tokio_process/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
//! An implementation of asynchronous process management for Tokio.
//!
//! > This crate has been **deprecated in tokio 0.2.x** and has been moved into
//! > [`tokio::process`] behind the `process` [feature flag].
//!
//! [`tokio::process`]: https://docs.rs/tokio/latest/tokio/process/index.html
//! [feature flag]: https://docs.rs/tokio/latest/tokio/index.html#feature-flags
//!
//! This crate provides a `CommandExt` trait to enhance the functionality of the
//! `Command` type in the standard library. The three methods provided by this
//! trait mirror the "spawning" methods in the standard library. The
//! `CommandExt` trait in this crate, though, returns "future aware" types that
//! interoperate with Tokio. The asynchronous process support is provided
//! through signal handling on Unix and system APIs on Windows.
//!
//! # Examples
//!
//! Here's an example program which will spawn `echo hello world` and then wait
//! for it using an event loop.
//!
//! ```no_run
//! extern crate futures;
//! extern crate tokio;
//! extern crate tokio_process;
//!
//! use std::process::Command;
//!
//! use futures::Future;
//! use tokio_process::CommandExt;
//!
//! fn main() {
//! // Use the standard library's `Command` type to build a process and
//! // then execute it via the `CommandExt` trait.
//! let child = Command::new("echo").arg("hello").arg("world")
//! .spawn_async();
//!
//! // Make sure our child succeeded in spawning and process the result
//! let future = child.expect("failed to spawn")
//! .map(|status| println!("exit status: {}", status))
//! .map_err(|e| panic!("failed to wait for exit: {}", e));
//!
//! // Send the future to the tokio runtime for execution
//! tokio::run(future)
//! }
//! ```
//!
//! Next, let's take a look at an example where we not only spawn `echo hello
//! world` but we also capture its output.
//!
//! ```no_run
//! extern crate futures;
//! extern crate tokio;
//! extern crate tokio_process;
//!
//! use std::process::Command;
//!
//! use futures::Future;
//! use tokio_process::CommandExt;
//!
//! fn main() {
//! // Like above, but use `output_async` which returns a future instead of
//! // immediately returning the `Child`.
//! let output = Command::new("echo").arg("hello").arg("world")
//! .output_async();
//!
//! let future = output.map_err(|e| panic!("failed to collect output: {}", e))
//! .map(|output| {
//! assert!(output.status.success());
//! assert_eq!(output.stdout, b"hello world\n");
//! });
//!
//! tokio::run(future);
//! }
//! ```
//!
//! We can also read input line by line.
//!
//! ```no_run
//! extern crate failure;
//! extern crate futures;
//! extern crate tokio;
//! extern crate tokio_process;
//! extern crate tokio_io;
//!
//! use failure::Error;
//! use futures::{Future, Stream};
//! use std::io::BufReader;
//! use std::process::{Command, Stdio};
//! use tokio_process::{Child, ChildStdout, CommandExt};
//!
//! fn lines_stream(child: &mut Child) -> impl Stream<Item = String, Error = Error> + Send + 'static {
//! let stdout = child.stdout().take()
//! .expect("child did not have a handle to stdout");
//!
//! tokio_io::io::lines(BufReader::new(stdout))
//! // Convert any io::Error into a failure::Error for better flexibility
//! .map_err(|e| Error::from(e))
//! // We print each line we've received here as an example of a way we can
//! // do something with the data. This can be changed to map the data to
//! // something else, or to consume it differently.
//! .inspect(|line| println!("Line: {}", line))
//! }
//!
//! fn main() {
//! // Lazily invoke any code so it can run directly within the tokio runtime
//! tokio::run(futures::lazy(|| {
//! let mut cmd = Command::new("cat");
//!
//! // Specify that we want the command's standard output piped back to us.
//! // By default, standard input/output/error will be inherited from the
//! // current process (for example, this means that standard input will
//! // come from the keyboard and standard output/error will go directly to
//! // the terminal if this process is invoked from the command line).
//! cmd.stdout(Stdio::piped());
//!
//! let mut child = cmd.spawn_async()
//! .expect("failed to spawn command");
//!
//! let lines = lines_stream(&mut child);
//!
//! // Spawning into the tokio runtime requires that the future's Item and
//! // Error are both `()`. This is because tokio doesn't know what to do
//! // with any results or errors, so it requires that we've handled them!
//! //
//! // We can replace these sample usages of the child's exit status (or
//! // an encountered error) perform some different actions if needed!
//! // For example, log the error, or send a message on a channel, etc.
//! let child_future = child
//! .map(|status| println!("child status was: {}", status))
//! .map_err(|e| panic!("error while running child: {}", e));
//!
//! // Ensure the child process can live on within the runtime, otherwise
//! // the process will get killed if this handle is dropped
//! tokio::spawn(child_future);
//!
//! // Return a future to tokio. This is the same as calling using
//! // `tokio::spawn` above, but without having to return a dummy future
//! // here.
//! lines
//! // Convert the stream of values into a future which will resolve
//! // once the entire stream has been consumed. In this example we
//! // don't need to do anything with the data within the `for_each`
//! // call, but you can extend this to do something else (keep in mind
//! // that the stream will not produce items until the future returned
//! // from the closure resolves).
//! .for_each(|_| Ok(()))
//! // Similarly we "handle" any errors that arise, as required by tokio.
//! .map_err(|e| panic!("error while processing lines: {}", e))
//! }));
//! }
//! ```
//!
//! # Caveats
//!
//! While similar to the standard library, this crate's `Child` type differs
//! importantly in the behavior of `drop`. In the standard library, a child
//! process will continue running after the instance of `std::process::Child`
//! is dropped. In this crate, however, because `tokio_process::Child` is a
//! future of the child's `ExitStatus`, a child process is terminated if
//! `tokio_process::Child` is dropped. The behavior of the standard library can
//! be regained with the `Child::forget` method.
#![warn(missing_debug_implementations)]
#![deny(missing_docs)]
#![doc(html_root_url = "https://docs.rs/tokio-process/0.2")]
extern crate futures;
extern crate tokio_io;
extern crate tokio_reactor;
#[cfg(unix)]
#[macro_use]
extern crate lazy_static;
#[cfg(unix)]
#[macro_use]
extern crate log;
use std::io::{self, Read, Write};
use std::process::{Command, ExitStatus, Output, Stdio};
use crate::kill::Kill;
use futures::future::{ok, Either};
use futures::{Async, Future, IntoFuture, Poll};
use std::fmt;
use tokio_io::io::read_to_end;
use tokio_io::{AsyncRead, AsyncWrite, IoFuture};
use tokio_reactor::Handle;
#[path = "unix/mod.rs"]
#[cfg(unix)]
mod imp;
#[path = "windows.rs"]
#[cfg(windows)]
mod imp;
mod kill;
/// Extensions provided by this crate to the `Command` type in the standard
/// library.
///
/// This crate primarily enhances the standard library's `Command` type with
/// asynchronous capabilities. The currently three blocking functions in the
/// standard library, `spawn`, `status`, and `output`, all have asynchronous
/// versions through this trait.
///
/// Note that the `Child` type spawned is specific to this crate, and that the
/// I/O handles created from this crate are all asynchronous as well (differing
/// from their `std` counterparts).
pub trait CommandExt {
/// Executes the command as a child process, returning a handle to it.
///
/// By default, stdin, stdout and stderr are inherited from the parent.
///
/// This method will spawn the child process synchronously and return a
/// handle to a future-aware child process. The `Child` returned implements
/// `Future` itself to acquire the `ExitStatus` of the child, and otherwise
/// the `Child` has methods to acquire handles to the stdin, stdout, and
/// stderr streams.
///
/// All I/O this child does will be associated with the current default
/// event loop.
fn spawn_async(&mut self) -> io::Result<Child> {
self.spawn_async_with_handle(&Handle::default())
}
/// Executes the command as a child process, returning a handle to it.
///
/// By default, stdin, stdout and stderr are inherited from the parent.
///
/// This method will spawn the child process synchronously and return a
/// handle to a future-aware child process. The `Child` returned implements
/// `Future` itself to acquire the `ExitStatus` of the child, and otherwise
/// the `Child` has methods to acquire handles to the stdin, stdout, and
/// stderr streams.
///
/// The `handle` specified to this method must be a handle to a valid event
/// loop, and all I/O this child does will be associated with the specified
/// event loop.
fn spawn_async_with_handle(&mut self, handle: &Handle) -> io::Result<Child>;
/// Executes a command as a child process, waiting for it to finish and
/// collecting its exit status.
///
/// By default, stdin, stdout and stderr are inherited from the parent.
///
/// The `StatusAsync` future returned will resolve to the `ExitStatus`
/// type in the standard library representing how the process exited. If
/// any input/output handles are set to a pipe then they will be immediately
/// closed after the child is spawned.
///
/// All I/O this child does will be associated with the current default
/// event loop.
///
/// If the `StatusAsync` future is dropped before the future resolves, then
/// the child will be killed, if it was spawned.
///
/// # Errors
///
/// This function will return an error immediately if the child process
/// cannot be spawned. Otherwise errors obtained while waiting for the child
/// are returned through the `StatusAsync` future.
fn status_async(&mut self) -> io::Result<StatusAsync> {
self.status_async_with_handle(&Handle::default())
}
/// Executes a command as a child process, waiting for it to finish and
/// collecting its exit status.
///
/// By default, stdin, stdout and stderr are inherited from the parent.
///
/// The `StatusAsync` future returned will resolve to the `ExitStatus`
/// type in the standard library representing how the process exited. If
/// any input/output handles are set to a pipe then they will be immediately
/// closed after the child is spawned.
///
/// The `handle` specified must be a handle to a valid event loop, and all
/// I/O this child does will be associated with the specified event loop.
///
/// If the `StatusAsync` future is dropped before the future resolves, then
/// the child will be killed, if it was spawned.
///
/// # Errors
///
/// This function will return an error immediately if the child process
/// cannot be spawned. Otherwise errors obtained while waiting for the child
/// are returned through the `StatusAsync` future.
fn status_async_with_handle(&mut self, handle: &Handle) -> io::Result<StatusAsync>;
/// Executes the command as a child process, waiting for it to finish and
/// collecting all of its output.
///
/// > **Note**: this method, unlike the standard library, will
/// > unconditionally configure the stdout/stderr handles to be pipes, even
/// > if they have been previously configured. If this is not desired then
/// > the `spawn_async` method should be used in combination with the
/// > `wait_with_output` method on child.
///
/// This method will return a future representing the collection of the
/// child process's stdout/stderr. The `OutputAsync` future will resolve to
/// the `Output` type in the standard library, containing `stdout` and
/// `stderr` as `Vec<u8>` along with an `ExitStatus` representing how the
/// process exited.
///
/// All I/O this child does will be associated with the current default
/// event loop.
///
/// If the `OutputAsync` future is dropped before the future resolves, then
/// the child will be killed, if it was spawned.
fn output_async(&mut self) -> OutputAsync {
self.output_async_with_handle(&Handle::default())
}
/// Executes the command as a child process, waiting for it to finish and
/// collecting all of its output.
///
/// > **Note**: this method, unlike the standard library, will
/// > unconditionally configure the stdout/stderr handles to be pipes, even
/// > if they have been previously configured. If this is not desired then
/// > the `spawn_async` method should be used in combination with the
/// > `wait_with_output` method on child.
///
/// This method will return a future representing the collection of the
/// child process's stdout/stderr. The `OutputAsync` future will resolve to
/// the `Output` type in the standard library, containing `stdout` and
/// `stderr` as `Vec<u8>` along with an `ExitStatus` representing how the
/// process exited.
///
/// The `handle` specified must be a handle to a valid event loop, and all
/// I/O this child does will be associated with the specified event loop.
///
/// If the `OutputAsync` future is dropped before the future resolves, then
/// the child will be killed, if it was spawned.
fn output_async_with_handle(&mut self, handle: &Handle) -> OutputAsync;
}
struct SpawnedChild {
child: imp::Child,
stdin: Option<imp::ChildStdin>,
stdout: Option<imp::ChildStdout>,
stderr: Option<imp::ChildStderr>,
}
impl CommandExt for Command {
fn spawn_async_with_handle(&mut self, handle: &Handle) -> io::Result<Child> {
imp::spawn_child(self, handle).map(|spawned_child| Child {
child: ChildDropGuard::new(spawned_child.child),
stdin: spawned_child.stdin.map(|inner| ChildStdin { inner }),
stdout: spawned_child.stdout.map(|inner| ChildStdout { inner }),
stderr: spawned_child.stderr.map(|inner| ChildStderr { inner }),
})
}
fn status_async_with_handle(&mut self, handle: &Handle) -> io::Result<StatusAsync> {
self.spawn_async_with_handle(handle).map(|mut child| {
// Ensure we close any stdio handles so we can't deadlock
// waiting on the child which may be waiting to read/write
// to a pipe we're holding.
child.stdin.take();
child.stdout.take();
child.stderr.take();
StatusAsync { inner: child }
})
}
fn output_async_with_handle(&mut self, handle: &Handle) -> OutputAsync {
self.stdout(Stdio::piped());
self.stderr(Stdio::piped());
let inner = self
.spawn_async_with_handle(handle)
.into_future()
.and_then(Child::wait_with_output);
OutputAsync {
inner: Box::new(inner),
}
}
}
/// A drop guard which ensures the child process is killed on drop to maintain
/// the contract of dropping a Future leads to "cancellation".
#[derive(Debug)]
struct ChildDropGuard<T: Kill> {
inner: T,
kill_on_drop: bool,
}
impl<T: Kill> ChildDropGuard<T> {
fn new(inner: T) -> Self {
Self {
inner,
kill_on_drop: true,
}
}
fn forget(&mut self) {
self.kill_on_drop = false;
}
}
impl<T: Kill> Kill for ChildDropGuard<T> {
fn kill(&mut self) -> io::Result<()> {
let ret = self.inner.kill();
if ret.is_ok() {
self.kill_on_drop = false;
}
ret
}
}
impl<T: Kill> Drop for ChildDropGuard<T> {
fn drop(&mut self) {
if self.kill_on_drop {
drop(self.kill());
}
}
}
impl<T: Future + Kill> Future for ChildDropGuard<T> {
type Item = T::Item;
type Error = T::Error;
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
let ret = self.inner.poll();
if let Ok(Async::Ready(_)) = ret {
// Avoid the overhead of trying to kill a reaped process
self.kill_on_drop = false;
}
ret
}
}
/// Representation of a child process spawned onto an event loop.
///
/// This type is also a future which will yield the `ExitStatus` of the
/// underlying child process. A `Child` here also provides access to information
/// like the OS-assigned identifier and the stdio streams.
///
/// > **Note**: The behavior of `drop` on a child in this crate is *different
/// > than the behavior of the standard library*. If a `tokio_process::Child` is
/// > dropped before the process finishes then the process will be terminated.
/// > In the standard library, however, the process continues executing. This is
/// > done because futures in general take `drop` as a sign of cancellation, and
/// > this `Child` is itself a future. If you'd like to run a process in the
/// > background, though, you may use the `forget` method.
#[must_use = "futures do nothing unless polled"]
#[derive(Debug)]
pub struct Child {
child: ChildDropGuard<imp::Child>,
stdin: Option<ChildStdin>,
stdout: Option<ChildStdout>,
stderr: Option<ChildStderr>,
}
impl Child {
/// Returns the OS-assigned process identifier associated with this child.
pub fn id(&self) -> u32 {
self.child.inner.id()
}
/// Forces the child to exit.
///
/// This is equivalent to sending a SIGKILL on unix platforms.
pub fn kill(&mut self) -> io::Result<()> {
self.child.kill()
}
/// Returns a handle for writing to the child's stdin, if it has been
/// captured
pub fn stdin(&mut self) -> &mut Option<ChildStdin> {
&mut self.stdin
}
/// Returns a handle for writing to the child's stdout, if it has been
/// captured
pub fn stdout(&mut self) -> &mut Option<ChildStdout> {
&mut self.stdout
}
/// Returns a handle for writing to the child's stderr, if it has been
/// captured
pub fn stderr(&mut self) -> &mut Option<ChildStderr> {
&mut self.stderr
}
/// Returns a future that will resolve to an `Output`, containing the exit
/// status, stdout, and stderr of the child process.
///
/// The returned future will simultaneously waits for the child to exit and
/// collect all remaining output on the stdout/stderr handles, returning an
/// `Output` instance.
///
/// The stdin handle to the child process, if any, will be closed before
/// waiting. This helps avoid deadlock: it ensures that the child does not
/// block waiting for input from the parent, while the parent waits for the
/// child to exit.
///
/// By default, stdin, stdout and stderr are inherited from the parent. In
/// order to capture the output into this `Output` it is necessary to create
/// new pipes between parent and child. Use `stdout(Stdio::piped())` or
/// `stderr(Stdio::piped())`, respectively, when creating a `Command`.
pub fn wait_with_output(mut self) -> WaitWithOutput {
drop(self.stdin().take());
let stdout = match self.stdout().take() {
Some(io) => Either::A(read_to_end(io, Vec::new()).map(|p| p.1)),
None => Either::B(ok(Vec::new())),
};
let stderr = match self.stderr().take() {
Some(io) => Either::A(read_to_end(io, Vec::new()).map(|p| p.1)),
None => Either::B(ok(Vec::new())),
};
WaitWithOutput {
inner: Box::new(
self.join3(stdout, stderr)
.map(|(status, stdout, stderr)| Output {
status,
stdout,
stderr,
}),
),
}
}
/// Drop this `Child` without killing the underlying process.
///
/// Normally a `Child` is killed if it's still alive when dropped, but this
/// method will ensure that the child may continue running once the `Child`
/// instance is dropped.
///
/// > **Note**: this method may leak OS resources depending on your platform.
/// > To ensure resources are eventually cleaned up, consider sending the
/// > `Child` instance into an event loop as an alternative to this method.
///
/// ```no_run
/// # extern crate futures;
/// # extern crate tokio;
/// # extern crate tokio_process;
/// #
/// # use std::process::Command;
/// #
/// # use futures::Future;
/// # use tokio_process::CommandExt;
/// #
/// # fn main() {
/// let child = Command::new("echo").arg("hello").arg("world")
/// .spawn_async()
/// .expect("failed to spawn");
///
/// let do_cleanup = child.map(|_| ()) // Ignore result
/// .map_err(|_| ()); // Ignore errors
///
/// tokio::spawn(do_cleanup);
/// # }
/// ```
pub fn forget(mut self) {
self.child.forget();
}
}
impl Future for Child {
type Item = ExitStatus;
type Error = io::Error;
fn poll(&mut self) -> Poll<ExitStatus, io::Error> {
self.child.poll()
}
}
/// Future returned from the `Child::wait_with_output` method.
///
/// This future will resolve to the standard library's `Output` type which
/// contains the exit status, stdout, and stderr of a child process.
#[must_use = "futures do nothing unless polled"]
pub struct WaitWithOutput {
inner: IoFuture<Output>,
}
impl fmt::Debug for WaitWithOutput {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("WaitWithOutput")
.field("inner", &"..")
.finish()
}
}
impl Future for WaitWithOutput {
type Item = Output;
type Error = io::Error;
fn poll(&mut self) -> Poll<Output, io::Error> {
self.inner.poll()
}
}
#[doc(hidden)]
#[deprecated(note = "renamed to `StatusAsync`", since = "0.2.1")]
pub type StatusAsync2 = StatusAsync;
/// Future returned by the `CommandExt::status_async` method.
///
/// This future is used to conveniently spawn a child and simply wait for its
/// exit status. This future will resolves to the `ExitStatus` type in the
/// standard library.
#[must_use = "futures do nothing unless polled"]
#[derive(Debug)]
pub struct StatusAsync {
inner: Child,
}
impl Future for StatusAsync {
type Item = ExitStatus;
type Error = io::Error;
fn poll(&mut self) -> Poll<ExitStatus, io::Error> {
self.inner.poll()
}
}
/// Future returned by the `CommandExt::output_async` method.
///
/// This future is mostly equivalent to spawning a process and then calling
/// `wait_with_output` on it internally. This can be useful to simply spawn a
/// process, collecting all of its output and its exit status.
#[must_use = "futures do nothing unless polled"]
pub struct OutputAsync {
inner: IoFuture<Output>,
}
impl fmt::Debug for OutputAsync {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_struct("OutputAsync")
.field("inner", &"..")
.finish()
}
}
impl Future for OutputAsync {
type Item = Output;
type Error = io::Error;
fn poll(&mut self) -> Poll<Output, io::Error> {
self.inner.poll()
}
}
/// The standard input stream for spawned children.
///
/// This type implements the `Write` trait to pass data to the stdin handle of
/// a child process. Note that this type is also "futures aware" meaning that it
/// is both (a) nonblocking and (b) will panic if used off of a future's task.
#[derive(Debug)]
pub struct ChildStdin {
inner: imp::ChildStdin,
}
/// The standard output stream for spawned children.
///
/// This type implements the `Read` trait to read data from the stdout handle
/// of a child process. Note that this type is also "futures aware" meaning
/// that it is both (a) nonblocking and (b) will panic if used off of a
/// future's task.
#[derive(Debug)]
pub struct ChildStdout {
inner: imp::ChildStdout,
}
/// The standard error stream for spawned children.
///
/// This type implements the `Read` trait to read data from the stderr handle
/// of a child process. Note that this type is also "futures aware" meaning
/// that it is both (a) nonblocking and (b) will panic if used off of a
/// future's task.
#[derive(Debug)]
pub struct ChildStderr {
inner: imp::ChildStderr,
}
impl Write for ChildStdin {
fn write(&mut self, bytes: &[u8]) -> io::Result<usize> {
self.inner.write(bytes)
}
fn flush(&mut self) -> io::Result<()> {
self.inner.flush()
}
}
impl AsyncWrite for ChildStdin {
fn shutdown(&mut self) -> Poll<(), io::Error> {
self.inner.shutdown()
}
}
impl Read for ChildStdout {
fn read(&mut self, bytes: &mut [u8]) -> io::Result<usize> {
self.inner.read(bytes)
}
}
impl AsyncRead for ChildStdout {}
impl Read for ChildStderr {
fn read(&mut self, bytes: &mut [u8]) -> io::Result<usize> {
self.inner.read(bytes)
}
}
impl AsyncRead for ChildStderr {}
#[cfg(unix)]
mod sys {
use super::{ChildStderr, ChildStdin, ChildStdout};
use std::os::unix::io::{AsRawFd, RawFd};
impl AsRawFd for ChildStdin {
fn as_raw_fd(&self) -> RawFd {
self.inner.get_ref().as_raw_fd()
}
}
impl AsRawFd for ChildStdout {
fn as_raw_fd(&self) -> RawFd {
self.inner.get_ref().as_raw_fd()
}
}
impl AsRawFd for ChildStderr {
fn as_raw_fd(&self) -> RawFd {
self.inner.get_ref().as_raw_fd()
}
}
}
#[cfg(windows)]
mod sys {
use super::{ChildStderr, ChildStdin, ChildStdout};
use std::os::windows::io::{AsRawHandle, RawHandle};
impl AsRawHandle for ChildStdin {
fn as_raw_handle(&self) -> RawHandle {
self.inner.get_ref().as_raw_handle()
}
}
impl AsRawHandle for ChildStdout {
fn as_raw_handle(&self) -> RawHandle {
self.inner.get_ref().as_raw_handle()
}
}
impl AsRawHandle for ChildStderr {
fn as_raw_handle(&self) -> RawHandle {
self.inner.get_ref().as_raw_handle()
}
}
}
#[cfg(test)]
mod test {
use super::ChildDropGuard;
use crate::kill::Kill;
use futures::{Async, Future, Poll};
use std::io;
struct Mock {
num_kills: usize,
num_polls: usize,
poll_result: Poll<(), ()>,
}
impl Mock {
fn new() -> Self {
Self::with_result(Ok(Async::NotReady))
}
fn with_result(result: Poll<(), ()>) -> Self {
Self {
num_kills: 0,
num_polls: 0,
poll_result: result,
}
}
}
impl Kill for Mock {
fn kill(&mut self) -> io::Result<()> {
self.num_kills += 1;
Ok(())
}
}
impl Future for Mock {
type Item = ();
type Error = ();
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
self.num_polls += 1;
self.poll_result
}
}
#[test]
fn kills_on_drop() {
let mut mock = Mock::new();
{
let guard = ChildDropGuard::new(&mut mock);
drop(guard);
}
assert_eq!(1, mock.num_kills);
assert_eq!(0, mock.num_polls);
}
#[test]
fn no_kill_if_already_killed() {
let mut mock = Mock::new();
{
let mut guard = ChildDropGuard::new(&mut mock);
let _ = guard.kill();
drop(guard);
}
assert_eq!(1, mock.num_kills);
assert_eq!(0, mock.num_polls);
}
#[test]
fn no_kill_if_reaped() {
let mut mock_pending = Mock::with_result(Ok(Async::NotReady));
let mut mock_reaped = Mock::with_result(Ok(Async::Ready(())));
let mut mock_err = Mock::with_result(Err(()));
{
let mut guard = ChildDropGuard::new(&mut mock_pending);
let _ = guard.poll();
let mut guard = ChildDropGuard::new(&mut mock_reaped);
let _ = guard.poll();
let mut guard = ChildDropGuard::new(&mut mock_err);
let _ = guard.poll();
}
assert_eq!(1, mock_pending.num_kills);
assert_eq!(1, mock_pending.num_polls);
assert_eq!(0, mock_reaped.num_kills);
assert_eq!(1, mock_reaped.num_polls);
assert_eq!(1, mock_err.num_kills);
assert_eq!(1, mock_err.num_polls);
}
#[test]
fn no_kill_on_forget() {
let mut mock = Mock::new();
{
let mut guard = ChildDropGuard::new(&mut mock);
guard.forget();
drop(guard);
}
assert_eq!(0, mock.num_kills);
assert_eq!(0, mock.num_polls);
}
}