tokio_proto/streaming/pipeline/advanced.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
//! Provides the substrate for implementing pipelined, streaming protocols.
//!
//! In most cases, it's sufficient to work with `streaming::pipeline::{Client,
//! Server}` instead. But for some advanced protocols in which the client and
//! servers have more of a peer relationship, it's useful to work directly with
//! these implementation details.
use futures::sync::mpsc;
use futures::{Future, Poll, Async, Stream, Sink, AsyncSink, StartSend};
use std::{fmt, io};
use streaming::{Message, Body};
use super::{Frame, Transport};
use buffer_one::BufferOne;
// TODO:
//
// - Wait for service readiness
// - Handle request body stream cancellation
/// Provides protocol pipelining functionality in a generic way over clients
/// and servers. Used internally by `pipeline::Client` and `pipeline::Server`.
pub struct Pipeline<T> where T: Dispatch {
// True as long as the connection has more request frames to read.
run: bool,
// Glues the service with the pipeline task
dispatch: BufferOne<DispatchSink<T>>,
// The `Sender` for the current request body stream
out_body: Option<BodySender<T::BodyOut, T::Error>>,
// The response body stream
in_body: Option<T::Stream>,
// True when the transport is fully flushed
is_flushed: bool,
}
/// Message used to communicate through the multiplex dispatch
pub type PipelineMessage<T, B, E> = Result<Message<T, B>, E>;
/// Dispatch messages from the transport to the service
pub trait Dispatch {
/// Type of underlying I/O object
type Io;
/// Message written to transport
type In;
/// Body written to transport
type BodyIn;
/// Messages read from the transport
type Out;
/// Outbound body frame
type BodyOut;
/// Transport error
type Error: From<io::Error>;
/// Body stream written to transport
type Stream: Stream<Item = Self::BodyIn, Error = Self::Error>;
/// Transport type
type Transport: Transport<Item = Frame<Self::Out, Self::BodyOut, Self::Error>,
SinkItem = Frame<Self::In, Self::BodyIn, Self::Error>>;
/// Mutable reference to the transport
fn transport(&mut self) -> &mut Self::Transport;
/// Process an out message
fn dispatch(&mut self, message: PipelineMessage<Self::Out, Body<Self::BodyOut, Self::Error>, Self::Error>) -> io::Result<()>;
/// Poll the next completed message
fn poll(&mut self) -> Poll<Option<PipelineMessage<Self::In, Self::Stream, Self::Error>>, io::Error>;
/// RPC currently in flight
/// TODO: Get rid of
fn has_in_flight(&self) -> bool;
}
struct DispatchSink<T> {
inner: T,
}
type BodySender<B, E> = BufferOne<mpsc::Sender<Result<B, E>>>;
impl<T> Pipeline<T> where T: Dispatch {
/// Create a new pipeline `Pipeline` dispatcher with the given service and
/// transport
pub fn new(dispatch: T) -> Pipeline<T> {
// Add `Sink` impl for `Dispatch`
let dispatch = DispatchSink { inner: dispatch };
// Add a single slot buffer for the sink
let dispatch = BufferOne::new(dispatch);
Pipeline {
run: true,
dispatch: dispatch,
out_body: None,
in_body: None,
is_flushed: true,
}
}
/// Returns true if the pipeline server dispatch has nothing left to do
fn is_done(&self) -> bool {
!self.run && self.is_flushed && !self.has_in_flight()
}
fn read_out_frames(&mut self) -> io::Result<()> {
while self.run {
// Return true if the pipeliner can process new outbound frames
if !self.check_out_body_stream() {
break;
}
if let Async::Ready(frame) = try!(self.dispatch.get_mut().inner.transport().poll()) {
try!(self.process_out_frame(frame));
} else {
break;
}
}
Ok(())
}
fn check_out_body_stream(&mut self) -> bool {
let body = match self.out_body {
Some(ref mut body) => body,
None => return true,
};
body.poll_ready().is_ready()
}
fn process_out_frame(&mut self,
frame: Option<Frame<T::Out, T::BodyOut, T::Error>>)
-> io::Result<()> {
trace!("process_out_frame");
// At this point, the service & transport are ready to process the
// frame, no matter what it is.
match frame {
Some(Frame::Message { message, body }) => {
if body {
trace!("read out message with body");
let (tx, rx) = Body::pair();
let message = Message::WithBody(message, rx);
// Track the out body sender. If `self.out_body`
// currently holds a sender for the previous out body, it
// will get dropped. This terminates the stream.
self.out_body = Some(BufferOne::new(tx));
if let Err(e) = self.dispatch.get_mut().inner.dispatch(Ok(message)) {
// TODO: Should dispatch be infallible
panic!("unimplemented error handling: {:?}", e);
}
} else {
trace!("read out message");
let message = Message::WithoutBody(message);
// There is no streaming body. Set `out_body` to `None` so that
// the previous body stream is dropped.
self.out_body = None;
if let Err(e) = self.dispatch.get_mut().inner.dispatch(Ok(message)) {
// TODO: Should dispatch be infalliable
panic!("unimplemented error handling: {:?}", e);
}
}
}
Some(Frame::Body { chunk }) => {
match chunk {
Some(chunk) => {
trace!("read out body chunk");
try!(self.process_out_body_chunk(chunk));
}
None => {
trace!("read out body EOF");
// Drop the sender.
// TODO: Ensure a sender exists
let _ = self.out_body.take();
}
}
}
None => {
trace!("read None");
// At this point, we just return. This works
// because tick() will be called again and go
// through the read-cycle again.
self.run = false;
}
Some(Frame::Error { .. }) => {
// At this point, the transport is toast, there
// isn't much else that we can do. Killing the task
// will cause all in-flight requests to abort, but
// they can't be written to the transport anyway...
return Err(io::Error::new(io::ErrorKind::BrokenPipe, "An error occurred."));
}
}
Ok(())
}
fn process_out_body_chunk(&mut self, chunk: T::BodyOut) -> io::Result<()> {
trace!("process_out_body_chunk");
let mut reset = false;
match self.out_body {
Some(ref mut body) => {
debug!("sending a chunk");
// Try sending the out body chunk
match body.start_send(Ok(chunk)) {
Ok(AsyncSink::Ready) => debug!("immediately done"),
Err(_e) => reset = true, // interest canceled
Ok(AsyncSink::NotReady(_)) => {
// poll_ready() is checked before entering this path
unreachable!();
}
}
}
None => {
debug!("interest canceled");
// The rx half canceled interest, there is nothing else to do
}
}
if reset {
self.out_body = None;
}
Ok(())
}
fn write_in_frames(&mut self) -> io::Result<()> {
trace!("write_in_frames");
while self.dispatch.poll_ready().is_ready() {
// Ensure the current in body is fully written
if !try!(self.write_in_body()) {
debug!("write in body not done");
break;
}
debug!("write in body done");
// Write the next in-flight in message
match try!(self.dispatch.get_mut().inner.poll()) {
Async::Ready(Some(Ok(message))) => {
trace!(" --> got message");
try!(self.write_in_message(Ok(message)));
}
Async::Ready(Some(Err(error))) => {
trace!(" --> got error");
try!(self.write_in_message(Err(error)));
}
Async::Ready(None) => {
trace!(" --> got None");
// The service is done with the connection.
break;
}
// Nothing to dispatch
Async::NotReady => break,
}
}
Ok(())
}
fn write_in_message(&mut self, message: Result<Message<T::In, T::Stream>, T::Error>) -> io::Result<()> {
trace!("write_in_message");
match message {
Ok(Message::WithoutBody(val)) => {
trace!("got in_flight value without body");
let msg = Frame::Message { message: val, body: false };
try!(assert_send(&mut self.dispatch, msg));
// TODO: don't panic maybe if this isn't true?
assert!(self.in_body.is_none());
// Track the response body
self.in_body = None;
}
Ok(Message::WithBody(val, body)) => {
trace!("got in_flight value with body");
let msg = Frame::Message { message: val, body: true };
try!(assert_send(&mut self.dispatch, msg));
// TODO: don't panic maybe if this isn't true?
assert!(self.in_body.is_none());
// Track the response body
self.in_body = Some(body);
}
Err(e) => {
trace!("got in_flight error");
let msg = Frame::Error { error: e };
try!(assert_send(&mut self.dispatch, msg));
}
}
Ok(())
}
// Returns true if the response body is fully written
fn write_in_body(&mut self) -> io::Result<bool> {
trace!("write_in_body");
if self.in_body.is_some() {
loop {
// Even though this is checked before entering the function, checking should be
// cheap and this is looped
if !self.dispatch.poll_ready().is_ready() {
return Ok(false);
}
match self.in_body.as_mut().unwrap().poll() {
Ok(Async::Ready(Some(chunk))) => {
try!(assert_send(&mut self.dispatch,
Frame::Body { chunk: Some(chunk) }));
}
Ok(Async::Ready(None)) => {
try!(assert_send(&mut self.dispatch,
Frame::Body { chunk: None }));
break;
}
Err(_) => {
unimplemented!();
}
Ok(Async::NotReady) => {
debug!("not ready");
return Ok(false);
}
}
}
}
self.in_body = None;
Ok(true)
}
fn flush(&mut self) -> io::Result<()> {
self.is_flushed = try!(self.dispatch.poll_complete()).is_ready();
if let Some(ref mut out_body) = self.out_body {
if out_body.poll_complete().is_ok() {
return Ok(());
}
} else {
return Ok(());
}
// Fall through and unset out_body
self.out_body = None;
Ok(())
}
fn has_in_flight(&self) -> bool {
self.dispatch.get_ref().inner.has_in_flight()
}
}
impl<T> Future for Pipeline<T> where T: Dispatch {
type Item = ();
type Error = io::Error;
// Tick the pipeline state machine
fn poll(&mut self) -> Poll<(), io::Error> {
trace!("Pipeline::tick");
// Always tick the transport first
self.dispatch.get_mut().inner.transport().tick();
// First read off data from the socket
try!(self.read_out_frames());
// Handle completed responses
try!(self.write_in_frames());
// Try flushing buffered writes
try!(self.flush());
// Clean shutdown of the pipeline server can happen when
//
// 1. The server is done running, this is signaled by Transport::poll()
// returning None.
//
// 2. The transport is done writing all data to the socket, this is
// signaled by Transport::flush() returning Ok(Some(())).
//
// 3. There are no further responses to write to the transport.
//
// It is necessary to perfom these three checks in order to handle the
// case where the client shuts down half the socket.
//
if self.is_done() {
return Ok(().into())
}
// Tick again later
Ok(Async::NotReady)
}
}
impl<T> fmt::Debug for Pipeline<T>
where T: Dispatch + fmt::Debug,
T::In: fmt::Debug,
T::BodyIn: fmt::Debug,
T::BodyOut: fmt::Debug,
T::Error: fmt::Debug,
T::Stream: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Pipeline")
.field("run", &self.run)
.field("dispatch", &self.dispatch)
.field("out_body", &"Sender { ... }")
.field("in_body", &self.in_body)
.field("is_flushed", &self.is_flushed)
.finish()
}
}
impl<T: Dispatch> Sink for DispatchSink<T> {
type SinkItem = <T::Transport as Sink>::SinkItem;
type SinkError = io::Error;
fn start_send(&mut self, item: Self::SinkItem)
-> StartSend<Self::SinkItem, io::Error>
{
self.inner.transport().start_send(item)
}
fn poll_complete(&mut self) -> Poll<(), io::Error> {
self.inner.transport().poll_complete()
}
fn close(&mut self) -> Poll<(), io::Error> {
self.inner.transport().close()
}
}
impl<T: fmt::Debug> fmt::Debug for DispatchSink<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("DispatchSink")
.field("inner", &self.inner)
.finish()
}
}
fn assert_send<S: Sink>(s: &mut S, item: S::SinkItem) -> Result<(), S::SinkError> {
match try!(s.start_send(item)) {
AsyncSink::Ready => Ok(()),
AsyncSink::NotReady(_) => {
panic!("sink reported itself as ready after `poll_ready` but was \
then unable to accept a message")
}
}
}