tokio_core/reactor/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
//! The core reactor driving all I/O
//!
//! This module contains the `Core` type which is the reactor for all I/O
//! happening in `tokio-core`. This reactor (or event loop) is used to run
//! futures, schedule tasks, issue I/O requests, etc.
use std::cell::RefCell;
use std::fmt;
use std::io;
use std::rc::{Rc, Weak};
use std::sync::Arc;
use std::sync::atomic::{AtomicUsize, AtomicBool, ATOMIC_USIZE_INIT, Ordering};
use std::time::{Instant, Duration};
use tokio;
use tokio::executor::current_thread::{CurrentThread, TaskExecutor};
use tokio_executor;
use tokio_executor::park::{Park, Unpark, ParkThread, UnparkThread};
use tokio_timer::timer::{self, Timer};
use futures::{Future, IntoFuture, Async};
use futures::future::{self, Executor, ExecuteError};
use futures::executor::{self, Spawn, Notify};
use futures::sync::mpsc;
use mio;
mod poll_evented;
mod poll_evented2;
mod timeout;
mod interval;
pub use self::poll_evented::PollEvented;
pub(crate) use self::poll_evented2::PollEvented as PollEvented2;
pub use self::timeout::Timeout;
pub use self::interval::Interval;
static NEXT_LOOP_ID: AtomicUsize = ATOMIC_USIZE_INIT;
scoped_thread_local!(static CURRENT_LOOP: Core);
/// An event loop.
///
/// The event loop is the main source of blocking in an application which drives
/// all other I/O events and notifications happening. Each event loop can have
/// multiple handles pointing to it, each of which can then be used to create
/// various I/O objects to interact with the event loop in interesting ways.
// TODO: expand this
pub struct Core {
/// Uniquely identifies the reactor
id: usize,
/// Handle to the Tokio runtime
rt: tokio::runtime::Runtime,
/// Executes tasks
executor: RefCell<CurrentThread<Timer<ParkThread>>>,
/// Timer handle
timer_handle: timer::Handle,
/// Wakes up the thread when the `run` future is notified
notify_future: Arc<MyNotify>,
/// Wakes up the thread when a message is posted to `rx`
notify_rx: Arc<MyNotify>,
/// Send messages across threads to the core
tx: mpsc::UnboundedSender<Message>,
/// Receive messages
rx: RefCell<Spawn<mpsc::UnboundedReceiver<Message>>>,
// Shared inner state
inner: Rc<RefCell<Inner>>,
}
struct Inner {
// Tasks that need to be spawned onto the executor.
pending_spawn: Vec<Box<Future<Item = (), Error = ()>>>,
}
/// An unique ID for a Core
///
/// An ID by which different cores may be distinguished. Can be compared and used as an index in
/// a `HashMap`.
///
/// The ID is globally unique and never reused.
#[derive(Clone,Copy,Eq,PartialEq,Hash,Debug)]
pub struct CoreId(usize);
/// Handle to an event loop, used to construct I/O objects, send messages, and
/// otherwise interact indirectly with the event loop itself.
///
/// Handles can be cloned, and when cloned they will still refer to the
/// same underlying event loop.
#[derive(Clone)]
pub struct Remote {
id: usize,
tx: mpsc::UnboundedSender<Message>,
new_handle: tokio::reactor::Handle,
timer_handle: timer::Handle,
}
/// A non-sendable handle to an event loop, typically passed into functions that
/// create I/O objects to bind them to this event loop.
#[derive(Clone)]
pub struct Handle {
remote: Remote,
inner: Weak<RefCell<Inner>>,
thread_pool: ::tokio::runtime::TaskExecutor,
}
enum Message {
Run(Box<FnBox>),
}
// ===== impl Core =====
impl Core {
/// Creates a new event loop, returning any error that happened during the
/// creation.
pub fn new() -> io::Result<Core> {
// Create a new parker
let timer = Timer::new(ParkThread::new());
// Create notifiers
let notify_future = Arc::new(MyNotify::new(timer.unpark()));
let notify_rx = Arc::new(MyNotify::new(timer.unpark()));
// New Tokio reactor + threadpool
let rt = tokio::runtime::Runtime::new()?;
let timer_handle = timer.handle();
// Executor to run !Send futures
let executor = RefCell::new(CurrentThread::new_with_park(timer));
// Used to send messages across threads
let (tx, rx) = mpsc::unbounded();
// Wrap the rx half with a future context and refcell
let rx = RefCell::new(executor::spawn(rx));
let id = NEXT_LOOP_ID.fetch_add(1, Ordering::Relaxed);
Ok(Core {
id,
rt,
notify_future,
notify_rx,
tx,
rx,
executor,
timer_handle,
inner: Rc::new(RefCell::new(Inner {
pending_spawn: vec![],
})),
})
}
/// Returns a handle to this event loop which cannot be sent across threads
/// but can be used as a proxy to the event loop itself.
///
/// Handles are cloneable and clones always refer to the same event loop.
/// This handle is typically passed into functions that create I/O objects
/// to bind them to this event loop.
pub fn handle(&self) -> Handle {
Handle {
remote: self.remote(),
inner: Rc::downgrade(&self.inner),
thread_pool: self.rt.executor().clone(),
}
}
/// Returns a reference to the runtime backing the instance
///
/// This provides access to the newer features of Tokio.
pub fn runtime(&self) -> &tokio::runtime::Runtime {
&self.rt
}
/// Generates a remote handle to this event loop which can be used to spawn
/// tasks from other threads into this event loop.
pub fn remote(&self) -> Remote {
Remote {
id: self.id,
tx: self.tx.clone(),
new_handle: self.rt.reactor().clone(),
timer_handle: self.timer_handle.clone()
}
}
/// Runs a future until completion, driving the event loop while we're
/// otherwise waiting for the future to complete.
///
/// This function will begin executing the event loop and will finish once
/// the provided future is resolved. Note that the future argument here
/// crucially does not require the `'static` nor `Send` bounds. As a result
/// the future will be "pinned" to not only this thread but also this stack
/// frame.
///
/// This function will return the value that the future resolves to once
/// the future has finished. If the future never resolves then this function
/// will never return. Any other futures spawned on this core may still be
/// incomplete when this function returns.
///
/// # Panics
///
/// This method will **not** catch panics from polling the future `f`. If
/// the future panics then it's the responsibility of the caller to catch
/// that panic and handle it as appropriate.
pub fn run<F>(&mut self, f: F) -> Result<F::Item, F::Error>
where F: Future,
{
let mut task = executor::spawn(f);
let handle1 = self.rt.reactor().clone();
let handle2 = self.rt.reactor().clone();
let mut executor1 = self.rt.executor().clone();
let mut executor2 = self.rt.executor().clone();
let timer_handle = self.timer_handle.clone();
// Make sure the future will run at least once on enter
self.notify_future.notify(0);
loop {
if self.notify_future.take() {
let mut enter = tokio_executor::enter()
.ok().expect("cannot recursively call into `Core`");
let notify = &self.notify_future;
let mut current_thread = self.executor.borrow_mut();
let res = try!(CURRENT_LOOP.set(self, || {
::tokio_reactor::with_default(&handle1, &mut enter, |enter| {
tokio_executor::with_default(&mut executor1, enter, |enter| {
timer::with_default(&timer_handle, enter, |enter| {
current_thread.enter(enter)
.block_on(future::lazy(|| {
Ok::<_, ()>(task.poll_future_notify(notify, 0))
})).unwrap()
})
})
})
}));
if let Async::Ready(e) = res {
return Ok(e)
}
}
self.poll(None, &handle2, &mut executor2);
}
}
/// Performs one iteration of the event loop, blocking on waiting for events
/// for at most `max_wait` (forever if `None`).
///
/// It only makes sense to call this method if you've previously spawned
/// a future onto this event loop.
///
/// `loop { core.turn(None) }` is equivalent to calling `run` with an
/// empty future (one that never finishes).
pub fn turn(&mut self, max_wait: Option<Duration>) {
let handle = self.rt.reactor().clone();
let mut executor = self.rt.executor().clone();
self.poll(max_wait, &handle, &mut executor);
}
fn poll(&mut self, max_wait: Option<Duration>,
handle: &tokio::reactor::Handle,
sender: &mut tokio::runtime::TaskExecutor) {
let mut enter = tokio_executor::enter()
.ok().expect("cannot recursively call into `Core`");
let timer_handle = self.timer_handle.clone();
::tokio_reactor::with_default(handle, &mut enter, |enter| {
tokio_executor::with_default(sender, enter, |enter| {
timer::with_default(&timer_handle, enter, |enter| {
let start = Instant::now();
// Process all the events that came in, dispatching appropriately
if self.notify_rx.take() {
CURRENT_LOOP.set(self, || self.consume_queue());
}
// Drain any futures pending spawn
{
let mut e = self.executor.borrow_mut();
let mut i = self.inner.borrow_mut();
for f in i.pending_spawn.drain(..) {
// Little hack
e.enter(enter).block_on(future::lazy(|| {
TaskExecutor::current().spawn_local(f).unwrap();
Ok::<_, ()>(())
})).unwrap();
}
}
CURRENT_LOOP.set(self, || {
self.executor.borrow_mut()
.enter(enter)
.turn(max_wait)
.ok().expect("error in `CurrentThread::turn`");
});
let after_poll = Instant::now();
debug!("loop poll - {:?}", after_poll - start);
debug!("loop time - {:?}", after_poll);
debug!("loop process, {:?}", after_poll.elapsed());
})
});
});
}
fn consume_queue(&self) {
debug!("consuming notification queue");
// TODO: can we do better than `.unwrap()` here?
loop {
let msg = self.rx.borrow_mut().poll_stream_notify(&self.notify_rx, 0).unwrap();
match msg {
Async::Ready(Some(msg)) => self.notify(msg),
Async::NotReady |
Async::Ready(None) => break,
}
}
}
fn notify(&self, msg: Message) {
let Message::Run(r) = msg;
r.call_box(self);
}
/// Get the ID of this loop
pub fn id(&self) -> CoreId {
CoreId(self.id)
}
}
impl<F> Executor<F> for Core
where F: Future<Item = (), Error = ()> + 'static,
{
fn execute(&self, future: F) -> Result<(), ExecuteError<F>> {
self.handle().execute(future)
}
}
impl fmt::Debug for Core {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Core")
.field("id", &self.id())
.finish()
}
}
impl Remote {
fn send(&self, msg: Message) {
self.with_loop(|lp| {
match lp {
Some(lp) => {
// We want to make sure that all messages are received in
// order, so we need to consume pending messages before
// delivering this message to the core. The actually
// `consume_queue` function, however, can be somewhat slow
// right now where receiving on a channel will acquire a
// lock and block the current task.
//
// To speed this up check the message queue's readiness as a
// sort of preflight check to see if we've actually got any
// messages. This should just involve some atomics and if it
// comes back false then we know for sure there are no
// pending messages, so we can immediately deliver our
// message.
if lp.notify_rx.take() {
lp.consume_queue();
}
lp.notify(msg);
}
None => {
match self.tx.unbounded_send(msg) {
Ok(()) => {}
// TODO: this error should punt upwards and we should
// notify the caller that the message wasn't
// received. This is tokio-core#17
Err(e) => drop(e),
}
}
}
})
}
fn with_loop<F, R>(&self, f: F) -> R
where F: FnOnce(Option<&Core>) -> R
{
if CURRENT_LOOP.is_set() {
CURRENT_LOOP.with(|lp| {
let same = lp.id == self.id;
if same {
f(Some(lp))
} else {
f(None)
}
})
} else {
f(None)
}
}
/// Spawns a new future into the event loop this remote is associated with.
///
/// This function takes a closure which is executed within the context of
/// the I/O loop itself. The future returned by the closure will be
/// scheduled on the event loop and run to completion.
///
/// Note that while the closure, `F`, requires the `Send` bound as it might
/// cross threads, the future `R` does not.
///
/// # Panics
///
/// This method will **not** catch panics from polling the future `f`. If
/// the future panics then it's the responsibility of the caller to catch
/// that panic and handle it as appropriate.
pub fn spawn<F, R>(&self, f: F)
where F: FnOnce(&Handle) -> R + Send + 'static,
R: IntoFuture<Item=(), Error=()>,
R::Future: 'static,
{
self.send(Message::Run(Box::new(|lp: &Core| {
let f = f(&lp.handle());
lp.handle().spawn(f.into_future());
})));
}
/// Return the ID of the represented Core
pub fn id(&self) -> CoreId {
CoreId(self.id)
}
/// Attempts to "promote" this remote to a handle, if possible.
///
/// This function is intended for structures which typically work through a
/// `Remote` but want to optimize runtime when the remote doesn't actually
/// leave the thread of the original reactor. This will attempt to return a
/// handle if the `Remote` is on the same thread as the event loop and the
/// event loop is running.
///
/// If this `Remote` has moved to a different thread or if the event loop is
/// running, then `None` may be returned. If you need to guarantee access to
/// a `Handle`, then you can call this function and fall back to using
/// `spawn` above if it returns `None`.
pub fn handle(&self) -> Option<Handle> {
if CURRENT_LOOP.is_set() {
CURRENT_LOOP.with(|lp| {
let same = lp.id == self.id;
if same {
Some(lp.handle())
} else {
None
}
})
} else {
None
}
}
}
impl<F> Executor<F> for Remote
where F: Future<Item = (), Error = ()> + Send + 'static,
{
fn execute(&self, future: F) -> Result<(), ExecuteError<F>> {
self.spawn(|_| future);
Ok(())
}
}
impl fmt::Debug for Remote {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Remote")
.field("id", &self.id())
.finish()
}
}
impl Handle {
/// Returns a reference to the new Tokio handle
pub fn new_tokio_handle(&self) -> &::tokio::reactor::Handle {
&self.remote.new_handle
}
/// Returns a reference to the underlying remote handle to the event loop.
pub fn remote(&self) -> &Remote {
&self.remote
}
/// Spawns a new future on the event loop this handle is associated with.
///
/// # Panics
///
/// This method will **not** catch panics from polling the future `f`. If
/// the future panics then it's the responsibility of the caller to catch
/// that panic and handle it as appropriate.
pub fn spawn<F>(&self, f: F)
where F: Future<Item=(), Error=()> + 'static,
{
let inner = match self.inner.upgrade() {
Some(inner) => inner,
None => {
return;
}
};
// Try accessing the executor directly
if let Ok(mut inner) = inner.try_borrow_mut() {
inner.pending_spawn.push(Box::new(f));
return;
}
// If that doesn't work, the executor is probably active, so spawn using
// the global fn.
let _ = TaskExecutor::current().spawn_local(Box::new(f));
}
/// Spawns a new future onto the threadpool
///
/// # Panics
///
/// This function panics if the spawn fails. Failure occurs if the executor
/// is currently at capacity and is unable to spawn a new future.
pub fn spawn_send<F>(&self, f: F)
where F: Future<Item=(), Error=()> + Send + 'static,
{
self.thread_pool.spawn(f);
}
/// Spawns a closure on this event loop.
///
/// This function is a convenience wrapper around the `spawn` function above
/// for running a closure wrapped in `futures::lazy`. It will spawn the
/// function `f` provided onto the event loop, and continue to run the
/// future returned by `f` on the event loop as well.
///
/// # Panics
///
/// This method will **not** catch panics from polling the future `f`. If
/// the future panics then it's the responsibility of the caller to catch
/// that panic and handle it as appropriate.
pub fn spawn_fn<F, R>(&self, f: F)
where F: FnOnce() -> R + 'static,
R: IntoFuture<Item=(), Error=()> + 'static,
{
self.spawn(future::lazy(f))
}
/// Return the ID of the represented Core
pub fn id(&self) -> CoreId {
self.remote.id()
}
}
impl<F> Executor<F> for Handle
where F: Future<Item = (), Error = ()> + 'static,
{
fn execute(&self, future: F) -> Result<(), ExecuteError<F>> {
self.spawn(future);
Ok(())
}
}
impl fmt::Debug for Handle {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Handle")
.field("id", &self.id())
.finish()
}
}
struct MyNotify {
unpark: UnparkThread,
notified: AtomicBool,
}
impl MyNotify {
fn new(unpark: UnparkThread) -> Self {
MyNotify {
unpark,
notified: AtomicBool::new(true),
}
}
fn take(&self) -> bool {
self.notified.swap(false, Ordering::SeqCst)
}
}
impl Notify for MyNotify {
fn notify(&self, _: usize) {
self.notified.store(true, Ordering::SeqCst);
self.unpark.unpark();
}
}
trait FnBox: Send + 'static {
fn call_box(self: Box<Self>, lp: &Core);
}
impl<F: FnOnce(&Core) + Send + 'static> FnBox for F {
fn call_box(self: Box<Self>, lp: &Core) {
(*self)(lp)
}
}
const READ: usize = 1 << 0;
const WRITE: usize = 1 << 1;
fn ready2usize(ready: mio::Ready) -> usize {
let mut bits = 0;
if ready.is_readable() {
bits |= READ;
}
if ready.is_writable() {
bits |= WRITE;
}
bits | platform::ready2usize(ready)
}
fn usize2ready(bits: usize) -> mio::Ready {
let mut ready = mio::Ready::empty();
if bits & READ != 0 {
ready.insert(mio::Ready::readable());
}
if bits & WRITE != 0 {
ready.insert(mio::Ready::writable());
}
ready | platform::usize2ready(bits)
}
#[cfg(all(unix, not(target_os = "fuchsia")))]
mod platform {
use mio::Ready;
use mio::unix::UnixReady;
const HUP: usize = 1 << 2;
const ERROR: usize = 1 << 3;
const AIO: usize = 1 << 4;
#[cfg(any(target_os = "dragonfly", target_os = "freebsd"))]
fn is_aio(ready: &Ready) -> bool {
UnixReady::from(*ready).is_aio()
}
#[cfg(not(any(target_os = "dragonfly", target_os = "freebsd")))]
fn is_aio(_ready: &Ready) -> bool {
false
}
pub fn ready2usize(ready: Ready) -> usize {
let ready = UnixReady::from(ready);
let mut bits = 0;
if is_aio(&ready) {
bits |= AIO;
}
if ready.is_error() {
bits |= ERROR;
}
if ready.is_hup() {
bits |= HUP;
}
bits
}
#[cfg(any(target_os = "dragonfly", target_os = "freebsd", target_os = "ios",
target_os = "macos"))]
fn usize2ready_aio(ready: &mut UnixReady) {
ready.insert(UnixReady::aio());
}
#[cfg(not(any(target_os = "dragonfly",
target_os = "freebsd", target_os = "ios", target_os = "macos")))]
fn usize2ready_aio(_ready: &mut UnixReady) {
// aio not available here → empty
}
pub fn usize2ready(bits: usize) -> Ready {
let mut ready = UnixReady::from(Ready::empty());
if bits & AIO != 0 {
usize2ready_aio(&mut ready);
}
if bits & HUP != 0 {
ready.insert(UnixReady::hup());
}
if bits & ERROR != 0 {
ready.insert(UnixReady::error());
}
ready.into()
}
}
#[cfg(any(windows, target_os = "fuchsia"))]
mod platform {
use mio::Ready;
pub fn ready2usize(_r: Ready) -> usize {
0
}
pub fn usize2ready(_r: usize) -> Ready {
Ready::empty()
}
}