tokio_core/net/
tcp.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
use std::fmt;
use std::io::{self, Read, Write};
use std::mem;
use std::net::{self, SocketAddr, Shutdown};
use std::time::Duration;

use bytes::{Buf, BufMut};
use futures::stream::Stream;
use futures::{Future, Poll, Async};
use iovec::IoVec;
use mio;
use tokio_io::{AsyncRead, AsyncWrite};

use reactor::{Handle, PollEvented2};

/// An I/O object representing a TCP socket listening for incoming connections.
///
/// This object can be converted into a stream of incoming connections for
/// various forms of processing.
pub struct TcpListener {
    io: PollEvented2<mio::net::TcpListener>,
}

/// Stream returned by the `TcpListener::incoming` function representing the
/// stream of sockets received from a listener.
#[must_use = "streams do nothing unless polled"]
pub struct Incoming {
    inner: TcpListener,
}

impl TcpListener {
    /// Create a new TCP listener associated with this event loop.
    ///
    /// The TCP listener will bind to the provided `addr` address, if available.
    /// If the result is `Ok`, the socket has successfully bound.
    pub fn bind(addr: &SocketAddr, handle: &Handle) -> io::Result<TcpListener> {
        let l = try!(mio::net::TcpListener::bind(addr));
        TcpListener::new(l, handle)
    }

    /// Create a new TCP listener associated with this event loop.
    ///
    /// This is the same as `bind` but uses the default reactor instead of an
    /// explicit `&Handle`.
    pub fn bind2(addr: &SocketAddr) -> io::Result<TcpListener> {
        let l = try!(mio::net::TcpListener::bind(addr));
        TcpListener::new2(l)
    }

    /// Attempt to accept a connection and create a new connected `TcpStream` if
    /// successful.
    ///
    /// This function will attempt an accept operation, but will not block
    /// waiting for it to complete. If the operation would block then a "would
    /// block" error is returned. Additionally, if this method would block, it
    /// registers the current task to receive a notification when it would
    /// otherwise not block.
    ///
    /// Note that typically for simple usage it's easier to treat incoming
    /// connections as a `Stream` of `TcpStream`s with the `incoming` method
    /// below.
    ///
    /// # Panics
    ///
    /// This function will panic if it is called outside the context of a
    /// future's task. It's recommended to only call this from the
    /// implementation of a `Future::poll`, if necessary.
    pub fn accept(&mut self) -> io::Result<(TcpStream, SocketAddr)> {
        let (io, addr) = self.accept_std()?;

        let io = mio::net::TcpStream::from_stream(io)?;
        let io = PollEvented2::new(io);
        let io = TcpStream { io };

        Ok((io, addr))
    }

    /// Like `accept`, except that it returns a raw `std::net::TcpStream`.
    ///
    /// The stream is *in blocking mode*, and is not associated with the Tokio
    /// event loop.
    pub fn accept_std(&mut self) -> io::Result<(net::TcpStream, SocketAddr)> {
        if let Async::NotReady = self.io.poll_read_ready(mio::Ready::readable())? {
            return Err(io::Error::new(io::ErrorKind::WouldBlock, "not ready"))
        }

        match self.io.get_ref().accept_std() {
            Err(e) => {
                if e.kind() == io::ErrorKind::WouldBlock {
                    self.io.clear_read_ready(mio::Ready::readable())?;
                }
                Err(e)
            },
            Ok((sock, addr)) => Ok((sock, addr)),
        }
    }

    /// Create a new TCP listener from the standard library's TCP listener.
    ///
    /// This method can be used when the `Handle::tcp_listen` method isn't
    /// sufficient because perhaps some more configuration is needed in terms of
    /// before the calls to `bind` and `listen`.
    ///
    /// This API is typically paired with the `net2` crate and the `TcpBuilder`
    /// type to build up and customize a listener before it's shipped off to the
    /// backing event loop. This allows configuration of options like
    /// `SO_REUSEPORT`, binding to multiple addresses, etc.
    ///
    /// The `addr` argument here is one of the addresses that `listener` is
    /// bound to and the listener will only be guaranteed to accept connections
    /// of the same address type currently.
    ///
    /// Finally, the `handle` argument is the event loop that this listener will
    /// be bound to.
    ///
    /// The platform specific behavior of this function looks like:
    ///
    /// * On Unix, the socket is placed into nonblocking mode and connections
    ///   can be accepted as normal
    ///
    /// * On Windows, the address is stored internally and all future accepts
    ///   will only be for the same IP version as `addr` specified. That is, if
    ///   `addr` is an IPv4 address then all sockets accepted will be IPv4 as
    ///   well (same for IPv6).
    pub fn from_listener(listener: net::TcpListener,
                         _addr: &SocketAddr,
                         handle: &Handle) -> io::Result<TcpListener> {
        let l = try!(mio::net::TcpListener::from_std(listener));
        TcpListener::new(l, handle)
    }

    fn new(listener: mio::net::TcpListener, handle: &Handle)
           -> io::Result<TcpListener> {
        let io = try!(PollEvented2::new_with_handle(listener, handle.new_tokio_handle()));
        Ok(TcpListener { io: io })
    }

    fn new2(listener: mio::net::TcpListener)
           -> io::Result<TcpListener> {
        let io = PollEvented2::new(listener);
        Ok(TcpListener { io: io })
    }

    /// Test whether this socket is ready to be read or not.
    pub fn poll_read(&self) -> Async<()> {
        self.io.poll_read_ready(mio::Ready::readable())
            .map(|r| {
                if r.is_ready() {
                    Async::Ready(())
                } else {
                    Async::NotReady
                }
            })
            .unwrap_or(().into())
    }

    /// Returns the local address that this listener is bound to.
    ///
    /// This can be useful, for example, when binding to port 0 to figure out
    /// which port was actually bound.
    pub fn local_addr(&self) -> io::Result<SocketAddr> {
        self.io.get_ref().local_addr()
    }

    /// Consumes this listener, returning a stream of the sockets this listener
    /// accepts.
    ///
    /// This method returns an implementation of the `Stream` trait which
    /// resolves to the sockets the are accepted on this listener.
    pub fn incoming(self) -> Incoming {
        Incoming { inner: self }
    }

    /// Sets the value for the `IP_TTL` option on this socket.
    ///
    /// This value sets the time-to-live field that is used in every packet sent
    /// from this socket.
    pub fn set_ttl(&self, ttl: u32) -> io::Result<()> {
        self.io.get_ref().set_ttl(ttl)
    }

    /// Gets the value of the `IP_TTL` option for this socket.
    ///
    /// For more information about this option, see [`set_ttl`][link].
    ///
    /// [link]: #method.set_ttl
    pub fn ttl(&self) -> io::Result<u32> {
        self.io.get_ref().ttl()
    }

    /// Sets the value for the `IPV6_V6ONLY` option on this socket.
    ///
    /// If this is set to `true` then the socket is restricted to sending and
    /// receiving IPv6 packets only. In this case two IPv4 and IPv6 applications
    /// can bind the same port at the same time.
    ///
    /// If this is set to `false` then the socket can be used to send and
    /// receive packets from an IPv4-mapped IPv6 address.
    pub fn set_only_v6(&self, only_v6: bool) -> io::Result<()> {
        self.io.get_ref().set_only_v6(only_v6)
    }

    /// Gets the value of the `IPV6_V6ONLY` option for this socket.
    ///
    /// For more information about this option, see [`set_only_v6`][link].
    ///
    /// [link]: #method.set_only_v6
    pub fn only_v6(&self) -> io::Result<bool> {
        self.io.get_ref().only_v6()
    }
}

impl fmt::Debug for TcpListener {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.io.get_ref().fmt(f)
    }
}

impl Stream for Incoming {
    type Item = (TcpStream, SocketAddr);
    type Error = io::Error;

    fn poll(&mut self) -> Poll<Option<Self::Item>, io::Error> {
        Ok(Async::Ready(Some(try_nb!(self.inner.accept()))))
    }
}

/// An I/O object representing a TCP stream connected to a remote endpoint.
///
/// A TCP stream can either be created by connecting to an endpoint or by
/// accepting a connection from a listener. Inside the stream is access to the
/// raw underlying I/O object as well as streams for the read/write
/// notifications on the stream itself.
pub struct TcpStream {
    io: PollEvented2<mio::net::TcpStream>,
}

/// Future returned by `TcpStream::connect` which will resolve to a `TcpStream`
/// when the stream is connected.
#[must_use = "futures do nothing unless polled"]
pub struct TcpStreamNew {
    inner: TcpStreamNewState,
}

#[must_use = "futures do nothing unless polled"]
enum TcpStreamNewState {
    Waiting(TcpStream),
    Error(io::Error),
    Empty,
}

impl TcpStream {
    /// Create a new TCP stream connected to the specified address.
    ///
    /// This function will create a new TCP socket and attempt to connect it to
    /// the `addr` provided. The returned future will be resolved once the
    /// stream has successfully connected. If an error happens during the
    /// connection or during the socket creation, that error will be returned to
    /// the future instead.
    pub fn connect(addr: &SocketAddr, handle: &Handle) -> TcpStreamNew {
        let inner = match mio::net::TcpStream::connect(addr) {
            Ok(tcp) => TcpStream::new(tcp, handle),
            Err(e) => TcpStreamNewState::Error(e),
        };
        TcpStreamNew { inner: inner }
    }

    /// Create a new TCP stream connected to the specified address.
    ///
    /// This is the same as `connect`, but uses the default reactor instead of
    /// taking an explicit `&Handle`.
    pub fn connect2(addr: &SocketAddr) -> TcpStreamNew {
        let inner = match mio::net::TcpStream::connect(addr) {
            Ok(tcp) => TcpStream::new2(tcp),
            Err(e) => TcpStreamNewState::Error(e),
        };
        TcpStreamNew { inner: inner }
    }

    fn new(connected_stream: mio::net::TcpStream, handle: &Handle)
           -> TcpStreamNewState {
        match PollEvented2::new_with_handle(connected_stream, handle.new_tokio_handle()) {
            Ok(io) => TcpStreamNewState::Waiting(TcpStream { io: io }),
            Err(e) => TcpStreamNewState::Error(e),
        }
    }

    fn new2(connected_stream: mio::net::TcpStream)
           -> TcpStreamNewState {
        let io = PollEvented2::new(connected_stream);
        TcpStreamNewState::Waiting(TcpStream { io: io })
    }

    /// Create a new `TcpStream` from a `net::TcpStream`.
    ///
    /// This function will convert a TCP stream in the standard library to a TCP
    /// stream ready to be used with the provided event loop handle. The object
    /// returned is associated with the event loop and ready to perform I/O.
    pub fn from_stream(stream: net::TcpStream, handle: &Handle)
                       -> io::Result<TcpStream> {
        let inner = try!(mio::net::TcpStream::from_stream(stream));
        Ok(TcpStream {
            io: try!(PollEvented2::new_with_handle(inner, handle.new_tokio_handle())),
        })
    }

    /// Creates a new `TcpStream` from the pending socket inside the given
    /// `std::net::TcpStream`, connecting it to the address specified.
    ///
    /// This constructor allows configuring the socket before it's actually
    /// connected, and this function will transfer ownership to the returned
    /// `TcpStream` if successful. An unconnected `TcpStream` can be created
    /// with the `net2::TcpBuilder` type (and also configured via that route).
    ///
    /// The platform specific behavior of this function looks like:
    ///
    /// * On Unix, the socket is placed into nonblocking mode and then a
    ///   `connect` call is issued.
    ///
    /// * On Windows, the address is stored internally and the connect operation
    ///   is issued when the returned `TcpStream` is registered with an event
    ///   loop. Note that on Windows you must `bind` a socket before it can be
    ///   connected, so if a custom `TcpBuilder` is used it should be bound
    ///   (perhaps to `INADDR_ANY`) before this method is called.
    pub fn connect_stream(stream: net::TcpStream,
                          addr: &SocketAddr,
                          handle: &Handle)
                          -> Box<Future<Item=TcpStream, Error=io::Error> + Send> {
        let state = match mio::net::TcpStream::connect_stream(stream, addr) {
            Ok(tcp) => TcpStream::new(tcp, handle),
            Err(e) => TcpStreamNewState::Error(e),
        };
        Box::new(state)
    }

    /// Test whether this socket is ready to be read or not.
    ///
    /// If the socket is *not* readable then the current task is scheduled to
    /// get a notification when the socket does become readable. That is, this
    /// is only suitable for calling in a `Future::poll` method and will
    /// automatically handle ensuring a retry once the socket is readable again.
    pub fn poll_read(&self) -> Async<()> {
        self.io.poll_read_ready(mio::Ready::readable())
            .map(|r| {
                if r.is_ready() {
                    Async::Ready(())
                } else {
                    Async::NotReady
                }
            })
            .unwrap_or(().into())
    }

    /// Test whether this socket is ready to be written to or not.
    ///
    /// If the socket is *not* writable then the current task is scheduled to
    /// get a notification when the socket does become writable. That is, this
    /// is only suitable for calling in a `Future::poll` method and will
    /// automatically handle ensuring a retry once the socket is writable again.
    pub fn poll_write(&self) -> Async<()> {
        self.io.poll_write_ready()
            .map(|r| {
                if r.is_ready() {
                    Async::Ready(())
                } else {
                    Async::NotReady
                }
            })
            .unwrap_or(().into())
    }

    /// Returns the local address that this stream is bound to.
    pub fn local_addr(&self) -> io::Result<SocketAddr> {
        self.io.get_ref().local_addr()
    }

    /// Returns the remote address that this stream is connected to.
    pub fn peer_addr(&self) -> io::Result<SocketAddr> {
        self.io.get_ref().peer_addr()
    }

    /// Receives data on the socket from the remote address to which it is
    /// connected, without removing that data from the queue. On success,
    /// returns the number of bytes peeked.
    ///
    /// Successive calls return the same data. This is accomplished by passing
    /// `MSG_PEEK` as a flag to the underlying recv system call.
    pub fn peek(&self, buf: &mut [u8]) -> io::Result<usize> {
        if let Async::NotReady = self.poll_read() {
            return Err(io::ErrorKind::WouldBlock.into())
        }
        let r = self.io.get_ref().peek(buf);
        if is_wouldblock(&r) {
            self.io.clear_read_ready(mio::Ready::readable())?;
        }
        return r

    }

    /// Shuts down the read, write, or both halves of this connection.
    ///
    /// This function will cause all pending and future I/O on the specified
    /// portions to return immediately with an appropriate value (see the
    /// documentation of `Shutdown`).
    pub fn shutdown(&self, how: Shutdown) -> io::Result<()> {
        self.io.get_ref().shutdown(how)
    }

    /// Sets the value of the `TCP_NODELAY` option on this socket.
    ///
    /// If set, this option disables the Nagle algorithm. This means that
    /// segments are always sent as soon as possible, even if there is only a
    /// small amount of data. When not set, data is buffered until there is a
    /// sufficient amount to send out, thereby avoiding the frequent sending of
    /// small packets.
    pub fn set_nodelay(&self, nodelay: bool) -> io::Result<()> {
        self.io.get_ref().set_nodelay(nodelay)
    }

    /// Gets the value of the `TCP_NODELAY` option on this socket.
    ///
    /// For more information about this option, see [`set_nodelay`][link].
    ///
    /// [link]: #method.set_nodelay
    pub fn nodelay(&self) -> io::Result<bool> {
        self.io.get_ref().nodelay()
    }

    /// Sets the value of the `SO_RCVBUF` option on this socket.
    ///
    /// Changes the size of the operating system's receive buffer associated
    /// with the socket.
    pub fn set_recv_buffer_size(&self, size: usize) -> io::Result<()> {
        self.io.get_ref().set_recv_buffer_size(size)
    }

    /// Gets the value of the `SO_RCVBUF` option on this socket.
    ///
    /// For more information about this option, see
    /// [`set_recv_buffer_size`][link].
    ///
    /// [link]: #tymethod.set_recv_buffer_size
    pub fn recv_buffer_size(&self) -> io::Result<usize> {
        self.io.get_ref().recv_buffer_size()
    }

    /// Sets the value of the `SO_SNDBUF` option on this socket.
    ///
    /// Changes the size of the operating system's send buffer associated with
    /// the socket.
    pub fn set_send_buffer_size(&self, size: usize) -> io::Result<()> {
        self.io.get_ref().set_send_buffer_size(size)
    }

    /// Gets the value of the `SO_SNDBUF` option on this socket.
    ///
    /// For more information about this option, see [`set_send_buffer`][link].
    ///
    /// [link]: #tymethod.set_send_buffer
    pub fn send_buffer_size(&self) -> io::Result<usize> {
        self.io.get_ref().send_buffer_size()
    }

    /// Sets whether keepalive messages are enabled to be sent on this socket.
    ///
    /// On Unix, this option will set the `SO_KEEPALIVE` as well as the
    /// `TCP_KEEPALIVE` or `TCP_KEEPIDLE` option (depending on your platform).
    /// On Windows, this will set the `SIO_KEEPALIVE_VALS` option.
    ///
    /// If `None` is specified then keepalive messages are disabled, otherwise
    /// the duration specified will be the time to remain idle before sending a
    /// TCP keepalive probe.
    ///
    /// Some platforms specify this value in seconds, so sub-second
    /// specifications may be omitted.
    pub fn set_keepalive(&self, keepalive: Option<Duration>) -> io::Result<()> {
        self.io.get_ref().set_keepalive(keepalive)
    }

    /// Returns whether keepalive messages are enabled on this socket, and if so
    /// the duration of time between them.
    ///
    /// For more information about this option, see [`set_keepalive`][link].
    ///
    /// [link]: #tymethod.set_keepalive
    pub fn keepalive(&self) -> io::Result<Option<Duration>> {
        self.io.get_ref().keepalive()
    }

    /// Sets the value for the `IP_TTL` option on this socket.
    ///
    /// This value sets the time-to-live field that is used in every packet sent
    /// from this socket.
    pub fn set_ttl(&self, ttl: u32) -> io::Result<()> {
        self.io.get_ref().set_ttl(ttl)
    }

    /// Gets the value of the `IP_TTL` option for this socket.
    ///
    /// For more information about this option, see [`set_ttl`][link].
    ///
    /// [link]: #tymethod.set_ttl
    pub fn ttl(&self) -> io::Result<u32> {
        self.io.get_ref().ttl()
    }

    /// Sets the value for the `IPV6_V6ONLY` option on this socket.
    ///
    /// If this is set to `true` then the socket is restricted to sending and
    /// receiving IPv6 packets only. In this case two IPv4 and IPv6 applications
    /// can bind the same port at the same time.
    ///
    /// If this is set to `false` then the socket can be used to send and
    /// receive packets from an IPv4-mapped IPv6 address.
    pub fn set_only_v6(&self, only_v6: bool) -> io::Result<()> {
        self.io.get_ref().set_only_v6(only_v6)
    }

    /// Gets the value of the `IPV6_V6ONLY` option for this socket.
    ///
    /// For more information about this option, see [`set_only_v6`][link].
    ///
    /// [link]: #tymethod.set_only_v6
    pub fn only_v6(&self) -> io::Result<bool> {
        self.io.get_ref().only_v6()
    }

    /// Sets the linger duration of this socket by setting the SO_LINGER option
    pub fn set_linger(&self, dur: Option<Duration>) -> io::Result<()> {
        self.io.get_ref().set_linger(dur)
    }

    /// reads the linger duration for this socket by getting the SO_LINGER option
    pub fn linger(&self) -> io::Result<Option<Duration>> {
        self.io.get_ref().linger()
    }

    #[deprecated(since = "0.1.8", note = "use set_keepalive")]
    #[doc(hidden)]
    pub fn set_keepalive_ms(&self, keepalive: Option<u32>) -> io::Result<()> {
        #[allow(deprecated)]
        self.io.get_ref().set_keepalive_ms(keepalive)
    }

    #[deprecated(since = "0.1.8", note = "use keepalive")]
    #[doc(hidden)]
    pub fn keepalive_ms(&self) -> io::Result<Option<u32>> {
        #[allow(deprecated)]
        self.io.get_ref().keepalive_ms()
    }
}

impl Read for TcpStream {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        self.io.read(buf)
    }
}

impl Write for TcpStream {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.io.write(buf)
    }
    fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }
}

impl AsyncRead for TcpStream {
    unsafe fn prepare_uninitialized_buffer(&self, _: &mut [u8]) -> bool {
        false
    }

    fn read_buf<B: BufMut>(&mut self, buf: &mut B) -> Poll<usize, io::Error> {
        <&TcpStream>::read_buf(&mut &*self, buf)
    }
}

impl AsyncWrite for TcpStream {
    fn shutdown(&mut self) -> Poll<(), io::Error> {
        <&TcpStream>::shutdown(&mut &*self)
    }

    fn write_buf<B: Buf>(&mut self, buf: &mut B) -> Poll<usize, io::Error> {
        <&TcpStream>::write_buf(&mut &*self, buf)
    }
}

#[allow(deprecated)]
impl ::io::Io for TcpStream {
    fn poll_read(&mut self) -> Async<()> {
        <TcpStream>::poll_read(self)
    }

    fn poll_write(&mut self) -> Async<()> {
        <TcpStream>::poll_write(self)
    }

    fn read_vec(&mut self, bufs: &mut [&mut IoVec]) -> io::Result<usize> {
        if let Async::NotReady = <TcpStream>::poll_read(self) {
            return Err(io::ErrorKind::WouldBlock.into())
        }
        let r = self.io.get_ref().read_bufs(bufs);
        if is_wouldblock(&r) {
            self.io.clear_read_ready(mio::Ready::readable())?;
        }
        return r
    }

    fn write_vec(&mut self, bufs: &[&IoVec]) -> io::Result<usize> {
        if let Async::NotReady = <TcpStream>::poll_write(self) {
            return Err(io::ErrorKind::WouldBlock.into())
        }
        let r = self.io.get_ref().write_bufs(bufs);
        if is_wouldblock(&r) {
            self.io.clear_write_ready()?;
        }
        return r
    }
}

fn is_wouldblock<T>(r: &io::Result<T>) -> bool {
    match *r {
        Ok(_) => false,
        Err(ref e) => e.kind() == io::ErrorKind::WouldBlock,
    }
}

impl<'a> Read for &'a TcpStream {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        (&self.io).read(buf)
    }
}

impl<'a> Write for &'a TcpStream {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        (&self.io).write(buf)
    }

    fn flush(&mut self) -> io::Result<()> {
        (&self.io).flush()
    }
}

impl<'a> AsyncRead for &'a TcpStream {
    unsafe fn prepare_uninitialized_buffer(&self, _: &mut [u8]) -> bool {
        false
    }

    fn read_buf<B: BufMut>(&mut self, buf: &mut B) -> Poll<usize, io::Error> {
        if let Async::NotReady = <TcpStream>::poll_read(self) {
            return Ok(Async::NotReady)
        }
        let r = unsafe {
            // The `IoVec` type can't have a 0-length size, so we create a bunch
            // of dummy versions on the stack with 1 length which we'll quickly
            // overwrite.
            let b1: &mut [u8] = &mut [0];
            let b2: &mut [u8] = &mut [0];
            let b3: &mut [u8] = &mut [0];
            let b4: &mut [u8] = &mut [0];
            let b5: &mut [u8] = &mut [0];
            let b6: &mut [u8] = &mut [0];
            let b7: &mut [u8] = &mut [0];
            let b8: &mut [u8] = &mut [0];
            let b9: &mut [u8] = &mut [0];
            let b10: &mut [u8] = &mut [0];
            let b11: &mut [u8] = &mut [0];
            let b12: &mut [u8] = &mut [0];
            let b13: &mut [u8] = &mut [0];
            let b14: &mut [u8] = &mut [0];
            let b15: &mut [u8] = &mut [0];
            let b16: &mut [u8] = &mut [0];
            let mut bufs: [&mut IoVec; 16] = [
                b1.into(), b2.into(), b3.into(), b4.into(),
                b5.into(), b6.into(), b7.into(), b8.into(),
                b9.into(), b10.into(), b11.into(), b12.into(),
                b13.into(), b14.into(), b15.into(), b16.into(),
            ];
            let n = buf.bytes_vec_mut(&mut bufs);
            self.io.get_ref().read_bufs(&mut bufs[..n])
        };

        match r {
            Ok(n) => {
                unsafe { buf.advance_mut(n); }
                Ok(Async::Ready(n))
            }
            Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
                self.io.clear_read_ready(mio::Ready::readable())?;
                Ok(Async::NotReady)
            }
            Err(e) => Err(e),
        }
    }
}

impl<'a> AsyncWrite for &'a TcpStream {
    fn shutdown(&mut self) -> Poll<(), io::Error> {
        Ok(().into())
    }

    fn write_buf<B: Buf>(&mut self, buf: &mut B) -> Poll<usize, io::Error> {
        if let Async::NotReady = <TcpStream>::poll_write(self) {
            return Ok(Async::NotReady)
        }
        let r = {
            // The `IoVec` type can't have a zero-length size, so create a dummy
            // version from a 1-length slice which we'll overwrite with the
            // `bytes_vec` method.
            static DUMMY: &[u8] = &[0];
            let iovec = <&IoVec>::from(DUMMY);
            let mut bufs = [iovec; 64];
            let n = buf.bytes_vec(&mut bufs);
            self.io.get_ref().write_bufs(&bufs[..n])
        };
        match r {
            Ok(n) => {
                buf.advance(n);
                Ok(Async::Ready(n))
            }
            Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
                self.io.clear_write_ready()?;
                Ok(Async::NotReady)
            }
            Err(e) => Err(e),
        }
    }
}

#[allow(deprecated)]
impl<'a> ::io::Io for &'a TcpStream {
    fn poll_read(&mut self) -> Async<()> {
        <TcpStream>::poll_read(self)
    }

    fn poll_write(&mut self) -> Async<()> {
        <TcpStream>::poll_write(self)
    }
}

impl fmt::Debug for TcpStream {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.io.get_ref().fmt(f)
    }
}

impl Future for TcpStreamNew {
    type Item = TcpStream;
    type Error = io::Error;

    fn poll(&mut self) -> Poll<TcpStream, io::Error> {
        self.inner.poll()
    }
}

impl Future for TcpStreamNewState {
    type Item = TcpStream;
    type Error = io::Error;

    fn poll(&mut self) -> Poll<TcpStream, io::Error> {
        {
            let stream = match *self {
                TcpStreamNewState::Waiting(ref s) => s,
                TcpStreamNewState::Error(_) => {
                    let e = match mem::replace(self, TcpStreamNewState::Empty) {
                        TcpStreamNewState::Error(e) => e,
                        _ => panic!(),
                    };
                    return Err(e)
                }
                TcpStreamNewState::Empty => panic!("can't poll TCP stream twice"),
            };

            // Once we've connected, wait for the stream to be writable as
            // that's when the actual connection has been initiated. Once we're
            // writable we check for `take_socket_error` to see if the connect
            // actually hit an error or not.
            //
            // If all that succeeded then we ship everything on up.
            if let Async::NotReady = stream.io.poll_write_ready()? {
                return Ok(Async::NotReady)
            }
            if let Some(e) = try!(stream.io.get_ref().take_error()) {
                return Err(e)
            }
        }
        match mem::replace(self, TcpStreamNewState::Empty) {
            TcpStreamNewState::Waiting(stream) => Ok(Async::Ready(stream)),
            _ => panic!(),
        }
    }
}

#[cfg(all(unix, not(target_os = "fuchsia")))]
mod sys {
    use std::os::unix::prelude::*;
    use super::{TcpStream, TcpListener};

    impl AsRawFd for TcpStream {
        fn as_raw_fd(&self) -> RawFd {
            self.io.get_ref().as_raw_fd()
        }
    }

    impl AsRawFd for TcpListener {
        fn as_raw_fd(&self) -> RawFd {
            self.io.get_ref().as_raw_fd()
        }
    }
}

#[cfg(windows)]
mod sys {
    // TODO: let's land these upstream with mio and then we can add them here.
    //
    // use std::os::windows::prelude::*;
    // use super::{TcpStream, TcpListener};
    //
    // impl AsRawHandle for TcpStream {
    //     fn as_raw_handle(&self) -> RawHandle {
    //         self.io.get_ref().as_raw_handle()
    //     }
    // }
    //
    // impl AsRawHandle for TcpListener {
    //     fn as_raw_handle(&self) -> RawHandle {
    //         self.listener.io().as_raw_handle()
    //     }
    // }
}