tokio_io_pool/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
//! This crate provides a thread pool for executing short, I/O-heavy futures efficiently.
//!
//! The standard `Runtime` provided by `tokio` uses a thread-pool to allow concurrent execution of
//! compute-heavy futures. However, its work-stealing makes it so that futures may be executed on
//! different threads to where their reactor are running, which results in unnecessary
//! synchronization, and thus lowers the achievable throughput. While this trade-off works well for
//! many asynchronous applications, since it spreads load more evenly, it is not a great fit for
//! high-performance I/O bound applications where the cost of synchronizing threads is high. This
//! can happen, for example, if your application performs frequent but small I/O operations.
//!
//! This crate provides an alternative implementation of a futures-based thread pool. It spawns a
//! pool of threads that each runs a `tokio::runtime::current_thread::Runtime` (and thus each have
//! an I/O reactor of their own), and spawns futures onto the pool by assigning the future to
//! threads round-robin. Once a future has been spawned onto a thread, it, and any child futures it
//! may produce through `tokio::spawn`, remain under the control of that same thread.
//!
//! In general, you should use `tokio-io-pool` only if you perform a lot of very short I/O
//! operations on many futures, and find that you are bottlenecked by work-stealing or reactor
//! notifications with the regular `tokio` runtime. If you are unsure what to use, start with the
//! `tokio` runtime.
//!
//! Be aware that this pool does *not* support the
//! [`blocking`](https://docs.rs/tokio-threadpool/0.1.5/tokio_threadpool/fn.blocking.html) function
//! since it is [not supported](https://github.com/tokio-rs/tokio/issues/432) by the underlying
//! `current_thread::Runtime`. Hopefully this will be rectified down the line.
//!
//! There is some discussion around trying to merge this pool into `tokio` proper; that effort is
//! tracked in [tokio-rs/tokio#486](https://github.com/tokio-rs/tokio/issues/486).
//!
//! # Examples
//!
//! ```no_run
//! use tokio::prelude::*;
//! use tokio::io::copy;
//! use tokio::net::TcpListener;
//!
//! fn main() {
//! // Bind the server's socket.
//! let addr = "127.0.0.1:12345".parse().unwrap();
//! let listener = TcpListener::bind(&addr)
//! .expect("unable to bind TCP listener");
//!
//! // Pull out a stream of sockets for incoming connections
//! let server = listener.incoming()
//! .map_err(|e| eprintln!("accept failed = {:?}", e))
//! .for_each(|sock| {
//! // Split up the reading and writing parts of the
//! // socket.
//! let (reader, writer) = sock.split();
//!
//! // A future that echos the data and returns how
//! // many bytes were copied...
//! let bytes_copied = copy(reader, writer);
//!
//! // ... after which we'll print what happened.
//! let handle_conn = bytes_copied.map(|amt| {
//! println!("wrote {:?} bytes", amt)
//! }).map_err(|err| {
//! eprintln!("IO error {:?}", err)
//! });
//!
//! // Spawn the future as a concurrent task.
//! tokio::spawn(handle_conn)
//! });
//!
//! // Start the Tokio runtime
//! tokio_io_pool::run(server);
//! }
//! ```
#![deny(missing_docs)]
#![deny(missing_debug_implementations)]
#![deny(missing_copy_implementations)]
#![deny(unused_extern_crates)]
use futures::sync::oneshot;
use futures::try_ready;
use std::sync::{atomic, mpsc, Arc};
use std::{fmt, io, thread};
use tokio::executor::SpawnError;
use tokio::prelude::*;
use tokio::runtime::current_thread;
/// Builds an I/O-oriented thread pool ([`Runtime`]) with custom configuration values.
///
/// Methods can be chained in order to set the configuration values. The thread pool is constructed
/// by calling [`Builder::build`]. New instances of `Builder` are obtained via
/// [`Builder::default`].
///
/// See function level documentation for details on the various configuration settings.
pub struct Builder {
nworkers: usize,
name_prefix: Option<String>,
after_start: Option<Arc<dyn Fn() + Send + Sync>>,
before_stop: Option<Arc<dyn Fn() + Send + Sync>>,
}
impl fmt::Debug for Builder {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("Builder")
.field("nworkers", &self.nworkers)
.field("name_prefix", &self.name_prefix)
.finish()
}
}
impl Default for Builder {
fn default() -> Self {
Builder {
nworkers: num_cpus::get(),
name_prefix: None,
after_start: None,
before_stop: None,
}
}
}
impl Builder {
/// Set the number of worker threads for the thread pool instance.
///
/// This must be a number between 1 and 32,768 though it is advised to keep
/// this value on the smaller side.
///
/// The default value is the number of cores available to the system.
pub fn pool_size(&mut self, val: usize) -> &mut Self {
self.nworkers = val;
self
}
/// Set name prefix of threads spawned by the scheduler
///
/// Thread name prefix is used for generating thread names. For example, if prefix is
/// `my-pool-`, then threads in the pool will get names like `my-pool-1` etc.
///
/// If this configuration is not set, then the thread will use the system default naming
/// scheme.
pub fn name_prefix<S: Into<String>>(&mut self, val: S) -> &mut Self {
self.name_prefix = Some(val.into());
self
}
/// Execute function `f` after each thread is started but before it starts doing work.
///
/// This is intended for bookkeeping and monitoring use cases.
pub fn after_start<F>(&mut self, f: F) -> &mut Self
where
F: Fn() + Send + Sync + 'static,
{
self.after_start = Some(Arc::new(f));
self
}
/// Execute function `f` before each thread stops.
///
/// This is intended for bookkeeping and monitoring use cases.
pub fn before_stop<F>(&mut self, f: F) -> &mut Self
where
F: Fn() + Send + Sync + 'static,
{
self.before_stop = Some(Arc::new(f));
self
}
/// Create the configured [`Runtime`].
///
/// The returned [`Runtime`] instance is ready to spawn tasks.
pub fn build(&self) -> io::Result<Runtime> {
assert!(self.nworkers > 0);
let mut handles = Vec::with_capacity(self.nworkers);
let mut threads = Vec::with_capacity(self.nworkers);
for i in 0..self.nworkers {
let (trigger, exit) = oneshot::channel();
let (handle_tx, handle_rx) = mpsc::sync_channel(1);
let mut th = thread::Builder::new();
if let Some(ref prefix) = self.name_prefix {
th = th.name(format!("{}{}", prefix, i + 1));
}
let before = self.after_start.clone();
let after = self.before_stop.clone();
let jh = th.spawn(move || {
if let Some(ref f) = before {
f();
}
let mut rt = current_thread::Runtime::new().unwrap();
handle_tx.send(rt.handle()).unwrap();
let force_exit: bool = rt.block_on(exit).unwrap();
if !force_exit {
rt.run().unwrap();
}
if let Some(ref f) = after {
f();
}
})?;
threads.push((trigger, jh));
handles.push(handle_rx.recv().unwrap());
}
let handle = Handle {
workers: handles,
rri: Arc::new(atomic::AtomicUsize::new(0)),
};
Ok(Runtime {
threads,
force_exit: true,
handle,
})
}
}
/// Execute the given future and spawn any child futures onto a newly created I/O thread pool.
///
/// This function is used to bootstrap the execution of a Tokio application. It does the following:
///
/// - Start the Tokio I/O pool using a default configuration.
/// - Configure Tokio to make any future spawned with `tokio::spawn` spawn on the pool.
/// - Run the given future to completion on the current thread.
/// - Block the current thread until the pool becomes idle.
///
/// Note that the function will not return immediately once future has completed. Instead it waits
/// for the entire pool to become idle. Note also that the top-level future will be executed with
/// [`Runtime::block_on`], which calls `Future::wait`, and thus does not provide access to timers,
/// clocks, or other tokio runtime goodies.
///
/// # Examples
///
/// ```no_run
/// # extern crate tokio_io_pool;
/// # extern crate tokio;
/// # extern crate futures;
/// # use futures::{Future, Stream};
/// # fn process<T>(_: T) -> Box<Future<Item = (), Error = ()> + Send> {
/// # unimplemented!();
/// # }
/// # let addr = "127.0.0.1:8080".parse().unwrap();
/// use tokio::net::TcpListener;
///
/// let listener = TcpListener::bind(&addr).unwrap();
///
/// let server = listener.incoming()
/// .map_err(|e| println!("error = {:?}", e))
/// .for_each(|socket| {
/// tokio::spawn(process(socket))
/// });
///
/// tokio_io_pool::run(server);
/// ```
pub fn run<F>(future: F)
where
F: Future<Item = (), Error = ()> + Send + 'static,
{
let mut rt = Runtime::new();
let _ = rt.block_on(future);
rt.shutdown_on_idle();
}
/// A handle to a [`Runtime`] that allows spawning additional futures from other threads.
#[derive(Clone)]
pub struct Handle {
workers: Vec<current_thread::Handle>,
rri: Arc<atomic::AtomicUsize>,
}
impl fmt::Debug for Handle {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("Handle")
.field("nworkers", &self.workers.len())
.field("next", &self.rri.load(atomic::Ordering::Relaxed))
.finish()
}
}
impl tokio::executor::Executor for Handle {
fn spawn(
&mut self,
future: Box<dyn Future<Item = (), Error = ()> + 'static + Send>,
) -> Result<(), SpawnError> {
Handle::spawn(self, future).map(|_| ())
}
}
impl Handle {
/// Spawn a future onto a runtime in the pool.
///
/// This spawns the given future onto a single thread runtime's executor. That thread is then
/// responsible for polling the future until it completes.
pub fn spawn<F>(&self, future: F) -> Result<&Self, SpawnError>
where
F: Future<Item = (), Error = ()> + Send + 'static,
{
let worker = self.rri.fetch_add(1, atomic::Ordering::Relaxed) % self.workers.len();
self.workers[worker].spawn(future)?;
Ok(self)
}
/// Spawn all futures yielded by a stream onto the pool.
///
/// This produces a future that accepts futures from a `Stream` and spawns them all onto the
/// pool round-robin.
pub fn spawn_all<S>(
&self,
stream: S,
) -> impl Future<Item = (), Error = StreamSpawnError<<S as Stream>::Error>>
where
S: Stream,
<S as Stream>::Item: Future<Item = (), Error = ()> + Send + 'static,
{
Spawner {
handle: self.clone(),
stream,
}
}
}
/// An I/O-oriented thread pool for executing futures.
///
/// Each thread in the pool has its own I/O reactor, and futures are spawned onto threads
/// round-robin. Futures do not (currently) move between threads in the pool once spawned, and any
/// new futures spawned (using `tokio::spawn`) inside futures are scheduled on the same worker as
/// the original future.
pub struct Runtime {
handle: Handle,
threads: Vec<(oneshot::Sender<bool>, thread::JoinHandle<()>)>,
force_exit: bool,
}
impl fmt::Debug for Runtime {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("Runtime")
.field("nworkers", &self.threads.len())
.finish()
}
}
impl Default for Runtime {
fn default() -> Self {
Self::new()
}
}
impl Runtime {
/// Create a new thread pool with parameters from a default [`Builder`] and return a handle to
/// it.
///
/// # Panics
///
/// Panics if enough threads could not be spawned (see [`Builder::build`]).
pub fn new() -> Self {
Builder::default().build().unwrap()
}
/// Return a reference to the pool.
///
/// The returned handle reference can be cloned in order to get an owned value of the handle.
/// This handle can be used to spawn additional futures onto the pool from other threads.
pub fn handle(&self) -> &Handle {
&self.handle
}
/// Spawn a future onto a runtime in the pool.
///
/// This spawns the given future onto a single thread runtime's executor. That thread is then
/// responsible for polling the future until it completes.
pub fn spawn<F>(&self, future: F) -> Result<&Self, SpawnError>
where
F: Future<Item = (), Error = ()> + Send + 'static,
{
self.handle.spawn(future)?;
Ok(self)
}
/// Spawn all futures yielded by a stream onto the pool.
///
/// This produces a future that accepts futures from a `Stream` and spawns them all onto the
/// pool round-robin.
#[must_use]
pub fn spawn_all<S>(
&self,
stream: S,
) -> impl Future<Item = (), Error = StreamSpawnError<<S as Stream>::Error>>
where
S: Stream,
<S as Stream>::Item: Future<Item = (), Error = ()> + Send + 'static,
{
self.handle.spawn_all(stream)
}
/// Run the given future on the current thread, and dispatch any child futures spawned with
/// `tokio::spawn` onto the I/O pool.
///
/// Note that child futures of futures that are already running on the pool will be executed on
/// the same pool thread as their parent. Only the "top-level" calls to `tokio::spawn` are
/// scheduled to the thread pool as a whole.
///
/// Note that the top-level future is executed using `Future::wait`, and thus does not provide
/// access to timers, clocks, or other tokio runtime goodies.
pub fn block_on<F, R, E>(&mut self, future: F) -> Result<R, E>
where
F: Send + 'static + Future<Item = R, Error = E>,
R: Send + 'static,
E: Send + 'static,
{
let mut enter = tokio_executor::enter().expect("already running in executor context");
tokio_executor::with_default(&mut self.handle, &mut enter, |_| future.wait())
}
/// Shut down the pool as soon as possible.
///
/// Note that once this method has been called, attempts to spawn additional futures onto the
/// pool through an outstanding `Handle` may fail. Futures that have not yet resolved will be
/// dropped.
///
/// The pool will only terminate once any currently-running futures return `NotReady`.
pub fn shutdown(self) {}
/// Shut down the pool once all spawned futures have completed.
///
/// Note that once this method has been called, attempts to spawn additional futures onto the
/// pool through an outstanding `Handle` may fail.
pub fn shutdown_on_idle(mut self) {
self.force_exit = false;
}
}
impl Drop for Runtime {
fn drop(&mut self) {
let mut handles = Vec::with_capacity(self.threads.len());
for (exit, jh) in self.threads.drain(..) {
if let Err(e) = exit.send(self.force_exit) {
if !thread::panicking() {
panic!("oneshot::Sender::Send: {:?}", e);
}
}
handles.push(jh);
}
for jh in handles {
if let Err(e) = jh.join() {
if !thread::panicking() {
panic!("JoinHandle::join: {:?}", e);
}
}
}
}
}
/// An error that occurred as a result of spawning futures from a stream given to
/// [`Runtime::spawn_all`].
#[derive(Debug)]
pub enum StreamSpawnError<SE> {
/// An error occurred while spawning a future yielded by the stream onto the pool.
Spawn(SpawnError),
/// An error occurred while polling the stream for another future.
Stream(SE),
}
impl<SE> From<SE> for StreamSpawnError<SE> {
fn from(e: SE) -> Self {
StreamSpawnError::Stream(e)
}
}
struct Spawner<S> {
handle: Handle,
stream: S,
}
impl<S> fmt::Debug for Spawner<S>
where
S: fmt::Debug,
{
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("Spawner")
.field("stream", &self.stream)
.finish()
}
}
impl<S> Future for Spawner<S>
where
S: Stream,
<S as Stream>::Item: Future<Item = (), Error = ()> + Send + 'static,
{
type Item = ();
type Error = StreamSpawnError<<S as Stream>::Error>;
fn poll(&mut self) -> Result<Async<Self::Item>, Self::Error> {
while let Some(fut) = try_ready!(self.stream.poll()) {
self.handle.spawn(fut).map_err(StreamSpawnError::Spawn)?;
}
Ok(Async::Ready(()))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn it_works() {
use futures::future::lazy;
use futures::sync::oneshot;
let (tx, rx) = oneshot::channel();
let rt = Runtime::new();
rt.spawn(lazy(move || {
tx.send(()).unwrap();
Ok(())
}))
.unwrap();
assert_eq!(rx.wait().unwrap(), ());
rt.shutdown_on_idle();
}
#[test]
fn spawn_all() {
let addr = "127.0.0.1:0".parse().unwrap();
let listener = tokio::net::TcpListener::bind(&addr).expect("unable to bind TCP listener");
let addr = listener.local_addr().unwrap();
let rt = Builder::default().pool_size(1).build().unwrap();
let server = listener
.incoming()
.map_err(|e| unreachable!("{:?}", e))
.map(|sock| {
let (reader, writer) = sock.split();
let bytes_copied = tokio::io::copy(reader, writer);
bytes_copied
.map(|_| ())
.map_err(|err| unreachable!("{:?}", err))
});
// spawn all connections onto the pool
let spawner = rt.spawn_all(server);
// spawn the spawner onto the pool too
// (a "real" server might wait for it instead)
rt.spawn(spawner.map_err(|e| unreachable!("{:?}", e)))
.unwrap();
let mut client = ::std::net::TcpStream::connect(&addr).unwrap();
client.write_all(b"hello world").unwrap();
client.shutdown(::std::net::Shutdown::Write).unwrap();
let mut bytes = Vec::new();
client.read_to_end(&mut bytes).unwrap();
assert_eq!(&bytes, b"hello world");
let mut client = ::std::net::TcpStream::connect(&addr).unwrap();
client.write_all(b"bye world").unwrap();
client.shutdown(::std::net::Shutdown::Write).unwrap();
let mut bytes = Vec::new();
client.read_to_end(&mut bytes).unwrap();
assert_eq!(&bytes, b"bye world");
}
#[test]
fn run() {
let addr = "127.0.0.1:0".parse().unwrap();
let listener = tokio::net::TcpListener::bind(&addr).expect("unable to bind TCP listener");
let addr = listener.local_addr().unwrap();
thread::spawn(move || {
let server = listener
.incoming()
.map_err(|e| unreachable!("{:?}", e))
.for_each(|sock| {
let (reader, writer) = sock.split();
let bytes_copied = tokio::io::copy(reader, writer);
tokio::spawn(
bytes_copied
.map(|_| ())
.map_err(|err| unreachable!("{:?}", err)),
)
});
super::run(server);
});
let mut client = ::std::net::TcpStream::connect(&addr).unwrap();
client.write_all(b"hello world").unwrap();
client.shutdown(::std::net::Shutdown::Write).unwrap();
let mut bytes = Vec::new();
client.read_to_end(&mut bytes).unwrap();
assert_eq!(&bytes, b"hello world");
let mut client = ::std::net::TcpStream::connect(&addr).unwrap();
client.write_all(b"bye world").unwrap();
client.shutdown(::std::net::Shutdown::Write).unwrap();
let mut bytes = Vec::new();
client.read_to_end(&mut bytes).unwrap();
assert_eq!(&bytes, b"bye world");
}
// futures channels can exchange information between different threads
#[test]
fn interthread_communication() {
use futures::sync::oneshot;
let (tx0, rx0) = oneshot::channel::<u32>();
let (tx1, rx1) = oneshot::channel::<u32>();
let rt = Builder::default().pool_size(2).build().unwrap();
rt.spawn(future::ok::<(), ()>(tx0.send(42).unwrap()))
.unwrap();
rt.spawn(rx0.map(|v| tx1.send(v + 1).unwrap()).map_err(|_| ()))
.unwrap();
assert_eq!(rx1.wait().unwrap(), 43);
rt.shutdown_on_idle();
}
// A Future that isn't Send can't be spawned into the Runtime, but it _can_ be spawned from a
// thread onto that same thread
#[test]
fn spawn_nonsend_futures() {
use futures::future::lazy;
use futures::sync::oneshot;
use std::rc::Rc;
let rt = Runtime::new();
rt.spawn(lazy(|| {
let (tx, rx) = oneshot::channel::<u32>();
let x = Rc::new(42u32); // Note: Rc is not Send
tokio_current_thread::spawn(lazy(move || {
tx.send(*x).unwrap();
Ok(())
}));
rx.map(|value| assert_eq!(42, value)).map_err(|_| ())
}))
.unwrap();
rt.shutdown_on_idle();
}
#[test]
fn really_lazy() {
super::run(future::lazy(|| {
tokio::spawn(future::lazy(|| Ok(())));
Ok(())
}));
}
}