tokio_threadpool/
builder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
use callback::Callback;
use config::{Config, MAX_WORKERS};
use park::{BoxPark, BoxedPark, DefaultPark};
use pool::{Pool, MAX_BACKUP};
use shutdown::ShutdownTrigger;
use thread_pool::ThreadPool;
use worker::{self, Worker, WorkerId};

use std::any::Any;
use std::cmp::max;
use std::error::Error;
use std::fmt;
use std::sync::Arc;
use std::time::Duration;

use crossbeam_deque::Injector;
use num_cpus;
use tokio_executor::park::Park;
use tokio_executor::Enter;

/// Builds a thread pool with custom configuration values.
///
/// Methods can be chained in order to set the configuration values. The thread
/// pool is constructed by calling [`build`].
///
/// New instances of `Builder` are obtained via [`Builder::new`].
///
/// See function level documentation for details on the various configuration
/// settings.
///
/// [`build`]: #method.build
/// [`Builder::new`]: #method.new
///
/// # Examples
///
/// ```
/// # extern crate tokio_threadpool;
/// # extern crate futures;
/// # use tokio_threadpool::Builder;
/// use futures::future::{Future, lazy};
/// use std::time::Duration;
///
/// # pub fn main() {
/// let thread_pool = Builder::new()
///     .pool_size(4)
///     .keep_alive(Some(Duration::from_secs(30)))
///     .build();
///
/// thread_pool.spawn(lazy(|| {
///     println!("called from a worker thread");
///     Ok(())
/// }));
///
/// // Gracefully shutdown the threadpool
/// thread_pool.shutdown().wait().unwrap();
/// # }
/// ```
pub struct Builder {
    /// Thread pool specific configuration values
    config: Config,

    /// Number of workers to spawn
    pool_size: usize,

    /// Maximum number of futures that can be in a blocking section
    /// concurrently.
    max_blocking: usize,

    /// Generates the `Park` instances
    new_park: Box<dyn Fn(&WorkerId) -> BoxPark>,
}

impl Builder {
    /// Returns a new thread pool builder initialized with default configuration
    /// values.
    ///
    /// Configuration methods can be chained on the return value.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate tokio_threadpool;
    /// # extern crate futures;
    /// # use tokio_threadpool::Builder;
    /// use std::time::Duration;
    ///
    /// # pub fn main() {
    /// let thread_pool = Builder::new()
    ///     .pool_size(4)
    ///     .keep_alive(Some(Duration::from_secs(30)))
    ///     .build();
    /// # }
    /// ```
    pub fn new() -> Builder {
        let num_cpus = max(1, num_cpus::get());

        let new_park =
            Box::new(|_: &WorkerId| Box::new(BoxedPark::new(DefaultPark::new())) as BoxPark);

        Builder {
            pool_size: num_cpus,
            max_blocking: 100,
            config: Config {
                keep_alive: None,
                name_prefix: None,
                stack_size: None,
                around_worker: None,
                after_start: None,
                before_stop: None,
                panic_handler: None,
            },
            new_park,
        }
    }

    /// Set the maximum number of worker threads for the thread pool instance.
    ///
    /// This must be a number between 1 and 32,768 though it is advised to keep
    /// this value on the smaller side.
    ///
    /// The default value is the number of cores available to the system.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate tokio_threadpool;
    /// # extern crate futures;
    /// # use tokio_threadpool::Builder;
    ///
    /// # pub fn main() {
    /// let thread_pool = Builder::new()
    ///     .pool_size(4)
    ///     .build();
    /// # }
    /// ```
    pub fn pool_size(&mut self, val: usize) -> &mut Self {
        assert!(val >= 1, "at least one thread required");
        assert!(val <= MAX_WORKERS, "max value is {}", MAX_WORKERS);

        self.pool_size = val;
        self
    }

    /// Set the maximum number of concurrent blocking sections.
    ///
    /// When the maximum concurrent `blocking` calls is reached, any further
    /// calls to `blocking` will return `NotReady` and the task is notified once
    /// previously in-flight calls to `blocking` return.
    ///
    /// This must be a number between 1 and 32,768 though it is advised to keep
    /// this value on the smaller side.
    ///
    /// The default value is 100.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate tokio_threadpool;
    /// # extern crate futures;
    /// # use tokio_threadpool::Builder;
    ///
    /// # pub fn main() {
    /// let thread_pool = Builder::new()
    ///     .max_blocking(200)
    ///     .build();
    /// # }
    /// ```
    pub fn max_blocking(&mut self, val: usize) -> &mut Self {
        assert!(val <= MAX_BACKUP, "max value is {}", MAX_BACKUP);
        self.max_blocking = val;
        self
    }

    /// Set the thread keep alive duration
    ///
    /// If set, a thread that has completed a `blocking` call will wait for up
    /// to the specified duration to become a worker thread again. Once the
    /// duration elapses, the thread will shutdown.
    ///
    /// When the value is `None`, the thread will wait to become a worker
    /// thread forever.
    ///
    /// The default value is `None`.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate tokio_threadpool;
    /// # extern crate futures;
    /// # use tokio_threadpool::Builder;
    /// use std::time::Duration;
    ///
    /// # pub fn main() {
    /// let thread_pool = Builder::new()
    ///     .keep_alive(Some(Duration::from_secs(30)))
    ///     .build();
    /// # }
    /// ```
    pub fn keep_alive(&mut self, val: Option<Duration>) -> &mut Self {
        self.config.keep_alive = val;
        self
    }

    /// Sets a callback to be triggered when a panic during a future bubbles up
    /// to Tokio. By default Tokio catches these panics, and they will be
    /// ignored. The parameter passed to this callback is the same error value
    /// returned from std::panic::catch_unwind(). To abort the process on
    /// panics, use std::panic::resume_unwind() in this callback as shown
    /// below.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate tokio_threadpool;
    /// # extern crate futures;
    /// # use tokio_threadpool::Builder;
    ///
    /// # pub fn main() {
    /// let thread_pool = Builder::new()
    ///     .panic_handler(|err| std::panic::resume_unwind(err))
    ///     .build();
    /// # }
    /// ```
    pub fn panic_handler<F>(&mut self, f: F) -> &mut Self
    where
        F: Fn(Box<dyn Any + Send>) + Send + Sync + 'static,
    {
        self.config.panic_handler = Some(Arc::new(f));
        self
    }

    /// Set name prefix of threads spawned by the scheduler
    ///
    /// Thread name prefix is used for generating thread names. For example, if
    /// prefix is `my-pool-`, then threads in the pool will get names like
    /// `my-pool-1` etc.
    ///
    /// If this configuration is not set, then the thread will use the system
    /// default naming scheme.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate tokio_threadpool;
    /// # extern crate futures;
    /// # use tokio_threadpool::Builder;
    ///
    /// # pub fn main() {
    /// let thread_pool = Builder::new()
    ///     .name_prefix("my-pool-")
    ///     .build();
    /// # }
    /// ```
    pub fn name_prefix<S: Into<String>>(&mut self, val: S) -> &mut Self {
        self.config.name_prefix = Some(val.into());
        self
    }

    /// Set the stack size (in bytes) for worker threads.
    ///
    /// The actual stack size may be greater than this value if the platform
    /// specifies minimal stack size.
    ///
    /// The default stack size for spawned threads is 2 MiB, though this
    /// particular stack size is subject to change in the future.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate tokio_threadpool;
    /// # extern crate futures;
    /// # use tokio_threadpool::Builder;
    ///
    /// # pub fn main() {
    /// let thread_pool = Builder::new()
    ///     .stack_size(32 * 1024)
    ///     .build();
    /// # }
    /// ```
    pub fn stack_size(&mut self, val: usize) -> &mut Self {
        self.config.stack_size = Some(val);
        self
    }

    /// Execute function `f` on each worker thread.
    ///
    /// This function is provided a handle to the worker and is expected to call
    /// [`Worker::run`], otherwise the worker thread will shutdown without doing
    /// any work.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate tokio_threadpool;
    /// # extern crate futures;
    /// # use tokio_threadpool::Builder;
    ///
    /// # pub fn main() {
    /// let thread_pool = Builder::new()
    ///     .around_worker(|worker, _| {
    ///         println!("worker is starting up");
    ///         worker.run();
    ///         println!("worker is shutting down");
    ///     })
    ///     .build();
    /// # }
    /// ```
    ///
    /// [`Worker::run`]: struct.Worker.html#method.run
    pub fn around_worker<F>(&mut self, f: F) -> &mut Self
    where
        F: Fn(&Worker, &mut Enter) + Send + Sync + 'static,
    {
        self.config.around_worker = Some(Callback::new(f));
        self
    }

    /// Execute function `f` after each thread is started but before it starts
    /// doing work.
    ///
    /// This is intended for bookkeeping and monitoring use cases.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate tokio_threadpool;
    /// # extern crate futures;
    /// # use tokio_threadpool::Builder;
    ///
    /// # pub fn main() {
    /// let thread_pool = Builder::new()
    ///     .after_start(|| {
    ///         println!("thread started");
    ///     })
    ///     .build();
    /// # }
    /// ```
    pub fn after_start<F>(&mut self, f: F) -> &mut Self
    where
        F: Fn() + Send + Sync + 'static,
    {
        self.config.after_start = Some(Arc::new(f));
        self
    }

    /// Execute function `f` before each thread stops.
    ///
    /// This is intended for bookkeeping and monitoring use cases.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate tokio_threadpool;
    /// # extern crate futures;
    /// # use tokio_threadpool::Builder;
    ///
    /// # pub fn main() {
    /// let thread_pool = Builder::new()
    ///     .before_stop(|| {
    ///         println!("thread stopping");
    ///     })
    ///     .build();
    /// # }
    /// ```
    pub fn before_stop<F>(&mut self, f: F) -> &mut Self
    where
        F: Fn() + Send + Sync + 'static,
    {
        self.config.before_stop = Some(Arc::new(f));
        self
    }

    /// Customize the `park` instance used by each worker thread.
    ///
    /// The provided closure `f` is called once per worker and returns a `Park`
    /// instance that is used by the worker to put itself to sleep.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate tokio_threadpool;
    /// # extern crate futures;
    /// # use tokio_threadpool::Builder;
    /// # fn decorate<F>(f: F) -> F { f }
    ///
    /// # pub fn main() {
    /// let thread_pool = Builder::new()
    ///     .custom_park(|_| {
    ///         use tokio_threadpool::park::DefaultPark;
    ///
    ///         // This is the default park type that the worker would use if we
    ///         // did not customize it.
    ///         let park = DefaultPark::new();
    ///
    ///         // Decorate the `park` instance, allowing us to customize work
    ///         // that happens when a worker thread goes to sleep.
    ///         decorate(park)
    ///     })
    ///     .build();
    /// # }
    /// ```
    pub fn custom_park<F, P>(&mut self, f: F) -> &mut Self
    where
        F: Fn(&WorkerId) -> P + 'static,
        P: Park + Send + 'static,
        P::Error: Error,
    {
        self.new_park = Box::new(move |id| Box::new(BoxedPark::new(f(id))));

        self
    }

    /// Create the configured `ThreadPool`.
    ///
    /// The returned `ThreadPool` instance is ready to spawn tasks.
    ///
    /// # Examples
    ///
    /// ```
    /// # extern crate tokio_threadpool;
    /// # extern crate futures;
    /// # use tokio_threadpool::Builder;
    ///
    /// # pub fn main() {
    /// let thread_pool = Builder::new()
    ///     .build();
    /// # }
    /// ```
    pub fn build(&self) -> ThreadPool {
        trace!("build; num-workers={}", self.pool_size);

        // Create the worker entry list
        let workers: Arc<[worker::Entry]> = {
            let mut workers = vec![];

            for i in 0..self.pool_size {
                let id = WorkerId::new(i);
                let park = (self.new_park)(&id);
                let unpark = park.unpark();

                workers.push(worker::Entry::new(park, unpark));
            }

            workers.into()
        };

        let queue = Arc::new(Injector::new());

        // Create a trigger that will clean up resources on shutdown.
        //
        // The `Pool` contains a weak reference to it, while `Worker`s and the `ThreadPool` contain
        // strong references.
        let trigger = Arc::new(ShutdownTrigger::new(workers.clone(), queue.clone()));

        // Create the pool
        let pool = Arc::new(Pool::new(
            workers,
            Arc::downgrade(&trigger),
            self.max_blocking,
            self.config.clone(),
            queue,
        ));

        ThreadPool::new2(pool, trigger)
    }
}

impl fmt::Debug for Builder {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.debug_struct("Builder")
            .field("config", &self.config)
            .field("pool_size", &self.pool_size)
            .field("new_park", &"Box<Fn() -> BoxPark>")
            .finish()
    }
}