tokio_core/net/udp/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
use std::io;
use std::net::{self, SocketAddr, Ipv4Addr, Ipv6Addr};
use std::fmt;

use futures::{Async, Future, Poll};
use mio;

use reactor::{Handle, PollEvented2};

/// An I/O object representing a UDP socket.
pub struct UdpSocket {
    io: PollEvented2<mio::net::UdpSocket>,
}

mod frame;
pub use self::frame::{UdpFramed, UdpCodec};

impl UdpSocket {
    /// Create a new UDP socket bound to the specified address.
    ///
    /// This function will create a new UDP socket and attempt to bind it to the
    /// `addr` provided. If the result is `Ok`, the socket has successfully bound.
    pub fn bind(addr: &SocketAddr, handle: &Handle) -> io::Result<UdpSocket> {
        let udp = try!(mio::net::UdpSocket::bind(addr));
        UdpSocket::new(udp, handle)
    }

    fn new(socket: mio::net::UdpSocket, handle: &Handle) -> io::Result<UdpSocket> {
        let io = try!(PollEvented2::new_with_handle(socket, handle.new_tokio_handle()));
        Ok(UdpSocket { io: io })
    }

    /// Creates a new `UdpSocket` from the previously bound socket provided.
    ///
    /// The socket given will be registered with the event loop that `handle` is
    /// associated with. This function requires that `socket` has previously
    /// been bound to an address to work correctly.
    ///
    /// This can be used in conjunction with net2's `UdpBuilder` interface to
    /// configure a socket before it's handed off, such as setting options like
    /// `reuse_address` or binding to multiple addresses.
    pub fn from_socket(socket: net::UdpSocket,
                       handle: &Handle) -> io::Result<UdpSocket> {
        let udp = try!(mio::net::UdpSocket::from_socket(socket));
        UdpSocket::new(udp, handle)
    }

    /// Provides a `Stream` and `Sink` interface for reading and writing to this
    /// `UdpSocket` object, using the provided `UdpCodec` to read and write the
    /// raw data.
    ///
    /// Raw UDP sockets work with datagrams, but higher-level code usually
    /// wants to batch these into meaningful chunks, called "frames". This
    /// method layers framing on top of this socket by using the `UdpCodec`
    /// trait to handle encoding and decoding of messages frames. Note that
    /// the incoming and outgoing frame types may be distinct.
    ///
    /// This function returns a *single* object that is both `Stream` and
    /// `Sink`; grouping this into a single object is often useful for layering
    /// things which require both read and write access to the underlying
    /// object.
    ///
    /// If you want to work more directly with the streams and sink, consider
    /// calling `split` on the `UdpFramed` returned by this method, which will
    /// break them into separate objects, allowing them to interact more
    /// easily.
    pub fn framed<C: UdpCodec>(self, codec: C) -> UdpFramed<C> {
        frame::new(self, codec)
    }

    /// Returns the local address that this stream is bound to.
    pub fn local_addr(&self) -> io::Result<SocketAddr> {
        self.io.get_ref().local_addr()
    }

    /// Connects the UDP socket setting the default destination for send() and
    /// limiting packets that are read via recv from the address specified in addr.
    pub fn connect(&self, addr: &SocketAddr) -> io::Result<()> {
        self.io.get_ref().connect(*addr)
    }

    /// Sends data on the socket to the address previously bound via connect().
    /// On success, returns the number of bytes written.
    pub fn send(&self, buf: &[u8]) -> io::Result<usize> {
        if let Async::NotReady = self.io.poll_write_ready()? {
            return Err(io::ErrorKind::WouldBlock.into())
        }
        match self.io.get_ref().send(buf) {
            Ok(n) => Ok(n),
            Err(e) => {
                if e.kind() == io::ErrorKind::WouldBlock {
                    self.io.clear_write_ready()?;
                }
                Err(e)
            }
        }
    }

    /// Receives data from the socket previously bound with connect().
    /// On success, returns the number of bytes read.
    pub fn recv(&self, buf: &mut [u8]) -> io::Result<usize> {
        if let Async::NotReady = self.io.poll_read_ready(mio::Ready::readable())? {
            return Err(io::ErrorKind::WouldBlock.into())
        }
        match self.io.get_ref().recv(buf) {
            Ok(n) => Ok(n),
            Err(e) => {
                if e.kind() == io::ErrorKind::WouldBlock {
                    self.io.clear_read_ready(mio::Ready::readable())?;
                }
                Err(e)
            }
        }
    }

    /// Test whether this socket is ready to be read or not.
    ///
    /// If the socket is *not* readable then the current task is scheduled to
    /// get a notification when the socket does become readable. That is, this
    /// is only suitable for calling in a `Future::poll` method and will
    /// automatically handle ensuring a retry once the socket is readable again.
    pub fn poll_read(&self) -> Async<()> {
        self.io.poll_read_ready(mio::Ready::readable())
            .map(|r| {
                if r.is_ready() {
                    Async::Ready(())
                } else {
                    Async::NotReady
                }
            })
            .unwrap_or(().into())
    }

    /// Test whether this socket is ready to be written to or not.
    ///
    /// If the socket is *not* writable then the current task is scheduled to
    /// get a notification when the socket does become writable. That is, this
    /// is only suitable for calling in a `Future::poll` method and will
    /// automatically handle ensuring a retry once the socket is writable again.
    pub fn poll_write(&self) -> Async<()> {
        self.io.poll_write_ready()
            .map(|r| {
                if r.is_ready() {
                    Async::Ready(())
                } else {
                    Async::NotReady
                }
            })
            .unwrap_or(().into())
    }

    /// Sends data on the socket to the given address. On success, returns the
    /// number of bytes written.
    ///
    /// Address type can be any implementer of `ToSocketAddrs` trait. See its
    /// documentation for concrete examples.
    pub fn send_to(&self, buf: &[u8], target: &SocketAddr) -> io::Result<usize> {
        if let Async::NotReady = self.io.poll_write_ready()? {
            return Err(io::ErrorKind::WouldBlock.into())
        }
        match self.io.get_ref().send_to(buf, target) {
            Ok(n) => Ok(n),
            Err(e) => {
                if e.kind() == io::ErrorKind::WouldBlock {
                    self.io.clear_write_ready()?;
                }
                Err(e)
            }
        }
    }

    /// Creates a future that will write the entire contents of the buffer
    /// `buf` provided as a datagram to this socket.
    ///
    /// The returned future will return after data has been written to the
    /// outbound socket.  The future will resolve to the stream as well as the
    /// buffer (for reuse if needed).
    ///
    /// Any error which happens during writing will cause both the stream and
    /// the buffer to get destroyed. Note that failure to write the entire
    /// buffer is considered an error for the purposes of sending a datagram.
    ///
    /// The `buf` parameter here only requires the `AsRef<[u8]>` trait, which
    /// should be broadly applicable to accepting data which can be converted
    /// to a slice.  The `Window` struct is also available in this crate to
    /// provide a different window into a slice if necessary.
    pub fn send_dgram<T>(self, buf: T, addr: SocketAddr) -> SendDgram<T>
        where T: AsRef<[u8]>,
    {
        SendDgram(Some((self, buf, addr)))
    }

    /// Receives data from the socket. On success, returns the number of bytes
    /// read and the address from whence the data came.
    pub fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
        if let Async::NotReady = self.io.poll_read_ready(mio::Ready::readable())? {
            return Err(io::ErrorKind::WouldBlock.into())
        }
        match self.io.get_ref().recv_from(buf) {
            Ok(n) => Ok(n),
            Err(e) => {
                if e.kind() == io::ErrorKind::WouldBlock {
                    self.io.clear_read_ready(mio::Ready::readable())?;
                }
                Err(e)
            }
        }
    }

    /// Creates a future that receive a datagram to be written to the buffer
    /// provided.
    ///
    /// The returned future will return after a datagram has been received on
    /// this socket. The future will resolve to the socket, the buffer, the
    /// amount of data read, and the address the data was received from.
    ///
    /// An error during reading will cause the socket and buffer to get
    /// destroyed and the socket will be returned.
    ///
    /// The `buf` parameter here only requires the `AsMut<[u8]>` trait, which
    /// should be broadly applicable to accepting data which can be converted
    /// to a slice.  The `Window` struct is also available in this crate to
    /// provide a different window into a slice if necessary.
    pub fn recv_dgram<T>(self, buf: T) -> RecvDgram<T>
        where T: AsMut<[u8]>,
    {
        RecvDgram(Some((self, buf)))
    }

    /// Gets the value of the `SO_BROADCAST` option for this socket.
    ///
    /// For more information about this option, see
    /// [`set_broadcast`][link].
    ///
    /// [link]: #method.set_broadcast
    pub fn broadcast(&self) -> io::Result<bool> {
        self.io.get_ref().broadcast()
    }

    /// Sets the value of the `SO_BROADCAST` option for this socket.
    ///
    /// When enabled, this socket is allowed to send packets to a broadcast
    /// address.
    pub fn set_broadcast(&self, on: bool) -> io::Result<()> {
        self.io.get_ref().set_broadcast(on)
    }

    /// Gets the value of the `IP_MULTICAST_LOOP` option for this socket.
    ///
    /// For more information about this option, see
    /// [`set_multicast_loop_v4`][link].
    ///
    /// [link]: #method.set_multicast_loop_v4
    pub fn multicast_loop_v4(&self) -> io::Result<bool> {
        self.io.get_ref().multicast_loop_v4()
    }

    /// Sets the value of the `IP_MULTICAST_LOOP` option for this socket.
    ///
    /// If enabled, multicast packets will be looped back to the local socket.
    /// Note that this may not have any affect on IPv6 sockets.
    pub fn set_multicast_loop_v4(&self, on: bool) -> io::Result<()> {
        self.io.get_ref().set_multicast_loop_v4(on)
    }

    /// Gets the value of the `IP_MULTICAST_TTL` option for this socket.
    ///
    /// For more information about this option, see
    /// [`set_multicast_ttl_v4`][link].
    ///
    /// [link]: #method.set_multicast_ttl_v4
    pub fn multicast_ttl_v4(&self) -> io::Result<u32> {
        self.io.get_ref().multicast_ttl_v4()
    }

    /// Sets the value of the `IP_MULTICAST_TTL` option for this socket.
    ///
    /// Indicates the time-to-live value of outgoing multicast packets for
    /// this socket. The default value is 1 which means that multicast packets
    /// don't leave the local network unless explicitly requested.
    ///
    /// Note that this may not have any affect on IPv6 sockets.
    pub fn set_multicast_ttl_v4(&self, ttl: u32) -> io::Result<()> {
        self.io.get_ref().set_multicast_ttl_v4(ttl)
    }

    /// Gets the value of the `IPV6_MULTICAST_LOOP` option for this socket.
    ///
    /// For more information about this option, see
    /// [`set_multicast_loop_v6`][link].
    ///
    /// [link]: #method.set_multicast_loop_v6
    pub fn multicast_loop_v6(&self) -> io::Result<bool> {
        self.io.get_ref().multicast_loop_v6()
    }

    /// Sets the value of the `IPV6_MULTICAST_LOOP` option for this socket.
    ///
    /// Controls whether this socket sees the multicast packets it sends itself.
    /// Note that this may not have any affect on IPv4 sockets.
    pub fn set_multicast_loop_v6(&self, on: bool) -> io::Result<()> {
        self.io.get_ref().set_multicast_loop_v6(on)
    }

    /// Gets the value of the `IP_TTL` option for this socket.
    ///
    /// For more information about this option, see [`set_ttl`][link].
    ///
    /// [link]: #method.set_ttl
    pub fn ttl(&self) -> io::Result<u32> {
        self.io.get_ref().ttl()
    }

    /// Sets the value for the `IP_TTL` option on this socket.
    ///
    /// This value sets the time-to-live field that is used in every packet sent
    /// from this socket.
    pub fn set_ttl(&self, ttl: u32) -> io::Result<()> {
        self.io.get_ref().set_ttl(ttl)
    }

    /// Executes an operation of the `IP_ADD_MEMBERSHIP` type.
    ///
    /// This function specifies a new multicast group for this socket to join.
    /// The address must be a valid multicast address, and `interface` is the
    /// address of the local interface with which the system should join the
    /// multicast group. If it's equal to `INADDR_ANY` then an appropriate
    /// interface is chosen by the system.
    pub fn join_multicast_v4(&self,
                             multiaddr: &Ipv4Addr,
                             interface: &Ipv4Addr) -> io::Result<()> {
        self.io.get_ref().join_multicast_v4(multiaddr, interface)
    }

    /// Executes an operation of the `IPV6_ADD_MEMBERSHIP` type.
    ///
    /// This function specifies a new multicast group for this socket to join.
    /// The address must be a valid multicast address, and `interface` is the
    /// index of the interface to join/leave (or 0 to indicate any interface).
    pub fn join_multicast_v6(&self,
                             multiaddr: &Ipv6Addr,
                             interface: u32) -> io::Result<()> {
        self.io.get_ref().join_multicast_v6(multiaddr, interface)
    }

    /// Executes an operation of the `IP_DROP_MEMBERSHIP` type.
    ///
    /// For more information about this option, see
    /// [`join_multicast_v4`][link].
    ///
    /// [link]: #method.join_multicast_v4
    pub fn leave_multicast_v4(&self,
                              multiaddr: &Ipv4Addr,
                              interface: &Ipv4Addr) -> io::Result<()> {
        self.io.get_ref().leave_multicast_v4(multiaddr, interface)
    }

    /// Executes an operation of the `IPV6_DROP_MEMBERSHIP` type.
    ///
    /// For more information about this option, see
    /// [`join_multicast_v6`][link].
    ///
    /// [link]: #method.join_multicast_v6
    pub fn leave_multicast_v6(&self,
                              multiaddr: &Ipv6Addr,
                              interface: u32) -> io::Result<()> {
        self.io.get_ref().leave_multicast_v6(multiaddr, interface)
    }

    /// Sets the value for the `IPV6_V6ONLY` option on this socket.
    ///
    /// If this is set to `true` then the socket is restricted to sending and
    /// receiving IPv6 packets only. In this case two IPv4 and IPv6 applications
    /// can bind the same port at the same time.
    ///
    /// If this is set to `false` then the socket can be used to send and
    /// receive packets from an IPv4-mapped IPv6 address.
    pub fn set_only_v6(&self, only_v6: bool) -> io::Result<()> {
        self.io.get_ref().set_only_v6(only_v6)
    }

    /// Gets the value of the `IPV6_V6ONLY` option for this socket.
    ///
    /// For more information about this option, see [`set_only_v6`][link].
    ///
    /// [link]: #method.set_only_v6
    pub fn only_v6(&self) -> io::Result<bool> {
        self.io.get_ref().only_v6()
    }
}

impl fmt::Debug for UdpSocket {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.io.get_ref().fmt(f)
    }
}

/// A future used to write the entire contents of some data to a UDP socket.
///
/// This is created by the `UdpSocket::send_dgram` method.
#[must_use = "futures do nothing unless polled"]
pub struct SendDgram<T>(Option<(UdpSocket, T, SocketAddr)>);

fn incomplete_write(reason: &str) -> io::Error {
    io::Error::new(io::ErrorKind::Other, reason)
}

impl<T> Future for SendDgram<T>
    where T: AsRef<[u8]>,
{
    type Item = (UdpSocket, T);
    type Error = io::Error;

    fn poll(&mut self) -> Poll<(UdpSocket, T), io::Error> {
        {
            let (ref sock, ref buf, ref addr) =
                *self.0.as_ref().expect("SendDgram polled after completion");
            let n = try_nb!(sock.send_to(buf.as_ref(), addr));
            if n != buf.as_ref().len() {
                return Err(incomplete_write("failed to send entire message \
                                             in datagram"))
            }
        }

        let (sock, buf, _addr) = self.0.take().unwrap();
        Ok(Async::Ready((sock, buf)))
    }
}

/// A future used to receive a datagram from a UDP socket.
///
/// This is created by the `UdpSocket::recv_dgram` method.
#[must_use = "futures do nothing unless polled"]
pub struct RecvDgram<T>(Option<(UdpSocket, T)>);

impl<T> Future for RecvDgram<T>
    where T: AsMut<[u8]>,
{
    type Item = (UdpSocket, T, usize, SocketAddr);
    type Error = io::Error;

    fn poll(&mut self) -> Poll<Self::Item, io::Error> {
        let (n, addr) = {
            let (ref socket, ref mut buf) =
                *self.0.as_mut().expect("RecvDgram polled after completion");

            try_nb!(socket.recv_from(buf.as_mut()))
        };

        let (socket, buf) = self.0.take().unwrap();
        Ok(Async::Ready((socket, buf, n, addr)))
    }
}

#[cfg(all(unix, not(target_os = "fuchsia")))]
mod sys {
    use std::os::unix::prelude::*;
    use super::UdpSocket;

    impl AsRawFd for UdpSocket {
        fn as_raw_fd(&self) -> RawFd {
            self.io.get_ref().as_raw_fd()
        }
    }
}

#[cfg(windows)]
mod sys {
    // TODO: let's land these upstream with mio and then we can add them here.
    //
    // use std::os::windows::prelude::*;
    // use super::UdpSocket;
    //
    // impl AsRawHandle for UdpSocket {
    //     fn as_raw_handle(&self) -> RawHandle {
    //         self.io.get_ref().as_raw_handle()
    //     }
    // }
}