1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
//! Async TLS streams backed by OpenSSL
//!
//! This library is an implementation of TLS streams using OpenSSL for
//! negotiating the connection. Each TLS stream implements the `Read` and
//! `Write` traits to interact and interoperate with the rest of the futures I/O
//! ecosystem. Client connections initiated from this crate verify hostnames
//! automatically and by default.
//!
//! This crate primarily exports this ability through two extension traits,
//! `SslConnectorExt` and `SslAcceptorExt`. These traits augment the
//! functionality provided by the `openssl` crate, on which this crate is
//! built. Configuration of TLS parameters is still primarily done through the
//! `openssl` crate.

#![deny(missing_docs)]

extern crate futures;
extern crate openssl;
extern crate tokio_io;

use futures::{Poll, Future, Async};
use openssl::ssl::{self, SslAcceptor, SslConnector, ConnectConfiguration, HandshakeError,
                   ShutdownResult, ErrorCode, MidHandshakeSslStream};
use std::io::{self, Read, Write};
use std::mem;
use tokio_io::{AsyncRead, AsyncWrite};

/// A wrapper around an underlying raw stream which implements the SSL
/// protocol.
///
/// A `SslStream<S>` represents a handshake that has been completed successfully
/// and both the server and the client are ready for receiving and sending
/// data. Bytes read from a `SslStream` are decrypted from `S` and bytes written
/// to a `SslStream` are encrypted when passing through to `S`.
#[derive(Debug)]
pub struct SslStream<S> {
    inner: ssl::SslStream<S>,
}

/// Future returned from `SslConnectorExt::connect_async` which will resolve
/// once the connection handshake has finished.
pub struct ConnectAsync<S>(ConnectAsyncInner<S>);

enum ConnectAsyncInner<S> {
    Start {
        config: ConnectConfiguration,
        domain: String,
        stream: S,
    },
    Handshake(MidHandshakeSslStream<S>),
    Error(HandshakeError<S>),
    Done,
}

/// Future returned from `SslAcceptorExt::accept_async` which will resolve
/// once the accept handshake has finished.
pub struct AcceptAsync<S>(AcceptAsyncInner<S>);

enum AcceptAsyncInner<S> {
    Start {
        acceptor: SslAcceptor,
        stream: S,
    },
    Handshake(MidHandshakeSslStream<S>),
    Done,
}

/// Extension trait for the `SslConnector` type in the `openssl` crate.
pub trait SslConnectorExt {
    /// Connects the provided stream with this connector, assuming the provided
    /// domain.
    ///
    /// This function will internally call `SslConnector::connect` to connect
    /// the stream and returns a future representing the resolution of the
    /// connection operation. The returned future will resolve to either
    /// `SslStream<S>` or `HandshakeError` depending if it's successful or not.
    ///
    /// This is typically used for clients who have already established, for
    /// example, a TCP connection to a remote server. That stream is then
    /// provided here to perform the client half of a connection to a
    /// TLS-powered server.
    // TODO change to AsyncRead/Write on major bump all throughout this file
    fn connect_async<S>(&self, domain: &str, stream: S) -> ConnectAsync<S>
        where S: AsyncRead + AsyncWrite;
}

/// Extension trait for the `ConnectConfiguration` type in the `openssl` crate.
pub trait ConnectConfigurationExt {
    /// Connects the provided stream with this connector, assuming the provided
    /// domain.
    ///
    /// This function will internally call `ConnectConfiguration::connect` to
    /// connect the stream and returns a future representing the resolution of
    /// the connection operation. The returned future will resolve to either
    /// `SslStream<S>` or `HandshakeError` depending if it's successful or not.
    ///
    /// This is typically used for clients who have already established, for
    /// example, a TCP connection to a remote server. That stream is then
    /// provided here to perform the client half of a connection to a
    /// TLS-powered server.
    // TODO change to AsyncRead/Write on major bump all throughout this file
    fn connect_async<S>(self, domain: &str, stream: S) -> ConnectAsync<S>
        where S: AsyncRead + AsyncWrite;
}

/// Extension trait for the `SslAcceptor` type in the `openssl` crate.
pub trait SslAcceptorExt {
    /// Accepts a new client connection with the provided stream.
    ///
    /// This function will internally call `SslAcceptor::accept` to connect
    /// the stream and returns a future representing the resolution of the
    /// connection operation. The returned future will resolve to either
    /// `SslStream<S>` or `HandshakeError` depending if it's successful or not.
    ///
    /// This is typically used after a new socket has been accepted from a
    /// `TcpListener`. That socket is then passed to this function to perform
    /// the server half of accepting a client connection.
    fn accept_async<S>(&self, stream: S) -> AcceptAsync<S>
        where S: AsyncRead + AsyncWrite;
}

impl<S> SslStream<S> {
    /// Get access to the internal `openssl::SslStream` stream which also
    /// transitively allows access to `S`.
    pub fn get_ref(&self) -> &ssl::SslStream<S> {
        &self.inner
    }

    /// Get mutable access to the internal `openssl::SslStream` stream which
    /// also transitively allows mutable access to `S`.
    pub fn get_mut(&mut self) -> &mut ssl::SslStream<S> {
        &mut self.inner
    }
}
impl<S> From<ssl::SslStream<S>> for SslStream<S> {
    fn from(ssl: ssl::SslStream<S>) -> Self {
        Self {
            inner: ssl
        }
    }
}

impl<S: Read + Write> Read for SslStream<S> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        self.inner.read(buf)
    }
}

impl<S: Read + Write> Write for SslStream<S> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.inner.write(buf)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.inner.flush()
    }
}

impl<S: AsyncRead + AsyncWrite> AsyncRead for SslStream<S> {
    unsafe fn prepare_uninitialized_buffer(&self, _: &mut [u8]) -> bool {
        // Note that this does not forward to `S` because the buffer is
        // unconditionally filled in by OpenSSL, not the actual object `S`.
        // We're decrypting bytes from `S` into the buffer above!
        true
    }
}

impl<S: AsyncRead + AsyncWrite> AsyncWrite for SslStream<S> {
    fn shutdown(&mut self) -> Poll<(), io::Error> {
        match self.inner.shutdown() {
            Ok(ShutdownResult::Sent) |
            Ok(ShutdownResult::Received) => Ok(Async::Ready(())),
            Err(ref e) if e.code() == ErrorCode::ZERO_RETURN => Ok(Async::Ready(())),
            Err(ref e) if e.code() == ErrorCode::WANT_READ || e.code() == ErrorCode::WANT_WRITE => Ok(Async::NotReady),
            Err(e) => Err(e.into_io_error().unwrap_or_else(|e| io::Error::new(io::ErrorKind::Other, e))),
        }
    }
}

impl SslConnectorExt for SslConnector {
    fn connect_async<S>(&self, domain: &str, stream: S) -> ConnectAsync<S>
        where S: AsyncRead + AsyncWrite,
    {
        match self.configure() {
            Ok(s) => s.connect_async(domain, stream),
            Err(e) => ConnectAsync(ConnectAsyncInner::Error(HandshakeError::SetupFailure(e))),
        }
    }
}

impl ConnectConfigurationExt for ConnectConfiguration {
    fn connect_async<S>(self, domain: &str, stream: S) -> ConnectAsync<S>
        where S: AsyncRead + AsyncWrite,
    {
        ConnectAsync(ConnectAsyncInner::Start {
            config: self,
            domain: domain.to_string(),
            stream,
        })
    }
}

impl SslAcceptorExt for SslAcceptor {
    fn accept_async<S>(&self, stream: S) -> AcceptAsync<S>
        where S: AsyncRead + AsyncWrite,
    {
        AcceptAsync(AcceptAsyncInner::Start {
            acceptor: self.clone(),
            stream,
        })
    }
}

impl<S: Read + Write> Future for ConnectAsync<S> {
    type Item = SslStream<S>;
    type Error = HandshakeError<S>;

    fn poll(&mut self) -> Poll<SslStream<S>, HandshakeError<S>> {
        match mem::replace(&mut self.0, ConnectAsyncInner::Done) {
            ConnectAsyncInner::Start { config, domain, stream } => {
                match config.connect(&domain, stream) {
                    Ok(inner) => Ok(Async::Ready(SslStream { inner })),
                    Err(HandshakeError::WouldBlock(s)) => {
                        self.0 = ConnectAsyncInner::Handshake(s);
                        Ok(Async::NotReady)
                    }
                    Err(e) => Err(e),
                }
            }
            ConnectAsyncInner::Handshake(s) => match s.handshake() {
                Ok(inner) => Ok(Async::Ready(SslStream { inner })),
                Err(HandshakeError::WouldBlock(s)) => {
                    self.0 = ConnectAsyncInner::Handshake(s);
                    Ok(Async::NotReady)
                }
                Err(e) => Err(e),
            }
            ConnectAsyncInner::Error(e) => Err(e),
            ConnectAsyncInner::Done => panic!("future polled after completion")
        }
    }
}

impl<S: Read + Write> Future for AcceptAsync<S> {
    type Item = SslStream<S>;
    type Error = HandshakeError<S>;

    fn poll(&mut self) -> Poll<SslStream<S>, HandshakeError<S>> {
        match mem::replace(&mut self.0, AcceptAsyncInner::Done) {
            AcceptAsyncInner::Start { acceptor, stream } => {
                match acceptor.accept(stream) {
                    Ok(inner) => Ok(Async::Ready(SslStream { inner })),
                    Err(HandshakeError::WouldBlock(s)) => {
                        self.0 = AcceptAsyncInner::Handshake(s);
                        Ok(Async::NotReady)
                    }
                    Err(e) => Err(e),
                }
            }
            AcceptAsyncInner::Handshake(s) => match s.handshake() {
                Ok(inner) => Ok(Async::Ready(SslStream { inner })),
                Err(HandshakeError::WouldBlock(s)) => {
                    self.0 = AcceptAsyncInner::Handshake(s);
                    Ok(Async::NotReady)
                }
                Err(e) => Err(e),
            }
            AcceptAsyncInner::Done => panic!("future polled after completion")
        }
    }
}