1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
//! Futures task based helpers to easily test futures and manually written futures.
//!
//! The [`Spawn`] type is used as a mock task harness that allows you to poll futures
//! without needing to setup pinning or context. Any future can be polled but if the
//! future requires the tokio async context you will need to ensure that you poll the
//! [`Spawn`] within a tokio context, this means that as long as you are inside the
//! runtime it will work and you can poll it via [`Spawn`].
//!
//! [`Spawn`] also supports [`Stream`] to call `poll_next` without pinning
//! or context.
//!
//! In addition to circumventing the need for pinning and context, [`Spawn`] also tracks
//! the amount of times the future/task was woken. This can be useful to track if some
//! leaf future notified the root task correctly.
//!
//! # Example
//!
//! ```
//! use tokio_test::task;
//!
//! let fut = async {};
//!
//! let mut task = task::spawn(fut);
//!
//! assert!(task.poll().is_ready(), "Task was not ready!");
//! ```
use std::future::Future;
use std::mem;
use std::ops;
use std::pin::Pin;
use std::sync::{Arc, Condvar, Mutex};
use std::task::{Context, Poll, RawWaker, RawWakerVTable, Waker};
use tokio_stream::Stream;
/// Spawn a future into a [`Spawn`] which wraps the future in a mocked executor.
///
/// This can be used to spawn a [`Future`] or a [`Stream`].
///
/// For more information, check the module docs.
pub fn spawn<T>(task: T) -> Spawn<T> {
Spawn {
task: MockTask::new(),
future: Box::pin(task),
}
}
/// Future spawned on a mock task that can be used to poll the future or stream
/// without needing pinning or context types.
#[derive(Debug)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct Spawn<T> {
task: MockTask,
future: Pin<Box<T>>,
}
#[derive(Debug, Clone)]
struct MockTask {
waker: Arc<ThreadWaker>,
}
#[derive(Debug)]
struct ThreadWaker {
state: Mutex<usize>,
condvar: Condvar,
}
const IDLE: usize = 0;
const WAKE: usize = 1;
const SLEEP: usize = 2;
impl<T> Spawn<T> {
/// Consumes `self` returning the inner value
pub fn into_inner(self) -> T
where
T: Unpin,
{
*Pin::into_inner(self.future)
}
/// Returns `true` if the inner future has received a wake notification
/// since the last call to `enter`.
pub fn is_woken(&self) -> bool {
self.task.is_woken()
}
/// Returns the number of references to the task waker
///
/// The task itself holds a reference. The return value will never be zero.
pub fn waker_ref_count(&self) -> usize {
self.task.waker_ref_count()
}
/// Enter the task context
pub fn enter<F, R>(&mut self, f: F) -> R
where
F: FnOnce(&mut Context<'_>, Pin<&mut T>) -> R,
{
let fut = self.future.as_mut();
self.task.enter(|cx| f(cx, fut))
}
}
impl<T: Unpin> ops::Deref for Spawn<T> {
type Target = T;
fn deref(&self) -> &T {
&self.future
}
}
impl<T: Unpin> ops::DerefMut for Spawn<T> {
fn deref_mut(&mut self) -> &mut T {
&mut self.future
}
}
impl<T: Future> Spawn<T> {
/// If `T` is a [`Future`] then poll it. This will handle pinning and the context
/// type for the future.
pub fn poll(&mut self) -> Poll<T::Output> {
let fut = self.future.as_mut();
self.task.enter(|cx| fut.poll(cx))
}
}
impl<T: Stream> Spawn<T> {
/// If `T` is a [`Stream`] then `poll_next` it. This will handle pinning and the context
/// type for the stream.
pub fn poll_next(&mut self) -> Poll<Option<T::Item>> {
let stream = self.future.as_mut();
self.task.enter(|cx| stream.poll_next(cx))
}
}
impl<T: Future> Future for Spawn<T> {
type Output = T::Output;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
self.future.as_mut().poll(cx)
}
}
impl<T: Stream> Stream for Spawn<T> {
type Item = T::Item;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
self.future.as_mut().poll_next(cx)
}
}
impl MockTask {
/// Creates new mock task
fn new() -> Self {
MockTask {
waker: Arc::new(ThreadWaker::new()),
}
}
/// Runs a closure from the context of the task.
///
/// Any wake notifications resulting from the execution of the closure are
/// tracked.
fn enter<F, R>(&mut self, f: F) -> R
where
F: FnOnce(&mut Context<'_>) -> R,
{
self.waker.clear();
let waker = self.waker();
let mut cx = Context::from_waker(&waker);
f(&mut cx)
}
/// Returns `true` if the inner future has received a wake notification
/// since the last call to `enter`.
fn is_woken(&self) -> bool {
self.waker.is_woken()
}
/// Returns the number of references to the task waker
///
/// The task itself holds a reference. The return value will never be zero.
fn waker_ref_count(&self) -> usize {
Arc::strong_count(&self.waker)
}
fn waker(&self) -> Waker {
unsafe {
let raw = to_raw(self.waker.clone());
Waker::from_raw(raw)
}
}
}
impl Default for MockTask {
fn default() -> Self {
Self::new()
}
}
impl ThreadWaker {
fn new() -> Self {
ThreadWaker {
state: Mutex::new(IDLE),
condvar: Condvar::new(),
}
}
/// Clears any previously received wakes, avoiding potential spurious
/// wake notifications. This should only be called immediately before running the
/// task.
fn clear(&self) {
*self.state.lock().unwrap() = IDLE;
}
fn is_woken(&self) -> bool {
match *self.state.lock().unwrap() {
IDLE => false,
WAKE => true,
_ => unreachable!(),
}
}
fn wake(&self) {
// First, try transitioning from IDLE -> NOTIFY, this does not require a lock.
let mut state = self.state.lock().unwrap();
let prev = *state;
if prev == WAKE {
return;
}
*state = WAKE;
if prev == IDLE {
return;
}
// The other half is sleeping, so we wake it up.
assert_eq!(prev, SLEEP);
self.condvar.notify_one();
}
}
static VTABLE: RawWakerVTable = RawWakerVTable::new(clone, wake, wake_by_ref, drop_waker);
unsafe fn to_raw(waker: Arc<ThreadWaker>) -> RawWaker {
RawWaker::new(Arc::into_raw(waker) as *const (), &VTABLE)
}
unsafe fn from_raw(raw: *const ()) -> Arc<ThreadWaker> {
Arc::from_raw(raw as *const ThreadWaker)
}
unsafe fn clone(raw: *const ()) -> RawWaker {
let waker = from_raw(raw);
// Increment the ref count
mem::forget(waker.clone());
to_raw(waker)
}
unsafe fn wake(raw: *const ()) {
let waker = from_raw(raw);
waker.wake();
}
unsafe fn wake_by_ref(raw: *const ()) {
let waker = from_raw(raw);
waker.wake();
// We don't actually own a reference to the unparker
mem::forget(waker);
}
unsafe fn drop_waker(raw: *const ()) {
let _ = from_raw(raw);
}