tokio_core/net/tcp.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
use std::fmt;
use std::io::{self, Read, Write};
use std::mem;
use std::net::{self, SocketAddr, Shutdown};
use std::time::Duration;
use bytes::{Buf, BufMut};
use futures::stream::Stream;
use futures::{Future, Poll, Async};
use iovec::IoVec;
use mio;
use tokio_io::{AsyncRead, AsyncWrite};
use reactor::{Handle, PollEvented2};
/// An I/O object representing a TCP socket listening for incoming connections.
///
/// This object can be converted into a stream of incoming connections for
/// various forms of processing.
pub struct TcpListener {
io: PollEvented2<mio::net::TcpListener>,
}
/// Stream returned by the `TcpListener::incoming` function representing the
/// stream of sockets received from a listener.
#[must_use = "streams do nothing unless polled"]
pub struct Incoming {
inner: TcpListener,
}
impl TcpListener {
/// Create a new TCP listener associated with this event loop.
///
/// The TCP listener will bind to the provided `addr` address, if available.
/// If the result is `Ok`, the socket has successfully bound.
pub fn bind(addr: &SocketAddr, handle: &Handle) -> io::Result<TcpListener> {
let l = try!(mio::net::TcpListener::bind(addr));
TcpListener::new(l, handle)
}
/// Create a new TCP listener associated with this event loop.
///
/// This is the same as `bind` but uses the default reactor instead of an
/// explicit `&Handle`.
pub fn bind2(addr: &SocketAddr) -> io::Result<TcpListener> {
let l = try!(mio::net::TcpListener::bind(addr));
TcpListener::new2(l)
}
/// Attempt to accept a connection and create a new connected `TcpStream` if
/// successful.
///
/// This function will attempt an accept operation, but will not block
/// waiting for it to complete. If the operation would block then a "would
/// block" error is returned. Additionally, if this method would block, it
/// registers the current task to receive a notification when it would
/// otherwise not block.
///
/// Note that typically for simple usage it's easier to treat incoming
/// connections as a `Stream` of `TcpStream`s with the `incoming` method
/// below.
///
/// # Panics
///
/// This function will panic if it is called outside the context of a
/// future's task. It's recommended to only call this from the
/// implementation of a `Future::poll`, if necessary.
pub fn accept(&mut self) -> io::Result<(TcpStream, SocketAddr)> {
let (io, addr) = self.accept_std()?;
let io = mio::net::TcpStream::from_stream(io)?;
let io = PollEvented2::new(io);
let io = TcpStream { io };
Ok((io, addr))
}
/// Like `accept`, except that it returns a raw `std::net::TcpStream`.
///
/// The stream is *in blocking mode*, and is not associated with the Tokio
/// event loop.
pub fn accept_std(&mut self) -> io::Result<(net::TcpStream, SocketAddr)> {
if let Async::NotReady = self.io.poll_read_ready(mio::Ready::readable())? {
return Err(io::Error::new(io::ErrorKind::WouldBlock, "not ready"))
}
match self.io.get_ref().accept_std() {
Err(e) => {
if e.kind() == io::ErrorKind::WouldBlock {
self.io.clear_read_ready(mio::Ready::readable())?;
}
Err(e)
},
Ok((sock, addr)) => Ok((sock, addr)),
}
}
/// Create a new TCP listener from the standard library's TCP listener.
///
/// This method can be used when the `Handle::tcp_listen` method isn't
/// sufficient because perhaps some more configuration is needed in terms of
/// before the calls to `bind` and `listen`.
///
/// This API is typically paired with the `net2` crate and the `TcpBuilder`
/// type to build up and customize a listener before it's shipped off to the
/// backing event loop. This allows configuration of options like
/// `SO_REUSEPORT`, binding to multiple addresses, etc.
///
/// The `addr` argument here is one of the addresses that `listener` is
/// bound to and the listener will only be guaranteed to accept connections
/// of the same address type currently.
///
/// Finally, the `handle` argument is the event loop that this listener will
/// be bound to.
///
/// The platform specific behavior of this function looks like:
///
/// * On Unix, the socket is placed into nonblocking mode and connections
/// can be accepted as normal
///
/// * On Windows, the address is stored internally and all future accepts
/// will only be for the same IP version as `addr` specified. That is, if
/// `addr` is an IPv4 address then all sockets accepted will be IPv4 as
/// well (same for IPv6).
pub fn from_listener(listener: net::TcpListener,
_addr: &SocketAddr,
handle: &Handle) -> io::Result<TcpListener> {
let l = try!(mio::net::TcpListener::from_std(listener));
TcpListener::new(l, handle)
}
fn new(listener: mio::net::TcpListener, handle: &Handle)
-> io::Result<TcpListener> {
let io = try!(PollEvented2::new_with_handle(listener, handle.new_tokio_handle()));
Ok(TcpListener { io: io })
}
fn new2(listener: mio::net::TcpListener)
-> io::Result<TcpListener> {
let io = PollEvented2::new(listener);
Ok(TcpListener { io: io })
}
/// Test whether this socket is ready to be read or not.
pub fn poll_read(&self) -> Async<()> {
self.io.poll_read_ready(mio::Ready::readable())
.map(|r| {
if r.is_ready() {
Async::Ready(())
} else {
Async::NotReady
}
})
.unwrap_or(().into())
}
/// Returns the local address that this listener is bound to.
///
/// This can be useful, for example, when binding to port 0 to figure out
/// which port was actually bound.
pub fn local_addr(&self) -> io::Result<SocketAddr> {
self.io.get_ref().local_addr()
}
/// Consumes this listener, returning a stream of the sockets this listener
/// accepts.
///
/// This method returns an implementation of the `Stream` trait which
/// resolves to the sockets the are accepted on this listener.
pub fn incoming(self) -> Incoming {
Incoming { inner: self }
}
/// Sets the value for the `IP_TTL` option on this socket.
///
/// This value sets the time-to-live field that is used in every packet sent
/// from this socket.
pub fn set_ttl(&self, ttl: u32) -> io::Result<()> {
self.io.get_ref().set_ttl(ttl)
}
/// Gets the value of the `IP_TTL` option for this socket.
///
/// For more information about this option, see [`set_ttl`][link].
///
/// [link]: #method.set_ttl
pub fn ttl(&self) -> io::Result<u32> {
self.io.get_ref().ttl()
}
/// Sets the value for the `IPV6_V6ONLY` option on this socket.
///
/// If this is set to `true` then the socket is restricted to sending and
/// receiving IPv6 packets only. In this case two IPv4 and IPv6 applications
/// can bind the same port at the same time.
///
/// If this is set to `false` then the socket can be used to send and
/// receive packets from an IPv4-mapped IPv6 address.
pub fn set_only_v6(&self, only_v6: bool) -> io::Result<()> {
self.io.get_ref().set_only_v6(only_v6)
}
/// Gets the value of the `IPV6_V6ONLY` option for this socket.
///
/// For more information about this option, see [`set_only_v6`][link].
///
/// [link]: #method.set_only_v6
pub fn only_v6(&self) -> io::Result<bool> {
self.io.get_ref().only_v6()
}
}
impl fmt::Debug for TcpListener {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.io.get_ref().fmt(f)
}
}
impl Stream for Incoming {
type Item = (TcpStream, SocketAddr);
type Error = io::Error;
fn poll(&mut self) -> Poll<Option<Self::Item>, io::Error> {
Ok(Async::Ready(Some(try_nb!(self.inner.accept()))))
}
}
/// An I/O object representing a TCP stream connected to a remote endpoint.
///
/// A TCP stream can either be created by connecting to an endpoint or by
/// accepting a connection from a listener. Inside the stream is access to the
/// raw underlying I/O object as well as streams for the read/write
/// notifications on the stream itself.
pub struct TcpStream {
io: PollEvented2<mio::net::TcpStream>,
}
/// Future returned by `TcpStream::connect` which will resolve to a `TcpStream`
/// when the stream is connected.
#[must_use = "futures do nothing unless polled"]
pub struct TcpStreamNew {
inner: TcpStreamNewState,
}
#[must_use = "futures do nothing unless polled"]
enum TcpStreamNewState {
Waiting(TcpStream),
Error(io::Error),
Empty,
}
impl TcpStream {
/// Create a new TCP stream connected to the specified address.
///
/// This function will create a new TCP socket and attempt to connect it to
/// the `addr` provided. The returned future will be resolved once the
/// stream has successfully connected. If an error happens during the
/// connection or during the socket creation, that error will be returned to
/// the future instead.
pub fn connect(addr: &SocketAddr, handle: &Handle) -> TcpStreamNew {
let inner = match mio::net::TcpStream::connect(addr) {
Ok(tcp) => TcpStream::new(tcp, handle),
Err(e) => TcpStreamNewState::Error(e),
};
TcpStreamNew { inner: inner }
}
/// Create a new TCP stream connected to the specified address.
///
/// This is the same as `connect`, but uses the default reactor instead of
/// taking an explicit `&Handle`.
pub fn connect2(addr: &SocketAddr) -> TcpStreamNew {
let inner = match mio::net::TcpStream::connect(addr) {
Ok(tcp) => TcpStream::new2(tcp),
Err(e) => TcpStreamNewState::Error(e),
};
TcpStreamNew { inner: inner }
}
fn new(connected_stream: mio::net::TcpStream, handle: &Handle)
-> TcpStreamNewState {
match PollEvented2::new_with_handle(connected_stream, handle.new_tokio_handle()) {
Ok(io) => TcpStreamNewState::Waiting(TcpStream { io: io }),
Err(e) => TcpStreamNewState::Error(e),
}
}
fn new2(connected_stream: mio::net::TcpStream)
-> TcpStreamNewState {
let io = PollEvented2::new(connected_stream);
TcpStreamNewState::Waiting(TcpStream { io: io })
}
/// Create a new `TcpStream` from a `net::TcpStream`.
///
/// This function will convert a TCP stream in the standard library to a TCP
/// stream ready to be used with the provided event loop handle. The object
/// returned is associated with the event loop and ready to perform I/O.
pub fn from_stream(stream: net::TcpStream, handle: &Handle)
-> io::Result<TcpStream> {
let inner = try!(mio::net::TcpStream::from_stream(stream));
Ok(TcpStream {
io: try!(PollEvented2::new_with_handle(inner, handle.new_tokio_handle())),
})
}
/// Creates a new `TcpStream` from the pending socket inside the given
/// `std::net::TcpStream`, connecting it to the address specified.
///
/// This constructor allows configuring the socket before it's actually
/// connected, and this function will transfer ownership to the returned
/// `TcpStream` if successful. An unconnected `TcpStream` can be created
/// with the `net2::TcpBuilder` type (and also configured via that route).
///
/// The platform specific behavior of this function looks like:
///
/// * On Unix, the socket is placed into nonblocking mode and then a
/// `connect` call is issued.
///
/// * On Windows, the address is stored internally and the connect operation
/// is issued when the returned `TcpStream` is registered with an event
/// loop. Note that on Windows you must `bind` a socket before it can be
/// connected, so if a custom `TcpBuilder` is used it should be bound
/// (perhaps to `INADDR_ANY`) before this method is called.
pub fn connect_stream(stream: net::TcpStream,
addr: &SocketAddr,
handle: &Handle)
-> Box<Future<Item=TcpStream, Error=io::Error> + Send> {
let state = match mio::net::TcpStream::connect_stream(stream, addr) {
Ok(tcp) => TcpStream::new(tcp, handle),
Err(e) => TcpStreamNewState::Error(e),
};
Box::new(state)
}
/// Test whether this socket is ready to be read or not.
///
/// If the socket is *not* readable then the current task is scheduled to
/// get a notification when the socket does become readable. That is, this
/// is only suitable for calling in a `Future::poll` method and will
/// automatically handle ensuring a retry once the socket is readable again.
pub fn poll_read(&self) -> Async<()> {
self.io.poll_read_ready(mio::Ready::readable())
.map(|r| {
if r.is_ready() {
Async::Ready(())
} else {
Async::NotReady
}
})
.unwrap_or(().into())
}
/// Test whether this socket is ready to be written to or not.
///
/// If the socket is *not* writable then the current task is scheduled to
/// get a notification when the socket does become writable. That is, this
/// is only suitable for calling in a `Future::poll` method and will
/// automatically handle ensuring a retry once the socket is writable again.
pub fn poll_write(&self) -> Async<()> {
self.io.poll_write_ready()
.map(|r| {
if r.is_ready() {
Async::Ready(())
} else {
Async::NotReady
}
})
.unwrap_or(().into())
}
/// Returns the local address that this stream is bound to.
pub fn local_addr(&self) -> io::Result<SocketAddr> {
self.io.get_ref().local_addr()
}
/// Returns the remote address that this stream is connected to.
pub fn peer_addr(&self) -> io::Result<SocketAddr> {
self.io.get_ref().peer_addr()
}
/// Receives data on the socket from the remote address to which it is
/// connected, without removing that data from the queue. On success,
/// returns the number of bytes peeked.
///
/// Successive calls return the same data. This is accomplished by passing
/// `MSG_PEEK` as a flag to the underlying recv system call.
pub fn peek(&self, buf: &mut [u8]) -> io::Result<usize> {
if let Async::NotReady = self.poll_read() {
return Err(io::ErrorKind::WouldBlock.into())
}
let r = self.io.get_ref().peek(buf);
if is_wouldblock(&r) {
self.io.clear_read_ready(mio::Ready::readable())?;
}
return r
}
/// Shuts down the read, write, or both halves of this connection.
///
/// This function will cause all pending and future I/O on the specified
/// portions to return immediately with an appropriate value (see the
/// documentation of `Shutdown`).
pub fn shutdown(&self, how: Shutdown) -> io::Result<()> {
self.io.get_ref().shutdown(how)
}
/// Sets the value of the `TCP_NODELAY` option on this socket.
///
/// If set, this option disables the Nagle algorithm. This means that
/// segments are always sent as soon as possible, even if there is only a
/// small amount of data. When not set, data is buffered until there is a
/// sufficient amount to send out, thereby avoiding the frequent sending of
/// small packets.
pub fn set_nodelay(&self, nodelay: bool) -> io::Result<()> {
self.io.get_ref().set_nodelay(nodelay)
}
/// Gets the value of the `TCP_NODELAY` option on this socket.
///
/// For more information about this option, see [`set_nodelay`][link].
///
/// [link]: #method.set_nodelay
pub fn nodelay(&self) -> io::Result<bool> {
self.io.get_ref().nodelay()
}
/// Sets the value of the `SO_RCVBUF` option on this socket.
///
/// Changes the size of the operating system's receive buffer associated
/// with the socket.
pub fn set_recv_buffer_size(&self, size: usize) -> io::Result<()> {
self.io.get_ref().set_recv_buffer_size(size)
}
/// Gets the value of the `SO_RCVBUF` option on this socket.
///
/// For more information about this option, see
/// [`set_recv_buffer_size`][link].
///
/// [link]: #tymethod.set_recv_buffer_size
pub fn recv_buffer_size(&self) -> io::Result<usize> {
self.io.get_ref().recv_buffer_size()
}
/// Sets the value of the `SO_SNDBUF` option on this socket.
///
/// Changes the size of the operating system's send buffer associated with
/// the socket.
pub fn set_send_buffer_size(&self, size: usize) -> io::Result<()> {
self.io.get_ref().set_send_buffer_size(size)
}
/// Gets the value of the `SO_SNDBUF` option on this socket.
///
/// For more information about this option, see [`set_send_buffer`][link].
///
/// [link]: #tymethod.set_send_buffer
pub fn send_buffer_size(&self) -> io::Result<usize> {
self.io.get_ref().send_buffer_size()
}
/// Sets whether keepalive messages are enabled to be sent on this socket.
///
/// On Unix, this option will set the `SO_KEEPALIVE` as well as the
/// `TCP_KEEPALIVE` or `TCP_KEEPIDLE` option (depending on your platform).
/// On Windows, this will set the `SIO_KEEPALIVE_VALS` option.
///
/// If `None` is specified then keepalive messages are disabled, otherwise
/// the duration specified will be the time to remain idle before sending a
/// TCP keepalive probe.
///
/// Some platforms specify this value in seconds, so sub-second
/// specifications may be omitted.
pub fn set_keepalive(&self, keepalive: Option<Duration>) -> io::Result<()> {
self.io.get_ref().set_keepalive(keepalive)
}
/// Returns whether keepalive messages are enabled on this socket, and if so
/// the duration of time between them.
///
/// For more information about this option, see [`set_keepalive`][link].
///
/// [link]: #tymethod.set_keepalive
pub fn keepalive(&self) -> io::Result<Option<Duration>> {
self.io.get_ref().keepalive()
}
/// Sets the value for the `IP_TTL` option on this socket.
///
/// This value sets the time-to-live field that is used in every packet sent
/// from this socket.
pub fn set_ttl(&self, ttl: u32) -> io::Result<()> {
self.io.get_ref().set_ttl(ttl)
}
/// Gets the value of the `IP_TTL` option for this socket.
///
/// For more information about this option, see [`set_ttl`][link].
///
/// [link]: #tymethod.set_ttl
pub fn ttl(&self) -> io::Result<u32> {
self.io.get_ref().ttl()
}
/// Sets the value for the `IPV6_V6ONLY` option on this socket.
///
/// If this is set to `true` then the socket is restricted to sending and
/// receiving IPv6 packets only. In this case two IPv4 and IPv6 applications
/// can bind the same port at the same time.
///
/// If this is set to `false` then the socket can be used to send and
/// receive packets from an IPv4-mapped IPv6 address.
pub fn set_only_v6(&self, only_v6: bool) -> io::Result<()> {
self.io.get_ref().set_only_v6(only_v6)
}
/// Gets the value of the `IPV6_V6ONLY` option for this socket.
///
/// For more information about this option, see [`set_only_v6`][link].
///
/// [link]: #tymethod.set_only_v6
pub fn only_v6(&self) -> io::Result<bool> {
self.io.get_ref().only_v6()
}
/// Sets the linger duration of this socket by setting the SO_LINGER option
pub fn set_linger(&self, dur: Option<Duration>) -> io::Result<()> {
self.io.get_ref().set_linger(dur)
}
/// reads the linger duration for this socket by getting the SO_LINGER option
pub fn linger(&self) -> io::Result<Option<Duration>> {
self.io.get_ref().linger()
}
#[deprecated(since = "0.1.8", note = "use set_keepalive")]
#[doc(hidden)]
pub fn set_keepalive_ms(&self, keepalive: Option<u32>) -> io::Result<()> {
#[allow(deprecated)]
self.io.get_ref().set_keepalive_ms(keepalive)
}
#[deprecated(since = "0.1.8", note = "use keepalive")]
#[doc(hidden)]
pub fn keepalive_ms(&self) -> io::Result<Option<u32>> {
#[allow(deprecated)]
self.io.get_ref().keepalive_ms()
}
}
impl Read for TcpStream {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.io.read(buf)
}
}
impl Write for TcpStream {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.io.write(buf)
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
impl AsyncRead for TcpStream {
unsafe fn prepare_uninitialized_buffer(&self, _: &mut [u8]) -> bool {
false
}
fn read_buf<B: BufMut>(&mut self, buf: &mut B) -> Poll<usize, io::Error> {
<&TcpStream>::read_buf(&mut &*self, buf)
}
}
impl AsyncWrite for TcpStream {
fn shutdown(&mut self) -> Poll<(), io::Error> {
<&TcpStream>::shutdown(&mut &*self)
}
fn write_buf<B: Buf>(&mut self, buf: &mut B) -> Poll<usize, io::Error> {
<&TcpStream>::write_buf(&mut &*self, buf)
}
}
#[allow(deprecated)]
impl ::io::Io for TcpStream {
fn poll_read(&mut self) -> Async<()> {
<TcpStream>::poll_read(self)
}
fn poll_write(&mut self) -> Async<()> {
<TcpStream>::poll_write(self)
}
fn read_vec(&mut self, bufs: &mut [&mut IoVec]) -> io::Result<usize> {
if let Async::NotReady = <TcpStream>::poll_read(self) {
return Err(io::ErrorKind::WouldBlock.into())
}
let r = self.io.get_ref().read_bufs(bufs);
if is_wouldblock(&r) {
self.io.clear_read_ready(mio::Ready::readable())?;
}
return r
}
fn write_vec(&mut self, bufs: &[&IoVec]) -> io::Result<usize> {
if let Async::NotReady = <TcpStream>::poll_write(self) {
return Err(io::ErrorKind::WouldBlock.into())
}
let r = self.io.get_ref().write_bufs(bufs);
if is_wouldblock(&r) {
self.io.clear_write_ready()?;
}
return r
}
}
fn is_wouldblock<T>(r: &io::Result<T>) -> bool {
match *r {
Ok(_) => false,
Err(ref e) => e.kind() == io::ErrorKind::WouldBlock,
}
}
impl<'a> Read for &'a TcpStream {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(&self.io).read(buf)
}
}
impl<'a> Write for &'a TcpStream {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
(&self.io).write(buf)
}
fn flush(&mut self) -> io::Result<()> {
(&self.io).flush()
}
}
impl<'a> AsyncRead for &'a TcpStream {
unsafe fn prepare_uninitialized_buffer(&self, _: &mut [u8]) -> bool {
false
}
fn read_buf<B: BufMut>(&mut self, buf: &mut B) -> Poll<usize, io::Error> {
if let Async::NotReady = <TcpStream>::poll_read(self) {
return Ok(Async::NotReady)
}
let r = unsafe {
// The `IoVec` type can't have a 0-length size, so we create a bunch
// of dummy versions on the stack with 1 length which we'll quickly
// overwrite.
let b1: &mut [u8] = &mut [0];
let b2: &mut [u8] = &mut [0];
let b3: &mut [u8] = &mut [0];
let b4: &mut [u8] = &mut [0];
let b5: &mut [u8] = &mut [0];
let b6: &mut [u8] = &mut [0];
let b7: &mut [u8] = &mut [0];
let b8: &mut [u8] = &mut [0];
let b9: &mut [u8] = &mut [0];
let b10: &mut [u8] = &mut [0];
let b11: &mut [u8] = &mut [0];
let b12: &mut [u8] = &mut [0];
let b13: &mut [u8] = &mut [0];
let b14: &mut [u8] = &mut [0];
let b15: &mut [u8] = &mut [0];
let b16: &mut [u8] = &mut [0];
let mut bufs: [&mut IoVec; 16] = [
b1.into(), b2.into(), b3.into(), b4.into(),
b5.into(), b6.into(), b7.into(), b8.into(),
b9.into(), b10.into(), b11.into(), b12.into(),
b13.into(), b14.into(), b15.into(), b16.into(),
];
let n = buf.bytes_vec_mut(&mut bufs);
self.io.get_ref().read_bufs(&mut bufs[..n])
};
match r {
Ok(n) => {
unsafe { buf.advance_mut(n); }
Ok(Async::Ready(n))
}
Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
self.io.clear_read_ready(mio::Ready::readable())?;
Ok(Async::NotReady)
}
Err(e) => Err(e),
}
}
}
impl<'a> AsyncWrite for &'a TcpStream {
fn shutdown(&mut self) -> Poll<(), io::Error> {
Ok(().into())
}
fn write_buf<B: Buf>(&mut self, buf: &mut B) -> Poll<usize, io::Error> {
if let Async::NotReady = <TcpStream>::poll_write(self) {
return Ok(Async::NotReady)
}
let r = {
// The `IoVec` type can't have a zero-length size, so create a dummy
// version from a 1-length slice which we'll overwrite with the
// `bytes_vec` method.
static DUMMY: &[u8] = &[0];
let iovec = <&IoVec>::from(DUMMY);
let mut bufs = [iovec; 64];
let n = buf.bytes_vec(&mut bufs);
self.io.get_ref().write_bufs(&bufs[..n])
};
match r {
Ok(n) => {
buf.advance(n);
Ok(Async::Ready(n))
}
Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
self.io.clear_write_ready()?;
Ok(Async::NotReady)
}
Err(e) => Err(e),
}
}
}
#[allow(deprecated)]
impl<'a> ::io::Io for &'a TcpStream {
fn poll_read(&mut self) -> Async<()> {
<TcpStream>::poll_read(self)
}
fn poll_write(&mut self) -> Async<()> {
<TcpStream>::poll_write(self)
}
}
impl fmt::Debug for TcpStream {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.io.get_ref().fmt(f)
}
}
impl Future for TcpStreamNew {
type Item = TcpStream;
type Error = io::Error;
fn poll(&mut self) -> Poll<TcpStream, io::Error> {
self.inner.poll()
}
}
impl Future for TcpStreamNewState {
type Item = TcpStream;
type Error = io::Error;
fn poll(&mut self) -> Poll<TcpStream, io::Error> {
{
let stream = match *self {
TcpStreamNewState::Waiting(ref s) => s,
TcpStreamNewState::Error(_) => {
let e = match mem::replace(self, TcpStreamNewState::Empty) {
TcpStreamNewState::Error(e) => e,
_ => panic!(),
};
return Err(e)
}
TcpStreamNewState::Empty => panic!("can't poll TCP stream twice"),
};
// Once we've connected, wait for the stream to be writable as
// that's when the actual connection has been initiated. Once we're
// writable we check for `take_socket_error` to see if the connect
// actually hit an error or not.
//
// If all that succeeded then we ship everything on up.
if let Async::NotReady = stream.io.poll_write_ready()? {
return Ok(Async::NotReady)
}
if let Some(e) = try!(stream.io.get_ref().take_error()) {
return Err(e)
}
}
match mem::replace(self, TcpStreamNewState::Empty) {
TcpStreamNewState::Waiting(stream) => Ok(Async::Ready(stream)),
_ => panic!(),
}
}
}
#[cfg(all(unix, not(target_os = "fuchsia")))]
mod sys {
use std::os::unix::prelude::*;
use super::{TcpStream, TcpListener};
impl AsRawFd for TcpStream {
fn as_raw_fd(&self) -> RawFd {
self.io.get_ref().as_raw_fd()
}
}
impl AsRawFd for TcpListener {
fn as_raw_fd(&self) -> RawFd {
self.io.get_ref().as_raw_fd()
}
}
}
#[cfg(windows)]
mod sys {
// TODO: let's land these upstream with mio and then we can add them here.
//
// use std::os::windows::prelude::*;
// use super::{TcpStream, TcpListener};
//
// impl AsRawHandle for TcpStream {
// fn as_raw_handle(&self) -> RawHandle {
// self.io.get_ref().as_raw_handle()
// }
// }
//
// impl AsRawHandle for TcpListener {
// fn as_raw_handle(&self) -> RawHandle {
// self.listener.io().as_raw_handle()
// }
// }
}