tokio_reactor/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
#![doc(html_root_url = "https://docs.rs/tokio-reactor/0.1.12")]
#![deny(missing_docs, missing_debug_implementations)]
//! Event loop that drives Tokio I/O resources.
//!
//! > **Note:** This crate is **deprecated in tokio 0.2.x** and has been moved
//! > and refactored into various places in the [`tokio::runtime`] and
//! > [`tokio::io`] modules of the [`tokio`] crate. The Reactor has also been
//! > renamed the "I/O Driver".
//!
//! [`tokio::runtime`]: https://docs.rs/tokio/latest/tokio/runtime/index.html
//! [`tokio::io`]: https://docs.rs/tokio/latest/tokio/io/index.html
//! [`tokio`]: https://docs.rs/tokio/latest/tokio/index.html
//! [`io-driver` feature]: https://docs.rs/tokio/0.2.9/tokio/index.html#feature-flags
//!
//! The reactor is the engine that drives asynchronous I/O resources (like TCP and
//! UDP sockets). It is backed by [`mio`] and acts as a bridge between [`mio`] and
//! [`futures`].
//!
//! The crate provides:
//!
//! * [`Reactor`] is the main type of this crate. It performs the event loop logic.
//!
//! * [`Handle`] provides a reference to a reactor instance.
//!
//! * [`Registration`] and [`PollEvented`] allow third parties to implement I/O
//! resources that are driven by the reactor.
//!
//! Application authors will not use this crate directly. Instead, they will use the
//! `tokio` crate. Library authors should only depend on `tokio-reactor` if they
//! are building a custom I/O resource.
//!
//! For more details, see [reactor module] documentation in the Tokio crate.
//!
//! [`mio`]: http://github.com/carllerche/mio
//! [`futures`]: http://github.com/rust-lang-nursery/futures-rs
//! [`Reactor`]: struct.Reactor.html
//! [`Handle`]: struct.Handle.html
//! [`Registration`]: struct.Registration.html
//! [`PollEvented`]: struct.PollEvented.html
//! [reactor module]: https://docs.rs/tokio/0.1/tokio/reactor/index.html
extern crate crossbeam_utils;
#[macro_use]
extern crate futures;
#[macro_use]
extern crate lazy_static;
#[macro_use]
extern crate log;
extern crate mio;
extern crate num_cpus;
extern crate parking_lot;
extern crate slab;
extern crate tokio_executor;
extern crate tokio_io;
extern crate tokio_sync;
pub(crate) mod background;
mod poll_evented;
mod registration;
mod sharded_rwlock;
// ===== Public re-exports =====
pub use self::background::{Background, Shutdown};
pub use self::poll_evented::PollEvented;
pub use self::registration::Registration;
// ===== Private imports =====
use sharded_rwlock::RwLock;
use futures::task::Task;
use tokio_executor::park::{Park, Unpark};
use tokio_executor::Enter;
use tokio_sync::task::AtomicTask;
use std::cell::RefCell;
use std::error::Error;
use std::io;
use std::mem;
#[cfg(all(unix, not(target_os = "fuchsia")))]
use std::os::unix::io::{AsRawFd, RawFd};
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering::{Relaxed, SeqCst};
use std::sync::{Arc, Weak};
use std::time::{Duration, Instant};
use std::{fmt, usize};
use log::Level;
use mio::event::Evented;
use slab::Slab;
/// The core reactor, or event loop.
///
/// The event loop is the main source of blocking in an application which drives
/// all other I/O events and notifications happening. Each event loop can have
/// multiple handles pointing to it, each of which can then be used to create
/// various I/O objects to interact with the event loop in interesting ways.
pub struct Reactor {
/// Reuse the `mio::Events` value across calls to poll.
events: mio::Events,
/// State shared between the reactor and the handles.
inner: Arc<Inner>,
_wakeup_registration: mio::Registration,
}
/// A reference to a reactor.
///
/// A `Handle` is used for associating I/O objects with an event loop
/// explicitly. Typically though you won't end up using a `Handle` that often
/// and will instead use the default reactor for the execution context.
///
/// By default, most components bind lazily to reactors.
/// To get this behavior when manually passing a `Handle`, use `default()`.
#[derive(Clone)]
pub struct Handle {
inner: Option<HandlePriv>,
}
/// Like `Handle`, but never `None`.
#[derive(Clone)]
struct HandlePriv {
inner: Weak<Inner>,
}
/// Return value from the `turn` method on `Reactor`.
///
/// Currently this value doesn't actually provide any functionality, but it may
/// in the future give insight into what happened during `turn`.
#[derive(Debug)]
pub struct Turn {
_priv: (),
}
/// Error returned from `Handle::set_fallback`.
#[derive(Clone, Debug)]
pub struct SetFallbackError(());
#[deprecated(since = "0.1.2", note = "use SetFallbackError instead")]
#[doc(hidden)]
pub type SetDefaultError = SetFallbackError;
/// Ensure that the default reactor is removed from the thread-local context
/// when leaving the scope. This handles cases that involve panicking.
#[derive(Debug)]
pub struct DefaultGuard {
_p: (),
}
#[test]
fn test_handle_size() {
use std::mem;
assert_eq!(mem::size_of::<Handle>(), mem::size_of::<HandlePriv>());
}
struct Inner {
/// The underlying system event queue.
io: mio::Poll,
/// ABA guard counter
next_aba_guard: AtomicUsize,
/// Dispatch slabs for I/O and futures events
io_dispatch: RwLock<Slab<ScheduledIo>>,
/// Used to wake up the reactor from a call to `turn`
wakeup: mio::SetReadiness,
}
struct ScheduledIo {
aba_guard: usize,
readiness: AtomicUsize,
reader: AtomicTask,
writer: AtomicTask,
}
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub(crate) enum Direction {
Read,
Write,
}
/// The global fallback reactor.
static HANDLE_FALLBACK: AtomicUsize = AtomicUsize::new(0);
thread_local! {
/// Tracks the reactor for the current execution context.
static CURRENT_REACTOR: RefCell<Option<HandlePriv>> = RefCell::new(None)
}
const TOKEN_SHIFT: usize = 22;
// Kind of arbitrary, but this reserves some token space for later usage.
const MAX_SOURCES: usize = (1 << TOKEN_SHIFT) - 1;
const TOKEN_WAKEUP: mio::Token = mio::Token(MAX_SOURCES);
fn _assert_kinds() {
fn _assert<T: Send + Sync>() {}
_assert::<Handle>();
}
// ===== impl Reactor =====
/// Set the default reactor for the duration of the closure
///
/// # Panics
///
/// This function panics if there already is a default reactor set.
pub fn with_default<F, R>(handle: &Handle, enter: &mut Enter, f: F) -> R
where
F: FnOnce(&mut Enter) -> R,
{
// This ensures the value for the current reactor gets reset even if there
// is a panic.
let _guard = set_default(handle);
f(enter)
}
/// Sets `handle` as the default reactor, returning a guard that unsets it when
/// dropped.
///
/// # Panics
///
/// This function panics if there already is a default reactor set.
pub fn set_default(handle: &Handle) -> DefaultGuard {
CURRENT_REACTOR.with(|current| {
let mut current = current.borrow_mut();
assert!(
current.is_none(),
"default Tokio reactor already set \
for execution context"
);
let handle = match handle.as_priv() {
Some(handle) => handle,
None => {
panic!("`handle` does not reference a reactor");
}
};
*current = Some(handle.clone());
});
DefaultGuard { _p: () }
}
impl Reactor {
/// Creates a new event loop, returning any error that happened during the
/// creation.
pub fn new() -> io::Result<Reactor> {
let io = mio::Poll::new()?;
let wakeup_pair = mio::Registration::new2();
io.register(
&wakeup_pair.0,
TOKEN_WAKEUP,
mio::Ready::readable(),
mio::PollOpt::level(),
)?;
Ok(Reactor {
events: mio::Events::with_capacity(1024),
_wakeup_registration: wakeup_pair.0,
inner: Arc::new(Inner {
io: io,
next_aba_guard: AtomicUsize::new(0),
io_dispatch: RwLock::new(Slab::with_capacity(1)),
wakeup: wakeup_pair.1,
}),
})
}
/// Returns a handle to this event loop which can be sent across threads
/// and can be used as a proxy to the event loop itself.
///
/// Handles are cloneable and clones always refer to the same event loop.
/// This handle is typically passed into functions that create I/O objects
/// to bind them to this event loop.
pub fn handle(&self) -> Handle {
Handle {
inner: Some(HandlePriv {
inner: Arc::downgrade(&self.inner),
}),
}
}
/// Configures the fallback handle to be returned from `Handle::default`.
///
/// The `Handle::default()` function will by default lazily spin up a global
/// thread and run a reactor on this global thread. This behavior is not
/// always desirable in all applications, however, and sometimes a different
/// fallback reactor is desired.
///
/// This function will attempt to globally alter the return value of
/// `Handle::default()` to return the `handle` specified rather than a
/// lazily initialized global thread. If successful then all future calls to
/// `Handle::default()` which would otherwise fall back to the global thread
/// will instead return a clone of the handle specified.
///
/// # Errors
///
/// This function may not always succeed in configuring the fallback handle.
/// If this function was previously called (or perhaps concurrently called
/// on many threads) only the *first* invocation of this function will
/// succeed. All other invocations will return an error.
///
/// Additionally if the global reactor thread has already been initialized
/// then this function will also return an error. (aka if `Handle::default`
/// has been called previously in this program).
pub fn set_fallback(&self) -> Result<(), SetFallbackError> {
set_fallback(self.handle().into_priv().unwrap())
}
/// Performs one iteration of the event loop, blocking on waiting for events
/// for at most `max_wait` (forever if `None`).
///
/// This method is the primary method of running this reactor and processing
/// I/O events that occur. This method executes one iteration of an event
/// loop, blocking at most once waiting for events to happen.
///
/// If a `max_wait` is specified then the method should block no longer than
/// the duration specified, but this shouldn't be used as a super-precise
/// timer but rather a "ballpark approximation"
///
/// # Return value
///
/// This function returns an instance of `Turn`
///
/// `Turn` as of today has no extra information with it and can be safely
/// discarded. In the future `Turn` may contain information about what
/// happened while this reactor blocked.
///
/// # Errors
///
/// This function may also return any I/O error which occurs when polling
/// for readiness of I/O objects with the OS. This is quite unlikely to
/// arise and typically mean that things have gone horribly wrong at that
/// point. Currently this is primarily only known to happen for internal
/// bugs to `tokio` itself.
pub fn turn(&mut self, max_wait: Option<Duration>) -> io::Result<Turn> {
self.poll(max_wait)?;
Ok(Turn { _priv: () })
}
/// Returns true if the reactor is currently idle.
///
/// Idle is defined as all tasks that have been spawned have completed,
/// either successfully or with an error.
pub fn is_idle(&self) -> bool {
self.inner.io_dispatch.read().is_empty()
}
/// Run this reactor on a background thread.
///
/// This function takes ownership, spawns a new thread, and moves the
/// reactor to this new thread. It then runs the reactor, driving all
/// associated I/O resources, until the `Background` handle is dropped or
/// explicitly shutdown.
pub fn background(self) -> io::Result<Background> {
Background::new(self)
}
fn poll(&mut self, max_wait: Option<Duration>) -> io::Result<()> {
// Block waiting for an event to happen, peeling out how many events
// happened.
match self.inner.io.poll(&mut self.events, max_wait) {
Ok(_) => {}
Err(e) => return Err(e),
}
let start = if log_enabled!(Level::Debug) {
Some(Instant::now())
} else {
None
};
// Process all the events that came in, dispatching appropriately
let mut events = 0;
for event in self.events.iter() {
events += 1;
let token = event.token();
trace!("event {:?} {:?}", event.readiness(), event.token());
if token == TOKEN_WAKEUP {
self.inner
.wakeup
.set_readiness(mio::Ready::empty())
.unwrap();
} else {
self.dispatch(token, event.readiness());
}
}
if let Some(start) = start {
let dur = start.elapsed();
trace!(
"loop process - {} events, {}.{:03}s",
events,
dur.as_secs(),
dur.subsec_nanos() / 1_000_000
);
}
Ok(())
}
fn dispatch(&self, token: mio::Token, ready: mio::Ready) {
let aba_guard = token.0 & !MAX_SOURCES;
let token = token.0 & MAX_SOURCES;
let mut rd = None;
let mut wr = None;
// Create a scope to ensure that notifying the tasks stays out of the
// lock's critical section.
{
let io_dispatch = self.inner.io_dispatch.read();
let io = match io_dispatch.get(token) {
Some(io) => io,
None => return,
};
if aba_guard != io.aba_guard {
return;
}
io.readiness.fetch_or(ready.as_usize(), Relaxed);
if ready.is_writable() || platform::is_hup(&ready) {
wr = io.writer.take_task();
}
if !(ready & (!mio::Ready::writable())).is_empty() {
rd = io.reader.take_task();
}
}
if let Some(task) = rd {
task.notify();
}
if let Some(task) = wr {
task.notify();
}
}
}
#[cfg(all(unix, not(target_os = "fuchsia")))]
impl AsRawFd for Reactor {
fn as_raw_fd(&self) -> RawFd {
self.inner.io.as_raw_fd()
}
}
impl Park for Reactor {
type Unpark = Handle;
type Error = io::Error;
fn unpark(&self) -> Self::Unpark {
self.handle()
}
fn park(&mut self) -> io::Result<()> {
self.turn(None)?;
Ok(())
}
fn park_timeout(&mut self, duration: Duration) -> io::Result<()> {
self.turn(Some(duration))?;
Ok(())
}
}
impl fmt::Debug for Reactor {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Reactor")
}
}
// ===== impl Handle =====
impl Handle {
#[doc(hidden)]
#[deprecated(note = "semantics were sometimes surprising, use Handle::default()")]
pub fn current() -> Handle {
// TODO: Should this panic on error?
HandlePriv::try_current()
.map(|handle| Handle {
inner: Some(handle),
})
.unwrap_or(Handle {
inner: Some(HandlePriv { inner: Weak::new() }),
})
}
fn as_priv(&self) -> Option<&HandlePriv> {
self.inner.as_ref()
}
fn into_priv(self) -> Option<HandlePriv> {
self.inner
}
fn wakeup(&self) {
if let Some(handle) = self.as_priv() {
handle.wakeup();
}
}
}
impl Unpark for Handle {
fn unpark(&self) {
if let Some(ref h) = self.inner {
h.wakeup();
}
}
}
impl Default for Handle {
/// Returns a "default" handle, i.e., a handle that lazily binds to a reactor.
fn default() -> Handle {
Handle { inner: None }
}
}
impl fmt::Debug for Handle {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Handle")
}
}
fn set_fallback(handle: HandlePriv) -> Result<(), SetFallbackError> {
unsafe {
let val = handle.into_usize();
match HANDLE_FALLBACK.compare_exchange(0, val, SeqCst, SeqCst) {
Ok(_) => Ok(()),
Err(_) => {
drop(HandlePriv::from_usize(val));
Err(SetFallbackError(()))
}
}
}
}
// ===== impl HandlePriv =====
impl HandlePriv {
/// Try to get a handle to the current reactor.
///
/// Returns `Err` if no handle is found.
pub(crate) fn try_current() -> io::Result<HandlePriv> {
CURRENT_REACTOR.with(|current| match *current.borrow() {
Some(ref handle) => Ok(handle.clone()),
None => HandlePriv::fallback(),
})
}
/// Returns a handle to the fallback reactor.
fn fallback() -> io::Result<HandlePriv> {
let mut fallback = HANDLE_FALLBACK.load(SeqCst);
// If the fallback hasn't been previously initialized then let's spin
// up a helper thread and try to initialize with that. If we can't
// actually create a helper thread then we'll just return a "defunct"
// handle which will return errors when I/O objects are attempted to be
// associated.
if fallback == 0 {
let reactor = match Reactor::new() {
Ok(reactor) => reactor,
Err(_) => {
return Err(io::Error::new(
io::ErrorKind::Other,
"failed to create reactor",
));
}
};
// If we successfully set ourselves as the actual fallback then we
// want to `forget` the helper thread to ensure that it persists
// globally. If we fail to set ourselves as the fallback that means
// that someone was racing with this call to `Handle::default`.
// They ended up winning so we'll destroy our helper thread (which
// shuts down the thread) and reload the fallback.
if set_fallback(reactor.handle().into_priv().unwrap()).is_ok() {
let ret = reactor.handle().into_priv().unwrap();
match reactor.background() {
Ok(bg) => bg.forget(),
// The global handle is fubar, but y'all probably got bigger
// problems if a thread can't spawn.
Err(_) => {}
}
return Ok(ret);
}
fallback = HANDLE_FALLBACK.load(SeqCst);
}
// At this point our fallback handle global was configured so we use
// its value to reify a handle, clone it, and then forget our reified
// handle as we don't actually have an owning reference to it.
assert!(fallback != 0);
let ret = unsafe {
let handle = HandlePriv::from_usize(fallback);
let ret = handle.clone();
// This prevents `handle` from being dropped and having the ref
// count decremented.
drop(handle.into_usize());
ret
};
Ok(ret)
}
/// Forces a reactor blocked in a call to `turn` to wakeup, or otherwise
/// makes the next call to `turn` return immediately.
///
/// This method is intended to be used in situations where a notification
/// needs to otherwise be sent to the main reactor. If the reactor is
/// currently blocked inside of `turn` then it will wake up and soon return
/// after this method has been called. If the reactor is not currently
/// blocked in `turn`, then the next call to `turn` will not block and
/// return immediately.
fn wakeup(&self) {
if let Some(inner) = self.inner() {
inner.wakeup.set_readiness(mio::Ready::readable()).unwrap();
}
}
fn into_usize(self) -> usize {
unsafe { mem::transmute::<Weak<Inner>, usize>(self.inner) }
}
unsafe fn from_usize(val: usize) -> HandlePriv {
let inner = mem::transmute::<usize, Weak<Inner>>(val);
HandlePriv { inner }
}
fn inner(&self) -> Option<Arc<Inner>> {
self.inner.upgrade()
}
}
impl fmt::Debug for HandlePriv {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "HandlePriv")
}
}
// ===== impl Inner =====
impl Inner {
/// Register an I/O resource with the reactor.
///
/// The registration token is returned.
fn add_source(&self, source: &dyn Evented) -> io::Result<usize> {
// Get an ABA guard value
let aba_guard = self.next_aba_guard.fetch_add(1 << TOKEN_SHIFT, Relaxed);
let key = {
// Block to contain the write lock
let mut io_dispatch = self.io_dispatch.write();
if io_dispatch.len() == MAX_SOURCES {
return Err(io::Error::new(
io::ErrorKind::Other,
"reactor at max \
registered I/O resources",
));
}
io_dispatch.insert(ScheduledIo {
aba_guard,
readiness: AtomicUsize::new(0),
reader: AtomicTask::new(),
writer: AtomicTask::new(),
})
};
let token = aba_guard | key;
debug!("adding I/O source: {}", token);
self.io.register(
source,
mio::Token(token),
mio::Ready::all(),
mio::PollOpt::edge(),
)?;
Ok(key)
}
/// Deregisters an I/O resource from the reactor.
fn deregister_source(&self, source: &dyn Evented) -> io::Result<()> {
self.io.deregister(source)
}
fn drop_source(&self, token: usize) {
debug!("dropping I/O source: {}", token);
self.io_dispatch.write().remove(token);
}
/// Registers interest in the I/O resource associated with `token`.
fn register(&self, token: usize, dir: Direction, t: Task) {
debug!("scheduling {:?} for: {}", dir, token);
let io_dispatch = self.io_dispatch.read();
let sched = io_dispatch.get(token).unwrap();
let (task, ready) = match dir {
Direction::Read => (&sched.reader, !mio::Ready::writable()),
Direction::Write => (&sched.writer, mio::Ready::writable()),
};
task.register_task(t);
if sched.readiness.load(SeqCst) & ready.as_usize() != 0 {
task.notify();
}
}
}
impl Drop for Inner {
fn drop(&mut self) {
// When a reactor is dropped it needs to wake up all blocked tasks as
// they'll never receive a notification, and all connected I/O objects
// will start returning errors pretty quickly.
let io = self.io_dispatch.read();
for (_, io) in io.iter() {
io.writer.notify();
io.reader.notify();
}
}
}
impl Direction {
fn mask(&self) -> mio::Ready {
match *self {
Direction::Read => {
// Everything except writable is signaled through read.
mio::Ready::all() - mio::Ready::writable()
}
Direction::Write => mio::Ready::writable() | platform::hup(),
}
}
}
impl Drop for DefaultGuard {
fn drop(&mut self) {
let _ = CURRENT_REACTOR.try_with(|current| {
let mut current = current.borrow_mut();
*current = None;
});
}
}
#[cfg(unix)]
mod platform {
use mio::unix::UnixReady;
use mio::Ready;
pub fn hup() -> Ready {
UnixReady::hup().into()
}
pub fn is_hup(ready: &Ready) -> bool {
UnixReady::from(*ready).is_hup()
}
}
#[cfg(windows)]
mod platform {
use mio::Ready;
pub fn hup() -> Ready {
Ready::empty()
}
pub fn is_hup(_: &Ready) -> bool {
false
}
}
// ===== impl SetFallbackError =====
impl fmt::Display for SetFallbackError {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "{}", self.description())
}
}
impl Error for SetFallbackError {
fn description(&self) -> &str {
"attempted to set fallback reactor while already configured"
}
}