tokio_timer/
delay_queue.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
//! A queue of delayed elements.
//!
//! See [`DelayQueue`] for more details.
//!
//! [`DelayQueue`]: struct.DelayQueue.html

use clock::now;
use timer::Handle;
use wheel::{self, Wheel};
use {Delay, Error};

use futures::{Future, Poll, Stream};
use slab::Slab;

use std::cmp;
use std::marker::PhantomData;
use std::time::{Duration, Instant};

/// A queue of delayed elements.
///
/// Once an element is inserted into the `DelayQueue`, it is yielded once the
/// specified deadline has been reached.
///
/// # Usage
///
/// Elements are inserted into `DelayQueue` using the [`insert`] or
/// [`insert_at`] methods. A deadline is provided with the item and a [`Key`] is
/// returned. The key is used to remove the entry or to change the deadline at
/// which it should be yielded back.
///
/// Once delays have been configured, the `DelayQueue` is used via its
/// [`Stream`] implementation. [`poll`] is called. If an entry has reached its
/// deadline, it is returned. If not, `Async::NotReady` indicating that the
/// current task will be notified once the deadline has been reached.
///
/// # `Stream` implementation
///
/// Items are retrieved from the queue via [`Stream::poll`]. If no delays have
/// expired, no items are returned. In this case, `NotReady` is returned and the
/// current task is registered to be notified once the next item's delay has
/// expired.
///
/// If no items are in the queue, i.e. `is_empty()` returns `true`, then `poll`
/// returns `Ready(None)`. This indicates that the stream has reached an end.
/// However, if a new item is inserted *after*, `poll` will once again start
/// returning items or `NotReady.
///
/// Items are returned ordered by their expirations. Items that are configured
/// to expire first will be returned first. There are no ordering guarantees
/// for items configured to expire the same instant. Also note that delays are
/// rounded to the closest millisecond.
///
/// # Implementation
///
/// The `DelayQueue` is backed by the same hashed timing wheel implementation as
/// [`Timer`] as such, it offers the same performance benefits. See [`Timer`]
/// for further implementation notes.
///
/// State associated with each entry is stored in a [`slab`]. This allows
/// amortizing the cost of allocation. Space created for expired entries is
/// reused when inserting new entries.
///
/// Capacity can be checked using [`capacity`] and allocated preemptively by using
/// the [`reserve`] method.
///
/// # Usage
///
/// Using `DelayQueue` to manage cache entries.
///
/// ```rust
/// #[macro_use]
/// extern crate futures;
/// extern crate tokio;
/// # type CacheKey = String;
/// # type Value = String;
/// use tokio::timer::{delay_queue, DelayQueue, Error};
/// use futures::{Async, Poll, Stream};
/// use std::collections::HashMap;
/// use std::time::Duration;
///
/// struct Cache {
///     entries: HashMap<CacheKey, (Value, delay_queue::Key)>,
///     expirations: DelayQueue<CacheKey>,
/// }
///
/// const TTL_SECS: u64 = 30;
///
/// impl Cache {
///     fn insert(&mut self, key: CacheKey, value: Value) {
///         let delay = self.expirations
///             .insert(key.clone(), Duration::from_secs(TTL_SECS));
///
///         self.entries.insert(key, (value, delay));
///     }
///
///     fn get(&self, key: &CacheKey) -> Option<&Value> {
///         self.entries.get(key)
///             .map(|&(ref v, _)| v)
///     }
///
///     fn remove(&mut self, key: &CacheKey) {
///         if let Some((_, cache_key)) = self.entries.remove(key) {
///             self.expirations.remove(&cache_key);
///         }
///     }
///
///     fn poll_purge(&mut self) -> Poll<(), Error> {
///         while let Some(entry) = try_ready!(self.expirations.poll()) {
///             self.entries.remove(entry.get_ref());
///         }
///
///         Ok(Async::Ready(()))
///     }
/// }
/// # fn main() {}
/// ```
///
/// [`insert`]: #method.insert
/// [`insert_at`]: #method.insert_at
/// [`Key`]: struct.Key.html
/// [`Stream`]: https://docs.rs/futures/0.1/futures/stream/trait.Stream.html
/// [`poll`]: #method.poll
/// [`Stream::poll`]: #method.poll
/// [`Timer`]: ../struct.Timer.html
/// [`slab`]: https://docs.rs/slab
/// [`capacity`]: #method.capacity
/// [`reserve`]: #method.reserve
#[derive(Debug)]
pub struct DelayQueue<T> {
    /// Handle to the timer driving the `DelayQueue`
    handle: Handle,

    /// Stores data associated with entries
    slab: Slab<Data<T>>,

    /// Lookup structure tracking all delays in the queue
    wheel: Wheel<Stack<T>>,

    /// Delays that were inserted when already expired. These cannot be stored
    /// in the wheel
    expired: Stack<T>,

    /// Delay expiring when the *first* item in the queue expires
    delay: Option<Delay>,

    /// Wheel polling state
    poll: wheel::Poll,

    /// Instant at which the timer starts
    start: Instant,
}

/// An entry in `DelayQueue` that has expired and removed.
///
/// Values are returned by [`DelayQueue::poll`].
///
/// [`DelayQueue::poll`]: struct.DelayQueue.html#method.poll
#[derive(Debug)]
pub struct Expired<T> {
    /// The data stored in the queue
    data: T,

    /// The expiration time
    deadline: Instant,

    /// The key associated with the entry
    key: Key,
}

/// Token to a value stored in a `DelayQueue`.
///
/// Instances of `Key` are returned by [`DelayQueue::insert`]. See [`DelayQueue`]
/// documentation for more details.
///
/// [`DelayQueue`]: struct.DelayQueue.html
/// [`DelayQueue::insert`]: struct.DelayQueue.html#method.insert
#[derive(Debug, Clone)]
pub struct Key {
    index: usize,
}

#[derive(Debug)]
struct Stack<T> {
    /// Head of the stack
    head: Option<usize>,
    _p: PhantomData<T>,
}

#[derive(Debug)]
struct Data<T> {
    /// The data being stored in the queue and will be returned at the requested
    /// instant.
    inner: T,

    /// The instant at which the item is returned.
    when: u64,

    /// Set to true when stored in the `expired` queue
    expired: bool,

    /// Next entry in the stack
    next: Option<usize>,

    /// Previous entry in the stack
    prev: Option<usize>,
}

/// Maximum number of entries the queue can handle
const MAX_ENTRIES: usize = (1 << 30) - 1;

impl<T> DelayQueue<T> {
    /// Create a new, empty, `DelayQueue`
    ///
    /// The queue will not allocate storage until items are inserted into it.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use tokio_timer::DelayQueue;
    /// let delay_queue: DelayQueue<u32> = DelayQueue::new();
    /// ```
    pub fn new() -> DelayQueue<T> {
        DelayQueue::with_capacity(0)
    }

    /// Create a new, empty, `DelayQueue` backed by the specified timer.
    ///
    /// The queue will not allocate storage until items are inserted into it.
    ///
    /// # Examples
    ///
    /// ```rust,no_run
    /// # use tokio_timer::DelayQueue;
    /// use tokio_timer::timer::Handle;
    ///
    /// let handle = Handle::default();
    /// let delay_queue: DelayQueue<u32> = DelayQueue::with_capacity_and_handle(0, &handle);
    /// ```
    pub fn with_capacity_and_handle(capacity: usize, handle: &Handle) -> DelayQueue<T> {
        DelayQueue {
            handle: handle.clone(),
            wheel: Wheel::new(),
            slab: Slab::with_capacity(capacity),
            expired: Stack::default(),
            delay: None,
            poll: wheel::Poll::new(0),
            start: now(),
        }
    }

    /// Create a new, empty, `DelayQueue` with the specified capacity.
    ///
    /// The queue will be able to hold at least `capacity` elements without
    /// reallocating. If `capacity` is 0, the queue will not allocate for
    /// storage.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use tokio_timer::DelayQueue;
    /// # use std::time::Duration;
    /// let mut delay_queue = DelayQueue::with_capacity(10);
    ///
    /// // These insertions are done without further allocation
    /// for i in 0..10 {
    ///     delay_queue.insert(i, Duration::from_secs(i));
    /// }
    ///
    /// // This will make the queue allocate additional storage
    /// delay_queue.insert(11, Duration::from_secs(11));
    /// ```
    pub fn with_capacity(capacity: usize) -> DelayQueue<T> {
        DelayQueue::with_capacity_and_handle(capacity, &Handle::default())
    }

    /// Insert `value` into the queue set to expire at a specific instant in
    /// time.
    ///
    /// This function is identical to `insert`, but takes an `Instant` instead
    /// of a `Duration`.
    ///
    /// `value` is stored in the queue until `when` is reached. At which point,
    /// `value` will be returned from [`poll`]. If `when` has already been
    /// reached, then `value` is immediately made available to poll.
    ///
    /// The return value represents the insertion and is used at an argument to
    /// [`remove`] and [`reset`]. Note that [`Key`] is token and is reused once
    /// `value` is removed from the queue either by calling [`poll`] after
    /// `when` is reached or by calling [`remove`]. At this point, the caller
    /// must take care to not use the returned [`Key`] again as it may reference
    /// a different item in the queue.
    ///
    /// See [type] level documentation for more details.
    ///
    /// # Panics
    ///
    /// This function panics if `when` is too far in the future.
    ///
    /// # Examples
    ///
    /// Basic usage
    ///
    /// ```rust
    /// # extern crate tokio;
    /// use tokio::timer::DelayQueue;
    /// use std::time::{Instant, Duration};
    ///
    /// # fn main() {
    /// let mut delay_queue = DelayQueue::new();
    /// let key = delay_queue.insert_at(
    ///     "foo", Instant::now() + Duration::from_secs(5));
    ///
    /// // Remove the entry
    /// let item = delay_queue.remove(&key);
    /// assert_eq!(*item.get_ref(), "foo");
    /// # }
    /// ```
    ///
    /// [`poll`]: #method.poll
    /// [`remove`]: #method.remove
    /// [`reset`]: #method.reset
    /// [`Key`]: struct.Key.html
    /// [type]: #
    pub fn insert_at(&mut self, value: T, when: Instant) -> Key {
        assert!(self.slab.len() < MAX_ENTRIES, "max entries exceeded");

        // Normalize the deadline. Values cannot be set to expire in the past.
        let when = self.normalize_deadline(when);

        // Insert the value in the store
        let key = self.slab.insert(Data {
            inner: value,
            when,
            expired: false,
            next: None,
            prev: None,
        });

        self.insert_idx(when, key);

        // Set a new delay if the current's deadline is later than the one of the new item
        let should_set_delay = if let Some(ref delay) = self.delay {
            let current_exp = self.normalize_deadline(delay.deadline());
            current_exp > when
        } else {
            true
        };

        if should_set_delay {
            self.delay = Some(self.handle.delay(self.start + Duration::from_millis(when)));
        }

        Key::new(key)
    }

    /// Insert `value` into the queue set to expire after the requested duration
    /// elapses.
    ///
    /// This function is identical to `insert_at`, but takes a `Duration`
    /// instead of an `Instant`.
    ///
    /// `value` is stored in the queue until `when` is reached. At which point,
    /// `value` will be returned from [`poll`]. If `when` has already been
    /// reached, then `value` is immediately made available to poll.
    ///
    /// The return value represents the insertion and is used at an argument to
    /// [`remove`] and [`reset`]. Note that [`Key`] is token and is reused once
    /// `value` is removed from the queue either by calling [`poll`] after
    /// `when` is reached or by calling [`remove`]. At this point, the caller
    /// must take care to not use the returned [`Key`] again as it may reference
    /// a different item in the queue.
    ///
    /// See [type] level documentation for more details.
    ///
    /// # Panics
    ///
    /// This function panics if `timeout` is greater than the maximum supported
    /// duration.
    ///
    /// # Examples
    ///
    /// Basic usage
    ///
    /// ```rust
    /// # extern crate tokio;
    /// use tokio::timer::DelayQueue;
    /// use std::time::Duration;
    ///
    /// # fn main() {
    /// let mut delay_queue = DelayQueue::new();
    /// let key = delay_queue.insert("foo", Duration::from_secs(5));
    ///
    /// // Remove the entry
    /// let item = delay_queue.remove(&key);
    /// assert_eq!(*item.get_ref(), "foo");
    /// # }
    /// ```
    ///
    /// [`poll`]: #method.poll
    /// [`remove`]: #method.remove
    /// [`reset`]: #method.reset
    /// [`Key`]: struct.Key.html
    /// [type]: #
    pub fn insert(&mut self, value: T, timeout: Duration) -> Key {
        self.insert_at(value, now() + timeout)
    }

    fn insert_idx(&mut self, when: u64, key: usize) {
        use self::wheel::{InsertError, Stack};

        // Register the deadline with the timer wheel
        match self.wheel.insert(when, key, &mut self.slab) {
            Ok(_) => {}
            Err((_, InsertError::Elapsed)) => {
                self.slab[key].expired = true;
                // The delay is already expired, store it in the expired queue
                self.expired.push(key, &mut self.slab);
            }
            Err((_, err)) => panic!("invalid deadline; err={:?}", err),
        }
    }

    /// Remove the item associated with `key` from the queue.
    ///
    /// There must be an item associated with `key`. The function returns the
    /// removed item as well as the `Instant` at which it will the delay will
    /// have expired.
    ///
    /// # Panics
    ///
    /// The function panics if `key` is not contained by the queue.
    ///
    /// # Examples
    ///
    /// Basic usage
    ///
    /// ```rust
    /// # extern crate tokio;
    /// use tokio::timer::DelayQueue;
    /// use std::time::Duration;
    ///
    /// # fn main() {
    /// let mut delay_queue = DelayQueue::new();
    /// let key = delay_queue.insert("foo", Duration::from_secs(5));
    ///
    /// // Remove the entry
    /// let item = delay_queue.remove(&key);
    /// assert_eq!(*item.get_ref(), "foo");
    /// # }
    /// ```
    pub fn remove(&mut self, key: &Key) -> Expired<T> {
        use wheel::Stack;

        // Special case the `expired` queue
        if self.slab[key.index].expired {
            self.expired.remove(&key.index, &mut self.slab);
        } else {
            self.wheel.remove(&key.index, &mut self.slab);
        }

        let data = self.slab.remove(key.index);

        Expired {
            key: Key::new(key.index),
            data: data.inner,
            deadline: self.start + Duration::from_millis(data.when),
        }
    }

    /// Sets the delay of the item associated with `key` to expire at `when`.
    ///
    /// This function is identical to `reset` but takes an `Instant` instead of
    /// a `Duration`.
    ///
    /// The item remains in the queue but the delay is set to expire at `when`.
    /// If `when` is in the past, then the item is immediately made available to
    /// the caller.
    ///
    /// # Panics
    ///
    /// This function panics if `when` is too far in the future or if `key` is
    /// not contained by the queue.
    ///
    /// # Examples
    ///
    /// Basic usage
    ///
    /// ```rust
    /// # extern crate tokio;
    /// use tokio::timer::DelayQueue;
    /// use std::time::{Duration, Instant};
    ///
    /// # fn main() {
    /// let mut delay_queue = DelayQueue::new();
    /// let key = delay_queue.insert("foo", Duration::from_secs(5));
    ///
    /// // "foo" is scheduled to be returned in 5 seconds
    ///
    /// delay_queue.reset_at(&key, Instant::now() + Duration::from_secs(10));
    ///
    /// // "foo"is now scheduled to be returned in 10 seconds
    /// # }
    /// ```
    pub fn reset_at(&mut self, key: &Key, when: Instant) {
        self.wheel.remove(&key.index, &mut self.slab);

        // Normalize the deadline. Values cannot be set to expire in the past.
        let when = self.normalize_deadline(when);

        self.slab[key.index].when = when;
        self.insert_idx(when, key.index);

        let next_deadline = self.next_deadline();
        if let (Some(ref mut delay), Some(deadline)) = (&mut self.delay, next_deadline) {
            delay.reset(deadline);
        }
    }

    /// Returns the next time poll as determined by the wheel
    fn next_deadline(&mut self) -> Option<Instant> {
        self.wheel
            .poll_at()
            .map(|poll_at| self.start + Duration::from_millis(poll_at))
    }

    /// Sets the delay of the item associated with `key` to expire after
    /// `timeout`.
    ///
    /// This function is identical to `reset_at` but takes a `Duration` instead
    /// of an `Instant`.
    ///
    /// The item remains in the queue but the delay is set to expire after
    /// `timeout`.  If `timeout` is zero, then the item is immediately made
    /// available to the caller.
    ///
    /// # Panics
    ///
    /// This function panics if `timeout` is greater than the maximum supported
    /// duration or if `key` is not contained by the queue.
    ///
    /// # Examples
    ///
    /// Basic usage
    ///
    /// ```rust
    /// # extern crate tokio;
    /// use tokio::timer::DelayQueue;
    /// use std::time::Duration;
    ///
    /// # fn main() {
    /// let mut delay_queue = DelayQueue::new();
    /// let key = delay_queue.insert("foo", Duration::from_secs(5));
    ///
    /// // "foo" is scheduled to be returned in 5 seconds
    ///
    /// delay_queue.reset(&key, Duration::from_secs(10));
    ///
    /// // "foo"is now scheduled to be returned in 10 seconds
    /// # }
    /// ```
    pub fn reset(&mut self, key: &Key, timeout: Duration) {
        self.reset_at(key, now() + timeout);
    }

    /// Clears the queue, removing all items.
    ///
    /// After calling `clear`, [`poll`] will return `Ok(Ready(None))`.
    ///
    /// Note that this method has no effect on the allocated capacity.
    ///
    /// [`poll`]: #method.poll
    ///
    /// # Examples
    ///
    /// ```rust
    /// # extern crate tokio;
    /// use tokio::timer::DelayQueue;
    /// use std::time::Duration;
    ///
    /// # fn main() {
    /// let mut delay_queue = DelayQueue::new();
    ///
    /// delay_queue.insert("foo", Duration::from_secs(5));
    ///
    /// assert!(!delay_queue.is_empty());
    ///
    /// delay_queue.clear();
    ///
    /// assert!(delay_queue.is_empty());
    /// # }
    /// ```
    pub fn clear(&mut self) {
        self.slab.clear();
        self.expired = Stack::default();
        self.wheel = Wheel::new();
        self.delay = None;
    }

    /// Returns the number of elements the queue can hold without reallocating.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use tokio_timer::DelayQueue;
    /// let delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10);
    /// assert_eq!(delay_queue.capacity(), 10);
    /// ```
    pub fn capacity(&self) -> usize {
        self.slab.capacity()
    }

    /// Reserve capacity for at least `additional` more items to be queued
    /// without allocating.
    ///
    /// `reserve` does nothing if the queue already has sufficient capacity for
    /// `additional` more values. If more capacity is required, a new segment of
    /// memory will be allocated and all existing values will be copied into it.
    /// As such, if the queue is already very large, a call to `reserve` can end
    /// up being expensive.
    ///
    /// The queue may reserve more than `additional` extra space in order to
    /// avoid frequent reallocations.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity exceeds the maximum number of entries the
    /// queue can contain.
    ///
    /// # Examples
    ///
    /// ```
    /// # use tokio_timer::DelayQueue;
    /// # use std::time::Duration;
    /// let mut delay_queue = DelayQueue::new();
    /// delay_queue.insert("hello", Duration::from_secs(10));
    /// delay_queue.reserve(10);
    /// assert!(delay_queue.capacity() >= 11);
    /// ```
    pub fn reserve(&mut self, additional: usize) {
        self.slab.reserve(additional);
    }

    /// Returns `true` if there are no items in the queue.
    ///
    /// Note that this function returns `false` even if all items have not yet
    /// expired and a call to `poll` will return `NotReady`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use tokio_timer::DelayQueue;
    /// use std::time::Duration;
    /// let mut delay_queue = DelayQueue::new();
    /// assert!(delay_queue.is_empty());
    ///
    /// delay_queue.insert("hello", Duration::from_secs(5));
    /// assert!(!delay_queue.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.slab.is_empty()
    }

    /// Polls the queue, returning the index of the next slot in the slab that
    /// should be returned.
    ///
    /// A slot should be returned when the associated deadline has been reached.
    fn poll_idx(&mut self) -> Poll<Option<usize>, Error> {
        use self::wheel::Stack;

        let expired = self.expired.pop(&mut self.slab);

        if expired.is_some() {
            return Ok(expired.into());
        }

        loop {
            if let Some(ref mut delay) = self.delay {
                if !delay.is_elapsed() {
                    try_ready!(delay.poll());
                }

                let now = ::ms(delay.deadline() - self.start, ::Round::Down);

                self.poll = wheel::Poll::new(now);
            }

            self.delay = None;

            if let Some(idx) = self.wheel.poll(&mut self.poll, &mut self.slab) {
                return Ok(Some(idx).into());
            }

            if let Some(deadline) = self.next_deadline() {
                self.delay = Some(self.handle.delay(deadline));
            } else {
                return Ok(None.into());
            }
        }
    }

    fn normalize_deadline(&self, when: Instant) -> u64 {
        let when = if when < self.start {
            0
        } else {
            ::ms(when - self.start, ::Round::Up)
        };

        cmp::max(when, self.wheel.elapsed())
    }
}

impl<T> Stream for DelayQueue<T> {
    type Item = Expired<T>;
    type Error = Error;

    fn poll(&mut self) -> Poll<Option<Self::Item>, Error> {
        let item = try_ready!(self.poll_idx()).map(|idx| {
            let data = self.slab.remove(idx);
            debug_assert!(data.next.is_none());
            debug_assert!(data.prev.is_none());

            Expired {
                key: Key::new(idx),
                data: data.inner,
                deadline: self.start + Duration::from_millis(data.when),
            }
        });

        Ok(item.into())
    }
}

impl<T> wheel::Stack for Stack<T> {
    type Owned = usize;
    type Borrowed = usize;
    type Store = Slab<Data<T>>;

    fn is_empty(&self) -> bool {
        self.head.is_none()
    }

    fn push(&mut self, item: Self::Owned, store: &mut Self::Store) {
        // Ensure the entry is not already in a stack.
        debug_assert!(store[item].next.is_none());
        debug_assert!(store[item].prev.is_none());

        // Remove the old head entry
        let old = self.head.take();

        if let Some(idx) = old {
            store[idx].prev = Some(item);
        }

        store[item].next = old;
        self.head = Some(item)
    }

    fn pop(&mut self, store: &mut Self::Store) -> Option<Self::Owned> {
        if let Some(idx) = self.head {
            self.head = store[idx].next;

            if let Some(idx) = self.head {
                store[idx].prev = None;
            }

            store[idx].next = None;
            debug_assert!(store[idx].prev.is_none());

            Some(idx)
        } else {
            None
        }
    }

    fn remove(&mut self, item: &Self::Borrowed, store: &mut Self::Store) {
        assert!(store.contains(*item));

        // Ensure that the entry is in fact contained by the stack
        debug_assert!({
            // This walks the full linked list even if an entry is found.
            let mut next = self.head;
            let mut contains = false;

            while let Some(idx) = next {
                if idx == *item {
                    debug_assert!(!contains);
                    contains = true;
                }

                next = store[idx].next;
            }

            contains
        });

        if let Some(next) = store[*item].next {
            store[next].prev = store[*item].prev;
        }

        if let Some(prev) = store[*item].prev {
            store[prev].next = store[*item].next;
        } else {
            self.head = store[*item].next;
        }

        store[*item].next = None;
        store[*item].prev = None;
    }

    fn when(item: &Self::Borrowed, store: &Self::Store) -> u64 {
        store[*item].when
    }
}

impl<T> Default for Stack<T> {
    fn default() -> Stack<T> {
        Stack {
            head: None,
            _p: PhantomData,
        }
    }
}

impl Key {
    pub(crate) fn new(index: usize) -> Key {
        Key { index }
    }
}

impl<T> Expired<T> {
    /// Returns a reference to the inner value.
    pub fn get_ref(&self) -> &T {
        &self.data
    }

    /// Returns a mutable reference to the inner value.
    pub fn get_mut(&mut self) -> &mut T {
        &mut self.data
    }

    /// Consumes `self` and returns the inner value.
    pub fn into_inner(self) -> T {
        self.data
    }
}