c0.blue(),
                    c1.alpha() - c0.alpha(),
                ),
                bias: GradientColor::from(c0),
            };

            p.push(pipeline::Stage::EvenlySpaced2StopGradient);
        } else {
            // Unlike Skia, we do not support the `evenly_spaced_gradient` stage.
            // In our case, there is no performance difference.

            let mut ctx = GradientCtx::default();

            // Note: In order to handle clamps in search, the search assumes
            // a stop conceptually placed at -inf.
            // Therefore, the max number of stops is `self.points.len()+1`.
            //
            // We also need at least 16 values for lowp pipeline.
            ctx.factors.reserve((self.stops.len() + 1).max(16));
            ctx.biases.reserve((self.stops.len() + 1).max(16));

            ctx.t_values.reserve(self.stops.len() + 1);

            // Remove the dummy stops inserted by Gradient::new
            // because they are naturally handled by the search method.
            let (first_stop, last_stop) = if self.stops.len() > 2 {
                let first = if self.stops[0].color != self.stops[1].color { 0 } else { 1 };

                let len = self.stops.len();
                let last = if self.stops[len - 2].color != self.stops[len - 1].color {
                    len - 1
                } else {
                    len - 2
                };
                (first, last)
            } else {
                (0, 1)
            };

            let mut t_l = self.stops[first_stop].position.get();
            let mut c_l = GradientColor::from(self.stops[first_stop].color);
            ctx.push_const_color(c_l);
            ctx.t_values.push(NormalizedF32::ZERO);
            // N.B. lastStop is the index of the last stop, not one after.
            for i in first_stop..last_stop {
                let t_r = self.stops[i + 1].position.get();
                let c_r = GradientColor::from(self.stops[i + 1].color);
                debug_assert!(t_l <= t_r);
                if t_l < t_r {
                    // For each stop we calculate a bias B and a scale factor F, such that
                    // for any t between stops n and n+1, the color we want is B[n] + F[n]*t.
                    let f = GradientColor::new(
                        (c_r.r - c_l.r) / (t_r - t_l),
                        (c_r.g - c_l.g) / (t_r - t_l),
                        (c_r.b - c_l.b) / (t_r - t_l),
                        (c_r.a - c_l.a) / (t_r - t_l),
                    );
                    ctx.factors.push(f);

                    ctx.biases.push(
                        GradientColor::new(
                            c_l.r - f.r * t_l,
                            c_l.g - f.g * t_l,
                            c_l.b - f.b * t_l,
                            c_l.a - f.a * t_l,
                        )
                    );

                    ctx.t_values.push(NormalizedF32::new_bounded(t_l));
                }

                t_l = t_r;
                c_l = c_r;
            }

            ctx.push_const_color(c_l);
            ctx.t_values.push(NormalizedF32::new_bounded(t_l));

            ctx.len = ctx.factors.len();

            // All lists must have the same length.
            debug_assert_eq!(ctx.factors.len(), ctx.t_values.len());
            debug_assert_eq!(ctx.biases.len(), ctx.t_values.len());

            // Will with zeros until we have enough data to fit into F32x16.
            while ctx.factors.len() < 16 {
                ctx.factors.push(GradientColor::default());
                ctx.biases.push(GradientColor::default());
            }

            p.push(pipeline::Stage::Gradient);
            p.ctx.gradient = ctx;
        }

        if !self.colors_are_opaque {
            p.push(pipeline::Stage::Premultiply);
        }

        push_stages_post(p);

        Some(())
    }

    pub fn apply_opacity(&mut self, opacity: f32) {
        for stop in &mut self.stops {
            stop.color.apply_opacity(opacity);
        }

        self.colors_are_opaque = self.stops.iter().all(|p| p.color.is_opaque());
    }
}