1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
//! This crate provides the utilities needed to easily implement a Tokio //! transport using [serde] for serialization and deserialization of frame //! values. //! //! **Note**, if you are an end user, you probably won't want to use this crate directly. //! Instead, use a `tokio-serde-*` crate that implements a specific //! serialization format. For example [tokio-serde-json] uses [serde-json] to //! serialize and deserialize frames. //! //! # Introduction //! //! This crate provides [transport] combinators that transform a stream of //! frames encoded as bytes into a stream of frame values. It is expected that //! the framing happens at another layer. One option is to use a [length //! delimited] framing transport. //! //! The crate provides two traits that must be implemented: [`Serializer`] and //! [`Deserializer`]. Implementations of these traits are then passed to //! [`FramedRead`] or [`FramedWrite`] along with the upsteram [`Stream`] or //! [`Sink`] that handles the byte encoded frames. //! //! By doing this, a transformation pipeline is built. For reading [json], it looks //! something like this: //! //! * `tokio_serde_json::JsonRead` //! * `tokio_serde::FramedRead` //! * `tokio_io::codec::length_delimited::FramedRead` //! * `tokio_core::net::TcpStream` //! //! The write half looks like: //! //! * `tokio_serde_json::JsonWrite` //! * `tokio_serde::FramedWrite` //! * `tokio_io::codec::length_delimited::FramedWrite` //! * `tokio_core::net::TcpStream` //! //! # Examples //! //! For an example, see how [tokio-serde-json] is implemented: //! //! * [adapter](https://github.com/carllerche/tokio-serde-json/blob/master/src/lib.rs). //! * [server](https://github.com/carllerche/tokio-serde-json/blob/master/examples/server.rs) //! * [client](https://github.com/carllerche/tokio-serde-json/blob/master/examples/client.rs) //! //! [serde]: https://serde.rs //! [tokio-serde-json]: http://github.com/carllerche/tokio-serde-json //! [serde-json]: https://github.com/serde-rs/json //! [transport]: https://tokio.rs/docs/going-deeper/transports/ //! [`Serializer`]: trait.Serializer.html //! [`Deserializer`]: trait.Deserializer.html //! [`FramedRead`]: struct.FramedRead.html //! [`FramedWrite`]: trait.FramedWrite.html //! [json]: http://github.com/carllerche/tokio-serde-json #[macro_use] extern crate futures; extern crate bytes; mod buffer_one; use buffer_one::BufferOne; use futures::{Async, AsyncSink, StartSend, Sink, Stream, Poll}; use bytes::{Bytes, BytesMut}; use std::io; use std::marker::PhantomData; /// Serializes a value into a destination buffer /// /// Implementations of `Serializer` are able to take values of type `T` and /// convert them to a byte representation. The specific byte format, i.e. JSON, /// protobuf, binpack, ... is an implementation detail. /// /// The `serialize` function takes `&mut self`, allowing for `Serializer` /// instances to be created with runtime configuration settings. /// /// # Examples /// /// An integer serializer that allows the width to be configured. /// /// ``` /// # extern crate tokio_serde; /// # extern crate bytes; /// /// use tokio_serde::Serializer; /// use bytes::{BytesMut, BufMut, BigEndian}; /// /// struct IntSerializer { /// width: usize, /// } /// /// #[derive(Debug)] /// enum Error { /// Overflow, /// } /// /// impl Serializer<u64> for IntSerializer { /// type Error = Error; /// /// fn serialize(&mut self, item: &u64) -> Result<BytesMut, Self::Error> { /// assert!(self.width <= 8); /// /// let max = (1 << (self.width * 8)) - 1; /// /// if *item > max { /// return Err(Error::Overflow); /// } /// /// let mut ret = BytesMut::with_capacity(self.width); /// ret.put_uint::<BigEndian>(*item, self.width); /// Ok(ret) /// } /// } /// /// # pub fn main() { /// let mut serializer = IntSerializer { width: 3 }; /// /// let buf = serializer.serialize(&5).unwrap(); /// assert_eq!(buf, &b"\x00\x00\x05"[..]); /// # } /// ``` pub trait Serializer<T> { type Error; /// Serializes `item` into a new buffer /// /// The serialization format is specific to the various implementations of /// `Serializer`. If the serialization is successful, a buffer containing /// the serialized item is returned. If the serialization is unsuccessful, /// an error is returned. /// /// Implementations of this function should not mutate `item` via any sort /// of internal mutability strategy. /// /// See the trait level docs for more detail. fn serialize(&mut self, item: &T) -> Result<BytesMut, Self::Error>; } /// Deserializes a value from a source buffer /// /// Implementatinos of `Deserializer` take a byte buffer and return a value by /// parsing the contents of the buffer according to the implementation's format. /// The specific byte format, i.e. JSON, protobuf, binpack, is an implementation /// detail /// /// The `deserialize` function takes `&mut self`, allowing for `Deserializer` /// instances to be created with runtime configuration settings. /// /// It is expected that the supplied buffer represents a full value and only /// that value. If after deserializing a value there are remaining bytes the /// buffer, the deserializer will return an error. /// /// # Examples /// /// An integer deserializer that allows the width to be configured. /// /// ``` /// # extern crate tokio_serde; /// # extern crate bytes; /// /// use tokio_serde::Deserializer; /// use bytes::{Bytes, IntoBuf, Buf, BigEndian}; /// /// struct IntDeserializer { /// width: usize, /// } /// /// #[derive(Debug)] /// enum Error { /// Underflow, /// Overflow /// } /// /// impl Deserializer<u64> for IntDeserializer { /// type Error = Error; /// /// fn deserialize(&mut self, buf: &Bytes) -> Result<u64, Self::Error> { /// assert!(self.width <= 8); /// /// if buf.len() > self.width { /// return Err(Error::Overflow); /// } /// /// if buf.len() < self.width { /// return Err(Error::Underflow); /// } /// /// let ret = buf.into_buf().get_uint::<BigEndian>(self.width); /// Ok(ret) /// } /// } /// /// # pub fn main() { /// let mut deserializer = IntDeserializer { width: 3 }; /// /// let i = deserializer.deserialize(&b"\x00\x00\x05"[..].into()).unwrap(); /// assert_eq!(i, 5); /// # } /// ``` pub trait Deserializer<T> { type Error; /// Deserializes a value from `buf` /// /// The serialization format is specific to the various implementations of /// `Deserializer`. If the deserialization is successful, the value is /// returned. If the deserialization is unsuccessful, an error is returned. /// /// See the trait level docs for more detail. fn deserialize(&mut self, src: &Bytes) -> Result<T, Self::Error>; } /// Adapts a stream of buffers to a stream of values by deserializing them. /// /// It is expected that the buffers yielded by the supplied stream be framed. In /// other words, each yielded buffer must represent exactly one serialized /// value. The specific framing strategy is left up to the implementor. One option /// would be to use [length_delimited] provided by [tokio-io]. /// /// [length_delimited]: http://docs.rs/tokio-io/codec/length_delimited/index.html /// [tokio-io]: http://crates.io/crates/tokio-io pub struct FramedRead<T, U, S> { inner: T, deserializer: S, item: PhantomData<U>, } /// Adapts a buffer sink to a value sink by serializing the values. /// /// The provided buffer sink will received buffer values containing the /// serialized value. Each buffer contains exactly one value. This sink will be /// responsible for writing these buffers to an `AsyncWrite` using some sort of /// framing strategy. The specific framing strategy is left up to the /// implementor. One option would be to use [length_delimited] provided by /// [tokio-io]. /// /// [length_delimited]: http://docs.rs/tokio-io/codec/length_delimited/index.html /// [tokio-io]: http://crates.io/crates/tokio-io pub struct FramedWrite<T, U, S> where T: Sink { inner: BufferOne<T>, serializer: S, item: PhantomData<U>, } // ===== impl FramedRead ===== impl<T, U, S> FramedRead<T, U, S> where T: Stream<Error = io::Error>, Bytes: From<T::Item>, S: Deserializer<U>, S::Error: From<io::Error>, { /// Creates a new `FramedRead` with the given buffer stream and deserializer. pub fn new(inner: T, deserializer: S) -> FramedRead<T, U, S> { FramedRead { inner: inner, deserializer: deserializer, item: PhantomData, } } } impl<T, U, S> FramedRead<T, U, S> { /// Returns a reference to the underlying stream wrapped by `FramedRead`. /// /// Note that care should be taken to not tamper with the underlying stream /// of data coming in as it may corrupt the stream of frames otherwise /// being worked with. pub fn get_ref(&self) -> &T { &self.inner } /// Returns a mutable reference to the underlying stream wrapped by /// `FramedRead`. /// /// Note that care should be taken to not tamper with the underlying stream /// of data coming in as it may corrupt the stream of frames otherwise /// being worked with. pub fn get_mut(&mut self) -> &mut T { &mut self.inner } /// Consumes the `FramedRead`, returning its underlying stream. /// /// Note that care should be taken to not tamper with the underlying stream /// of data coming in as it may corrupt the stream of frames otherwise being /// worked with. pub fn into_inner(self) -> T { self.inner } } impl<T, U, S> Stream for FramedRead<T, U, S> where T: Stream<Error = io::Error>, Bytes: From<T::Item>, S: Deserializer<U>, S::Error: From<io::Error>, { type Item = U; type Error = S::Error; fn poll(&mut self) -> Poll<Option<U>, S::Error> { match try_ready!(self.inner.poll()) { Some(bytes) => { let val = try!(self.deserializer.deserialize(&bytes.into())); Ok(Async::Ready(Some(val))) } None => Ok(Async::Ready(None)), } } } impl<T, U, S> FramedWrite<T, U, S> where T: Sink<SinkItem = BytesMut, SinkError = io::Error>, S: Serializer<U>, S::Error: Into<io::Error>, { /// Creates a new `FramedWrite` with the given buffer sink and serializer. pub fn new(inner: T, serializer: S) -> Self { FramedWrite { inner: BufferOne::new(inner), serializer: serializer, item: PhantomData, } } } impl<T: Sink, U, S> FramedWrite<T, U, S> { /// Returns a reference to the underlying sink wrapped by `FramedWrite`. /// /// Note that care should be taken to not tamper with the underlying sink as /// it may corrupt the sequence of frames otherwise being worked with. pub fn get_ref(&self) -> &T { self.inner.get_ref() } /// Returns a mutable reference to the underlying sink wrapped by /// `FramedWrite`. /// /// Note that care should be taken to not tamper with the underlying sink as /// it may corrupt the sequence of frames otherwise being worked with. pub fn get_mut(&mut self) -> &mut T { self.inner.get_mut() } /// Consumes the `FramedWrite`, returning its underlying sink. /// /// Note that care should be taken to not tamper with the underlying sink as /// it may corrupt the sequence of frames otherwise being worked with. pub fn into_inner(self) -> T { self.inner.into_inner() } } impl<T, U, S> Sink for FramedWrite<T, U, S> where T: Sink<SinkItem = BytesMut, SinkError = io::Error>, S: Serializer<U>, S::Error: Into<io::Error>, { type SinkItem = U; type SinkError = io::Error; fn start_send(&mut self, item: U) -> StartSend<U, io::Error> { if !self.inner.poll_ready().is_ready() { return Ok(AsyncSink::NotReady(item)); } let res = self.serializer.serialize(&item); let bytes = try!(res.map_err(Into::into)); assert!(try!(self.inner.start_send(bytes)).is_ready()); Ok(AsyncSink::Ready) } fn poll_complete(&mut self) -> Poll<(), io::Error> { self.inner.poll_complete() } fn close(&mut self) -> Poll<(), io::Error> { try_ready!(self.poll_complete()); self.inner.close() } }