1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
// Copyright 2006 The Android Open Source Project
// Copyright 2020 Yevhenii Reizner
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use alloc::vec::Vec;
use tiny_skia_path::Scalar;
use crate::{GradientStop, Point, Shader, SpreadMode, Transform};
use super::gradient::{Gradient, DEGENERATE_THRESHOLD};
use crate::pipeline;
use crate::pipeline::RasterPipelineBuilder;
use crate::wide::u32x8;
#[cfg(all(not(feature = "std"), feature = "no-std-float"))]
use tiny_skia_path::NoStdFloat;
#[derive(Copy, Clone, PartialEq, Debug)]
struct FocalData {
r1: f32, // r1 after mapping focal point to (0, 0)
}
impl FocalData {
// Whether the focal point (0, 0) is on the end circle with center (1, 0) and radius r1. If
// this is true, it's as if an aircraft is flying at Mach 1 and all circles (soundwaves)
// will go through the focal point (aircraft). In our previous implementations, this was
// known as the edge case where the inside circle touches the outside circle (on the focal
// point). If we were to solve for t bruteforcely using a quadratic equation, this case
// implies that the quadratic equation degenerates to a linear equation.
fn is_focal_on_circle(&self) -> bool {
(1.0 - self.r1).is_nearly_zero()
}
fn is_well_behaved(&self) -> bool {
!self.is_focal_on_circle() && self.r1 > 1.0
}
}
/// A radial gradient shader.
///
/// This is not `SkRadialGradient` like in Skia, but rather `SkTwoPointConicalGradient`
/// without the start radius.
#[derive(Clone, PartialEq, Debug)]
pub struct RadialGradient {
pub(crate) base: Gradient,
focal_data: Option<FocalData>,
}
impl RadialGradient {
/// Creates a new radial gradient shader.
///
/// Returns `Shader::SolidColor` when:
/// - `stops.len()` == 1
///
/// Returns `None` when:
///
/// - `stops` is empty
/// - `radius` <= 0
/// - `transform` is not invertible
#[allow(clippy::new_ret_no_self)]
pub fn new(
start: Point,
end: Point,
radius: f32,
stops: Vec<GradientStop>,
mode: SpreadMode,
transform: Transform,
) -> Option<Shader<'static>> {
// From SkGradientShader::MakeTwoPointConical
if radius < 0.0 || radius.is_nearly_zero() {
return None;
}
if stops.is_empty() {
return None;
}
if stops.len() == 1 {
return Some(Shader::SolidColor(stops[0].color));
}
transform.invert()?;
let length = (end - start).length();
if !length.is_finite() {
return None;
}
if length.is_nearly_zero_within_tolerance(DEGENERATE_THRESHOLD) {
// If the center positions are the same, then the gradient
// is the radial variant of a 2 pt conical gradient,
// an actual radial gradient (startRadius == 0),
// or it is fully degenerate (startRadius == endRadius).
let inv = radius.invert();
let mut ts = Transform::from_translate(-start.x, -start.y);
ts = ts.post_scale(inv, inv);
// We can treat this gradient as radial, which is faster. If we got here, we know
// that endRadius is not equal to 0, so this produces a meaningful gradient
Some(Shader::RadialGradient(RadialGradient {
base: Gradient::new(stops, mode, transform, ts),
focal_data: None,
}))
} else {
// From SkTwoPointConicalGradient::Create
let mut ts = ts_from_poly_to_poly(
start,
end,
Point::from_xy(0.0, 0.0),
Point::from_xy(1.0, 0.0),
)?;
let d_center = (start - end).length();
let r1 = radius / d_center;
let focal_data = FocalData { r1 };
// The following transformations are just to accelerate the shader computation by saving
// some arithmetic operations.
if focal_data.is_focal_on_circle() {
ts = ts.post_scale(0.5, 0.5);
} else {
ts = ts.post_scale(r1 / (r1 * r1 - 1.0), 1.0 / ((r1 * r1 - 1.0).abs()).sqrt());
}
Some(Shader::RadialGradient(RadialGradient {
base: Gradient::new(stops, mode, transform, ts),
focal_data: Some(focal_data),
}))
}
}
pub(crate) fn push_stages(&self, p: &mut RasterPipelineBuilder) -> Option<()> {
let p0 = if let Some(focal_data) = self.focal_data {
1.0 / focal_data.r1
} else {
1.0
};
p.ctx.two_point_conical_gradient = pipeline::TwoPointConicalGradientCtx {
mask: u32x8::default(),
p0,
};
self.base.push_stages(
p,
&|p| {
if let Some(focal_data) = self.focal_data {
// Unlike Skia, we have only the Focal radial gradient type.
if focal_data.is_focal_on_circle() {
p.push(pipeline::Stage::XYTo2PtConicalFocalOnCircle);
} else if focal_data.is_well_behaved() {
p.push(pipeline::Stage::XYTo2PtConicalWellBehaved);
} else {
p.push(pipeline::Stage::XYTo2PtConicalGreater);
}
if !focal_data.is_well_behaved() {
p.push(pipeline::Stage::Mask2PtConicalDegenerates);
}
} else {
p.push(pipeline::Stage::XYToRadius);
}
},
&|p| {
if let Some(focal_data) = self.focal_data {
if !focal_data.is_well_behaved() {
p.push(pipeline::Stage::ApplyVectorMask);
}
}
},
)
}
}
fn ts_from_poly_to_poly(src1: Point, src2: Point, dst1: Point, dst2: Point) -> Option<Transform> {
let tmp = from_poly2(src1, src2);
let res = tmp.invert()?;
let tmp = from_poly2(dst1, dst2);
Some(tmp.pre_concat(res))
}
fn from_poly2(p0: Point, p1: Point) -> Transform {
Transform::from_row(
p1.y - p0.y,
p0.x - p1.x,
p1.x - p0.x,
p1.y - p0.y,
p0.x,
p0.y,
)
}