1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
// Copyright 2006 The Android Open Source Project
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use crate::Point;

use crate::scalar::{SCALAR_NEARLY_ZERO, Scalar};

#[cfg(all(not(feature = "std"), feature = "libm"))]
use crate::scalar::FloatExt;

/// An affine transformation matrix.
///
/// Stores scale, skew and transform coordinates and a type of a transform.
#[allow(missing_docs)]
#[derive(Copy, Clone, PartialEq, Debug)]
pub struct Transform {
    pub sx: f32,
    pub kx: f32,
    pub ky: f32,
    pub sy: f32,
    pub tx: f32,
    pub ty: f32,
}

impl Default for Transform {
    fn default() -> Self {
        Transform {
            sx: 1.0,
            kx: 0.0,
            ky: 0.0,
            sy: 1.0,
            tx: 0.0,
            ty: 0.0,
        }
    }
}

impl Transform {
    /// Creates an identity transform.
    pub fn identity() -> Self {
        Transform::default()
    }

    /// Creates a new `Transform`.
    ///
    /// We are using column-major-column-vector matrix notation, therefore it's ky-kx, not kx-ky.
    pub fn from_row(sx: f32, ky: f32, kx: f32, sy: f32, tx: f32, ty: f32) -> Self {
        Transform { sx, ky, kx, sy, tx, ty }
    }

    /// Creates a new translating `Transform`.
    pub fn from_translate(tx: f32, ty: f32) -> Self {
        Transform::from_row(1.0, 0.0, 0.0, 1.0, tx, ty)
    }

    /// Creates a new scaling `Transform`.
    pub fn from_scale(sx: f32, sy: f32) -> Self {
        Transform::from_row(sx, 0.0, 0.0, sy, 0.0, 0.0)
    }

    /// Creates a new skewing `Transform`.
    pub fn from_skew(kx: f32, ky: f32) -> Self {
        Transform::from_row(1.0, ky, kx, 1.0, 0.0, 0.0)
    }

    /// Creates a new rotating `Transform`.
    pub fn from_rotate(angle: f32) -> Self {
        let v = angle.to_radians();
        let a =  v.cos();
        let b =  v.sin();
        let c = -b;
        let d =  a;
        Transform::from_row(a, b, c, d, 0.0, 0.0)
    }

    /// Creates a new rotating `Transform` at the specified position.
    pub fn from_rotate_at(angle: f32, tx: f32, ty: f32) -> Self {
        let mut ts = Self::default();
        ts = ts.pre_translate(tx, ty);
        ts = ts.pre_concat(Transform::from_rotate(angle));
        ts = ts.pre_translate(-tx, -ty);
        ts
    }

    pub(crate) fn from_sin_cos_at(sin: f32, cos: f32, px: f32, py: f32) -> Self {
        let cos_inv = 1.0 - cos;
        Transform::from_row(
            cos, sin, -sin, cos, sdot(sin, py, cos_inv, px), sdot(-sin, px, cos_inv, py)
        )
    }

    pub(crate) fn from_poly_to_poly(
        src1: Point,
        src2: Point,
        dst1: Point,
        dst2: Point,
    ) -> Option<Self> {
        let tmp = from_poly2(src1, src2);
        let res = tmp.invert()?;
        let tmp = from_poly2(dst1, dst2);
        Some(concat(tmp, res))
    }

    pub(crate) fn is_finite(&self) -> bool {
        self.sx.is_finite() &&
        self.ky.is_finite() &&
        self.kx.is_finite() &&
        self.sy.is_finite() &&
        self.tx.is_finite() &&
        self.ty.is_finite()
    }

    /// Checks that transform is identity.
    ///
    /// The transform type is detected on creation, so this method is essentially free.
    pub fn is_identity(&self) -> bool {
        *self == Transform::default()
    }

    /// Checks that transform is scale-only.
    ///
    /// The transform type is detected on creation, so this method is essentially free.
    pub fn is_scale(&self) -> bool {
        self.has_scale() && !self.has_skew() && !self.has_translate()
    }

    /// Checks that transform is skew-only.
    ///
    /// The transform type is detected on creation, so this method is essentially free.
    pub fn is_skew(&self) -> bool {
        !self.has_scale() && self.has_skew() && !self.has_translate()
    }

    /// Checks that transform is translate-only.
    ///
    /// The transform type is detected on creation, so this method is essentially free.
    pub fn is_translate(&self) -> bool {
        !self.has_scale() && !self.has_skew() && self.has_translate()
    }

    /// Checks that transform contains only scale and translate.
    ///
    /// The transform type is detected on creation, so this method is essentially free.
    pub fn is_scale_translate(&self) -> bool {
        (self.has_scale() || self.has_translate()) && !self.has_skew()
    }

    /// Checks that transform contains a scale part.
    ///
    /// The transform type is detected on creation, so this method is essentially free.
    pub fn has_scale(&self) -> bool {
        self.sx != 1.0 || self.sy != 1.0
    }

    /// Checks that transform contains a skew part.
    ///
    /// The transform type is detected on creation, so this method is essentially free.
    pub fn has_skew(&self) -> bool {
        self.kx != 0.0 || self.ky != 0.0
    }

    /// Checks that transform contains a translate part.
    ///
    /// The transform type is detected on creation, so this method is essentially free.
    pub fn has_translate(&self) -> bool {
        self.tx != 0.0 || self.ty != 0.0
    }

    /// Pre-scales the current transform.
    #[must_use]
    pub fn pre_scale(&self, sx: f32, sy: f32) -> Self {
        self.pre_concat(Transform::from_scale(sx, sy))
    }

    /// Post-scales the current transform.
    #[must_use]
    pub fn post_scale(&self, sx: f32, sy: f32) -> Self {
        self.post_concat(Transform::from_scale(sx, sy))
    }

    /// Pre-translates the current transform.
    #[must_use]
    pub fn pre_translate(&self, tx: f32, ty: f32) -> Self {
        self.pre_concat(Transform::from_translate(tx, ty))
    }

    /// Post-translates the current transform.
    #[must_use]
    pub fn post_translate(&self, tx: f32, ty: f32) -> Self {
        self.post_concat(Transform::from_translate(tx, ty))
    }

    /// Pre-concats the current transform.
    #[must_use]
    pub fn pre_concat(&self, other: Self) -> Self {
        concat(*self, other)
    }

    /// Post-concats the current transform.
    #[must_use]
    pub fn post_concat(&self, other: Self) -> Self {
        concat(other, *self)
    }

    pub(crate) fn from_sin_cos(sin: f32, cos: f32) -> Self {
        Transform::from_row(cos, sin, -sin, cos, 0.0, 0.0)
    }

    /// Transforms a slice of points using the current transform.
    pub fn map_points(&self, points: &mut [Point]) {
        if points.is_empty() {
            return;
        }

        // TODO: simd

        if self.is_identity() {
            // Do nothing.
        } else if self.is_translate() {
            for p in points {
                p.x += self.tx;
                p.y += self.ty;
            }
        } else if self.is_scale_translate() {
            for p in points {
                p.x = p.x * self.sx + self.tx;
                p.y = p.y * self.sy + self.ty;
            }
        } else {
            for p in points {
                let x = p.x * self.sx + p.y * self.kx + self.tx;
                let y = p.x * self.ky + p.y * self.sy + self.ty;
                p.x = x;
                p.y = y;
            }
        }
    }

    /// Returns an inverted transform.
    pub(crate) fn invert(&self) -> Option<Self> {
        // Allow the trivial case to be inlined.
        if self.is_identity() {
            return Some(*self);
        }

        invert(self)
    }
}

fn from_poly2(p0: Point, p1: Point) -> Transform {
    Transform::from_row(
        p1.y - p0.y,
        p0.x - p1.x,
        p1.x - p0.x,
        p1.y - p0.y,
        p0.x,
        p0.y,
    )
}

fn invert(ts: &Transform) -> Option<Transform> {
    debug_assert!(!ts.is_identity());

    if ts.is_scale_translate() {
        if ts.has_scale() {
            let inv_x = ts.sx.invert();
            let inv_y = ts.sy.invert();
            Some(Transform::from_row(inv_x, 0.0, 0.0, inv_y, -ts.tx * inv_x, -ts.ty * inv_y))
        } else {
            // translate only
            Some(Transform::from_translate(-ts.tx, -ts.ty))
        }
    } else {
        let inv_det = inv_determinant(ts)?;
        let inv_ts = compute_inv(ts, inv_det);

        if inv_ts.is_finite() {
            Some(inv_ts)
        } else {
            None
        }
    }
}

fn inv_determinant(ts: &Transform) -> Option<f64> {
    let det = dcross(ts.sx as f64, ts.sy as f64, ts.kx as f64, ts.ky as f64);

    // Since the determinant is on the order of the cube of the matrix members,
    // compare to the cube of the default nearly-zero constant (although an
    // estimate of the condition number would be better if it wasn't so expensive).
    let tolerance = SCALAR_NEARLY_ZERO * SCALAR_NEARLY_ZERO * SCALAR_NEARLY_ZERO;
    if (det as f32).is_nearly_zero_within_tolerance(tolerance) {
        None
    } else {
        Some(1.0 / det)
    }
}

fn compute_inv(ts: &Transform, inv_det: f64) -> Transform {
    Transform::from_row(
        (ts.sy as f64 * inv_det) as f32,
        (-ts.ky as f64 * inv_det) as f32,
        (-ts.kx as f64 * inv_det) as f32,
        (ts.sx as f64 * inv_det) as f32,
        dcross_dscale(
            ts.kx,
            ts.ty,
            ts.sy,
            ts.tx,
            inv_det,
        ),
        dcross_dscale(
            ts.ky,
            ts.tx,
            ts.sx,
            ts.ty,
            inv_det,
        ),
    )
}

fn dcross(a: f64, b: f64, c: f64, d: f64) -> f64 {
    a * b - c * d
}

fn dcross_dscale(a: f32, b: f32, c: f32, d: f32, scale: f64) -> f32 {
    (dcross(a as f64, b as f64, c as f64, d as f64) * scale) as f32
}

fn sdot(a: f32, b: f32, c: f32, d: f32) -> f32 {
    a * b + c * d
}

fn concat(a: Transform, b: Transform) -> Transform {
    if a.is_identity() {
        b
    } else if b.is_identity() {
        a
    } else if !a.has_skew() && !b.has_skew() {
        // just scale and translate
        Transform::from_row(
            a.sx * b.sx,
            0.0,
            0.0,
            a.sy * b.sy,
            a.sx * b.tx + a.tx,
            a.sy * b.ty + a.ty,
        )
    } else {
        Transform::from_row(
            mul_add_mul(a.sx, b.sx, a.kx, b.ky),
            mul_add_mul(a.ky, b.sx, a.sy, b.ky),
            mul_add_mul(a.sx, b.kx, a.kx, b.sy),
            mul_add_mul(a.ky, b.kx, a.sy, b.sy),
            mul_add_mul(a.sx, b.tx, a.kx, b.ty) + a.tx,
            mul_add_mul(a.ky, b.tx, a.sy, b.ty) + a.ty,
        )
    }
}

fn mul_add_mul(a: f32, b: f32, c: f32, d: f32) -> f32 {
    (f64::from(a) * f64::from(b) + f64::from(c) * f64::from(d)) as f32
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn transform() {
        assert_eq!(Transform::identity(),
                   Transform::from_row(1.0, 0.0, 0.0, 1.0, 0.0, 0.0));

        assert_eq!(Transform::from_scale(1.0, 2.0),
                   Transform::from_row(1.0, 0.0, 0.0, 2.0, 0.0, 0.0));

        assert_eq!(Transform::from_skew(2.0, 3.0),
                   Transform::from_row(1.0, 3.0, 2.0, 1.0, 0.0, 0.0));

        assert_eq!(Transform::from_translate(5.0, 6.0),
                   Transform::from_row(1.0, 0.0, 0.0, 1.0, 5.0, 6.0));

        let ts = Transform::identity();
        assert_eq!(ts.is_identity(), true);
        assert_eq!(ts.is_scale(), false);
        assert_eq!(ts.is_skew(), false);
        assert_eq!(ts.is_translate(), false);
        assert_eq!(ts.is_scale_translate(), false);
        assert_eq!(ts.has_scale(), false);
        assert_eq!(ts.has_skew(), false);
        assert_eq!(ts.has_translate(), false);

        let ts = Transform::from_scale(2.0, 3.0);
        assert_eq!(ts.is_identity(), false);
        assert_eq!(ts.is_scale(), true);
        assert_eq!(ts.is_skew(), false);
        assert_eq!(ts.is_translate(), false);
        assert_eq!(ts.is_scale_translate(), true);
        assert_eq!(ts.has_scale(), true);
        assert_eq!(ts.has_skew(), false);
        assert_eq!(ts.has_translate(), false);

        let ts = Transform::from_skew(2.0, 3.0);
        assert_eq!(ts.is_identity(), false);
        assert_eq!(ts.is_scale(), false);
        assert_eq!(ts.is_skew(), true);
        assert_eq!(ts.is_translate(), false);
        assert_eq!(ts.is_scale_translate(), false);
        assert_eq!(ts.has_scale(), false);
        assert_eq!(ts.has_skew(), true);
        assert_eq!(ts.has_translate(), false);

        let ts = Transform::from_translate(2.0, 3.0);
        assert_eq!(ts.is_identity(), false);
        assert_eq!(ts.is_scale(), false);
        assert_eq!(ts.is_skew(), false);
        assert_eq!(ts.is_translate(), true);
        assert_eq!(ts.is_scale_translate(), true);
        assert_eq!(ts.has_scale(), false);
        assert_eq!(ts.has_skew(), false);
        assert_eq!(ts.has_translate(), true);

        let ts = Transform::from_row(1.0, 2.0, 3.0, 4.0, 5.0, 6.0);
        assert_eq!(ts.is_identity(), false);
        assert_eq!(ts.is_scale(), false);
        assert_eq!(ts.is_skew(), false);
        assert_eq!(ts.is_translate(), false);
        assert_eq!(ts.is_scale_translate(), false);
        assert_eq!(ts.has_scale(), true);
        assert_eq!(ts.has_skew(), true);
        assert_eq!(ts.has_translate(), true);

        let ts = Transform::from_scale(1.0, 1.0);
        assert_eq!(ts.has_scale(), false);

        let ts = Transform::from_skew(0.0, 0.0);
        assert_eq!(ts.has_skew(), false);

        let ts = Transform::from_translate(0.0, 0.0);
        assert_eq!(ts.has_translate(), false);
    }

    #[test]
    fn concat() {
        let mut ts = Transform::from_row(1.2, 3.4, -5.6, -7.8, 1.2, 3.4);
        ts = ts.pre_scale(2.0, -4.0);
        assert_eq!(ts, Transform::from_row(2.4, 6.8, 22.4, 31.2, 1.2, 3.4));

        let mut ts = Transform::from_row(1.2, 3.4, -5.6, -7.8, 1.2, 3.4);
        ts = ts.post_scale(2.0, -4.0);
        assert_eq!(ts, Transform::from_row(2.4, -13.6, -11.2, 31.2, 2.4, -13.6));
    }
}