tokio_timer/delay_queue.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
//! A queue of delayed elements.
//!
//! See [`DelayQueue`] for more details.
//!
//! [`DelayQueue`]: struct.DelayQueue.html
use clock::now;
use timer::Handle;
use wheel::{self, Wheel};
use {Delay, Error};
use futures::{Future, Poll, Stream};
use slab::Slab;
use std::cmp;
use std::marker::PhantomData;
use std::time::{Duration, Instant};
/// A queue of delayed elements.
///
/// Once an element is inserted into the `DelayQueue`, it is yielded once the
/// specified deadline has been reached.
///
/// # Usage
///
/// Elements are inserted into `DelayQueue` using the [`insert`] or
/// [`insert_at`] methods. A deadline is provided with the item and a [`Key`] is
/// returned. The key is used to remove the entry or to change the deadline at
/// which it should be yielded back.
///
/// Once delays have been configured, the `DelayQueue` is used via its
/// [`Stream`] implementation. [`poll`] is called. If an entry has reached its
/// deadline, it is returned. If not, `Async::NotReady` indicating that the
/// current task will be notified once the deadline has been reached.
///
/// # `Stream` implementation
///
/// Items are retrieved from the queue via [`Stream::poll`]. If no delays have
/// expired, no items are returned. In this case, `NotReady` is returned and the
/// current task is registered to be notified once the next item's delay has
/// expired.
///
/// If no items are in the queue, i.e. `is_empty()` returns `true`, then `poll`
/// returns `Ready(None)`. This indicates that the stream has reached an end.
/// However, if a new item is inserted *after*, `poll` will once again start
/// returning items or `NotReady.
///
/// Items are returned ordered by their expirations. Items that are configured
/// to expire first will be returned first. There are no ordering guarantees
/// for items configured to expire the same instant. Also note that delays are
/// rounded to the closest millisecond.
///
/// # Implementation
///
/// The `DelayQueue` is backed by the same hashed timing wheel implementation as
/// [`Timer`] as such, it offers the same performance benefits. See [`Timer`]
/// for further implementation notes.
///
/// State associated with each entry is stored in a [`slab`]. This allows
/// amortizing the cost of allocation. Space created for expired entries is
/// reused when inserting new entries.
///
/// Capacity can be checked using [`capacity`] and allocated preemptively by using
/// the [`reserve`] method.
///
/// # Usage
///
/// Using `DelayQueue` to manage cache entries.
///
/// ```rust
/// #[macro_use]
/// extern crate futures;
/// extern crate tokio;
/// # type CacheKey = String;
/// # type Value = String;
/// use tokio::timer::{delay_queue, DelayQueue, Error};
/// use futures::{Async, Poll, Stream};
/// use std::collections::HashMap;
/// use std::time::Duration;
///
/// struct Cache {
/// entries: HashMap<CacheKey, (Value, delay_queue::Key)>,
/// expirations: DelayQueue<CacheKey>,
/// }
///
/// const TTL_SECS: u64 = 30;
///
/// impl Cache {
/// fn insert(&mut self, key: CacheKey, value: Value) {
/// let delay = self.expirations
/// .insert(key.clone(), Duration::from_secs(TTL_SECS));
///
/// self.entries.insert(key, (value, delay));
/// }
///
/// fn get(&self, key: &CacheKey) -> Option<&Value> {
/// self.entries.get(key)
/// .map(|&(ref v, _)| v)
/// }
///
/// fn remove(&mut self, key: &CacheKey) {
/// if let Some((_, cache_key)) = self.entries.remove(key) {
/// self.expirations.remove(&cache_key);
/// }
/// }
///
/// fn poll_purge(&mut self) -> Poll<(), Error> {
/// while let Some(entry) = try_ready!(self.expirations.poll()) {
/// self.entries.remove(entry.get_ref());
/// }
///
/// Ok(Async::Ready(()))
/// }
/// }
/// # fn main() {}
/// ```
///
/// [`insert`]: #method.insert
/// [`insert_at`]: #method.insert_at
/// [`Key`]: struct.Key.html
/// [`Stream`]: https://docs.rs/futures/0.1/futures/stream/trait.Stream.html
/// [`poll`]: #method.poll
/// [`Stream::poll`]: #method.poll
/// [`Timer`]: ../struct.Timer.html
/// [`slab`]: https://docs.rs/slab
/// [`capacity`]: #method.capacity
/// [`reserve`]: #method.reserve
#[derive(Debug)]
pub struct DelayQueue<T> {
/// Handle to the timer driving the `DelayQueue`
handle: Handle,
/// Stores data associated with entries
slab: Slab<Data<T>>,
/// Lookup structure tracking all delays in the queue
wheel: Wheel<Stack<T>>,
/// Delays that were inserted when already expired. These cannot be stored
/// in the wheel
expired: Stack<T>,
/// Delay expiring when the *first* item in the queue expires
delay: Option<Delay>,
/// Wheel polling state
poll: wheel::Poll,
/// Instant at which the timer starts
start: Instant,
}
/// An entry in `DelayQueue` that has expired and removed.
///
/// Values are returned by [`DelayQueue::poll`].
///
/// [`DelayQueue::poll`]: struct.DelayQueue.html#method.poll
#[derive(Debug)]
pub struct Expired<T> {
/// The data stored in the queue
data: T,
/// The expiration time
deadline: Instant,
/// The key associated with the entry
key: Key,
}
/// Token to a value stored in a `DelayQueue`.
///
/// Instances of `Key` are returned by [`DelayQueue::insert`]. See [`DelayQueue`]
/// documentation for more details.
///
/// [`DelayQueue`]: struct.DelayQueue.html
/// [`DelayQueue::insert`]: struct.DelayQueue.html#method.insert
#[derive(Debug, Clone)]
pub struct Key {
index: usize,
}
#[derive(Debug)]
struct Stack<T> {
/// Head of the stack
head: Option<usize>,
_p: PhantomData<T>,
}
#[derive(Debug)]
struct Data<T> {
/// The data being stored in the queue and will be returned at the requested
/// instant.
inner: T,
/// The instant at which the item is returned.
when: u64,
/// Set to true when stored in the `expired` queue
expired: bool,
/// Next entry in the stack
next: Option<usize>,
/// Previous entry in the stack
prev: Option<usize>,
}
/// Maximum number of entries the queue can handle
const MAX_ENTRIES: usize = (1 << 30) - 1;
impl<T> DelayQueue<T> {
/// Create a new, empty, `DelayQueue`
///
/// The queue will not allocate storage until items are inserted into it.
///
/// # Examples
///
/// ```rust
/// # use tokio_timer::DelayQueue;
/// let delay_queue: DelayQueue<u32> = DelayQueue::new();
/// ```
pub fn new() -> DelayQueue<T> {
DelayQueue::with_capacity(0)
}
/// Create a new, empty, `DelayQueue` backed by the specified timer.
///
/// The queue will not allocate storage until items are inserted into it.
///
/// # Examples
///
/// ```rust,no_run
/// # use tokio_timer::DelayQueue;
/// use tokio_timer::timer::Handle;
///
/// let handle = Handle::default();
/// let delay_queue: DelayQueue<u32> = DelayQueue::with_capacity_and_handle(0, &handle);
/// ```
pub fn with_capacity_and_handle(capacity: usize, handle: &Handle) -> DelayQueue<T> {
DelayQueue {
handle: handle.clone(),
wheel: Wheel::new(),
slab: Slab::with_capacity(capacity),
expired: Stack::default(),
delay: None,
poll: wheel::Poll::new(0),
start: now(),
}
}
/// Create a new, empty, `DelayQueue` with the specified capacity.
///
/// The queue will be able to hold at least `capacity` elements without
/// reallocating. If `capacity` is 0, the queue will not allocate for
/// storage.
///
/// # Examples
///
/// ```rust
/// # use tokio_timer::DelayQueue;
/// # use std::time::Duration;
/// let mut delay_queue = DelayQueue::with_capacity(10);
///
/// // These insertions are done without further allocation
/// for i in 0..10 {
/// delay_queue.insert(i, Duration::from_secs(i));
/// }
///
/// // This will make the queue allocate additional storage
/// delay_queue.insert(11, Duration::from_secs(11));
/// ```
pub fn with_capacity(capacity: usize) -> DelayQueue<T> {
DelayQueue::with_capacity_and_handle(capacity, &Handle::default())
}
/// Insert `value` into the queue set to expire at a specific instant in
/// time.
///
/// This function is identical to `insert`, but takes an `Instant` instead
/// of a `Duration`.
///
/// `value` is stored in the queue until `when` is reached. At which point,
/// `value` will be returned from [`poll`]. If `when` has already been
/// reached, then `value` is immediately made available to poll.
///
/// The return value represents the insertion and is used at an argument to
/// [`remove`] and [`reset`]. Note that [`Key`] is token and is reused once
/// `value` is removed from the queue either by calling [`poll`] after
/// `when` is reached or by calling [`remove`]. At this point, the caller
/// must take care to not use the returned [`Key`] again as it may reference
/// a different item in the queue.
///
/// See [type] level documentation for more details.
///
/// # Panics
///
/// This function panics if `when` is too far in the future.
///
/// # Examples
///
/// Basic usage
///
/// ```rust
/// # extern crate tokio;
/// use tokio::timer::DelayQueue;
/// use std::time::{Instant, Duration};
///
/// # fn main() {
/// let mut delay_queue = DelayQueue::new();
/// let key = delay_queue.insert_at(
/// "foo", Instant::now() + Duration::from_secs(5));
///
/// // Remove the entry
/// let item = delay_queue.remove(&key);
/// assert_eq!(*item.get_ref(), "foo");
/// # }
/// ```
///
/// [`poll`]: #method.poll
/// [`remove`]: #method.remove
/// [`reset`]: #method.reset
/// [`Key`]: struct.Key.html
/// [type]: #
pub fn insert_at(&mut self, value: T, when: Instant) -> Key {
assert!(self.slab.len() < MAX_ENTRIES, "max entries exceeded");
// Normalize the deadline. Values cannot be set to expire in the past.
let when = self.normalize_deadline(when);
// Insert the value in the store
let key = self.slab.insert(Data {
inner: value,
when,
expired: false,
next: None,
prev: None,
});
self.insert_idx(when, key);
// Set a new delay if the current's deadline is later than the one of the new item
let should_set_delay = if let Some(ref delay) = self.delay {
let current_exp = self.normalize_deadline(delay.deadline());
current_exp > when
} else {
true
};
if should_set_delay {
self.delay = Some(self.handle.delay(self.start + Duration::from_millis(when)));
}
Key::new(key)
}
/// Insert `value` into the queue set to expire after the requested duration
/// elapses.
///
/// This function is identical to `insert_at`, but takes a `Duration`
/// instead of an `Instant`.
///
/// `value` is stored in the queue until `when` is reached. At which point,
/// `value` will be returned from [`poll`]. If `when` has already been
/// reached, then `value` is immediately made available to poll.
///
/// The return value represents the insertion and is used at an argument to
/// [`remove`] and [`reset`]. Note that [`Key`] is token and is reused once
/// `value` is removed from the queue either by calling [`poll`] after
/// `when` is reached or by calling [`remove`]. At this point, the caller
/// must take care to not use the returned [`Key`] again as it may reference
/// a different item in the queue.
///
/// See [type] level documentation for more details.
///
/// # Panics
///
/// This function panics if `timeout` is greater than the maximum supported
/// duration.
///
/// # Examples
///
/// Basic usage
///
/// ```rust
/// # extern crate tokio;
/// use tokio::timer::DelayQueue;
/// use std::time::Duration;
///
/// # fn main() {
/// let mut delay_queue = DelayQueue::new();
/// let key = delay_queue.insert("foo", Duration::from_secs(5));
///
/// // Remove the entry
/// let item = delay_queue.remove(&key);
/// assert_eq!(*item.get_ref(), "foo");
/// # }
/// ```
///
/// [`poll`]: #method.poll
/// [`remove`]: #method.remove
/// [`reset`]: #method.reset
/// [`Key`]: struct.Key.html
/// [type]: #
pub fn insert(&mut self, value: T, timeout: Duration) -> Key {
self.insert_at(value, now() + timeout)
}
fn insert_idx(&mut self, when: u64, key: usize) {
use self::wheel::{InsertError, Stack};
// Register the deadline with the timer wheel
match self.wheel.insert(when, key, &mut self.slab) {
Ok(_) => {}
Err((_, InsertError::Elapsed)) => {
self.slab[key].expired = true;
// The delay is already expired, store it in the expired queue
self.expired.push(key, &mut self.slab);
}
Err((_, err)) => panic!("invalid deadline; err={:?}", err),
}
}
/// Remove the item associated with `key` from the queue.
///
/// There must be an item associated with `key`. The function returns the
/// removed item as well as the `Instant` at which it will the delay will
/// have expired.
///
/// # Panics
///
/// The function panics if `key` is not contained by the queue.
///
/// # Examples
///
/// Basic usage
///
/// ```rust
/// # extern crate tokio;
/// use tokio::timer::DelayQueue;
/// use std::time::Duration;
///
/// # fn main() {
/// let mut delay_queue = DelayQueue::new();
/// let key = delay_queue.insert("foo", Duration::from_secs(5));
///
/// // Remove the entry
/// let item = delay_queue.remove(&key);
/// assert_eq!(*item.get_ref(), "foo");
/// # }
/// ```
pub fn remove(&mut self, key: &Key) -> Expired<T> {
use wheel::Stack;
// Special case the `expired` queue
if self.slab[key.index].expired {
self.expired.remove(&key.index, &mut self.slab);
} else {
self.wheel.remove(&key.index, &mut self.slab);
}
let data = self.slab.remove(key.index);
Expired {
key: Key::new(key.index),
data: data.inner,
deadline: self.start + Duration::from_millis(data.when),
}
}
/// Sets the delay of the item associated with `key` to expire at `when`.
///
/// This function is identical to `reset` but takes an `Instant` instead of
/// a `Duration`.
///
/// The item remains in the queue but the delay is set to expire at `when`.
/// If `when` is in the past, then the item is immediately made available to
/// the caller.
///
/// # Panics
///
/// This function panics if `when` is too far in the future or if `key` is
/// not contained by the queue.
///
/// # Examples
///
/// Basic usage
///
/// ```rust
/// # extern crate tokio;
/// use tokio::timer::DelayQueue;
/// use std::time::{Duration, Instant};
///
/// # fn main() {
/// let mut delay_queue = DelayQueue::new();
/// let key = delay_queue.insert("foo", Duration::from_secs(5));
///
/// // "foo" is scheduled to be returned in 5 seconds
///
/// delay_queue.reset_at(&key, Instant::now() + Duration::from_secs(10));
///
/// // "foo"is now scheduled to be returned in 10 seconds
/// # }
/// ```
pub fn reset_at(&mut self, key: &Key, when: Instant) {
self.wheel.remove(&key.index, &mut self.slab);
// Normalize the deadline. Values cannot be set to expire in the past.
let when = self.normalize_deadline(when);
self.slab[key.index].when = when;
self.insert_idx(when, key.index);
let next_deadline = self.next_deadline();
if let (Some(ref mut delay), Some(deadline)) = (&mut self.delay, next_deadline) {
delay.reset(deadline);
}
}
/// Returns the next time poll as determined by the wheel
fn next_deadline(&mut self) -> Option<Instant> {
self.wheel
.poll_at()
.map(|poll_at| self.start + Duration::from_millis(poll_at))
}
/// Sets the delay of the item associated with `key` to expire after
/// `timeout`.
///
/// This function is identical to `reset_at` but takes a `Duration` instead
/// of an `Instant`.
///
/// The item remains in the queue but the delay is set to expire after
/// `timeout`. If `timeout` is zero, then the item is immediately made
/// available to the caller.
///
/// # Panics
///
/// This function panics if `timeout` is greater than the maximum supported
/// duration or if `key` is not contained by the queue.
///
/// # Examples
///
/// Basic usage
///
/// ```rust
/// # extern crate tokio;
/// use tokio::timer::DelayQueue;
/// use std::time::Duration;
///
/// # fn main() {
/// let mut delay_queue = DelayQueue::new();
/// let key = delay_queue.insert("foo", Duration::from_secs(5));
///
/// // "foo" is scheduled to be returned in 5 seconds
///
/// delay_queue.reset(&key, Duration::from_secs(10));
///
/// // "foo"is now scheduled to be returned in 10 seconds
/// # }
/// ```
pub fn reset(&mut self, key: &Key, timeout: Duration) {
self.reset_at(key, now() + timeout);
}
/// Clears the queue, removing all items.
///
/// After calling `clear`, [`poll`] will return `Ok(Ready(None))`.
///
/// Note that this method has no effect on the allocated capacity.
///
/// [`poll`]: #method.poll
///
/// # Examples
///
/// ```rust
/// # extern crate tokio;
/// use tokio::timer::DelayQueue;
/// use std::time::Duration;
///
/// # fn main() {
/// let mut delay_queue = DelayQueue::new();
///
/// delay_queue.insert("foo", Duration::from_secs(5));
///
/// assert!(!delay_queue.is_empty());
///
/// delay_queue.clear();
///
/// assert!(delay_queue.is_empty());
/// # }
/// ```
pub fn clear(&mut self) {
self.slab.clear();
self.expired = Stack::default();
self.wheel = Wheel::new();
self.delay = None;
}
/// Returns the number of elements the queue can hold without reallocating.
///
/// # Examples
///
/// ```rust
/// # use tokio_timer::DelayQueue;
/// let delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10);
/// assert_eq!(delay_queue.capacity(), 10);
/// ```
pub fn capacity(&self) -> usize {
self.slab.capacity()
}
/// Reserve capacity for at least `additional` more items to be queued
/// without allocating.
///
/// `reserve` does nothing if the queue already has sufficient capacity for
/// `additional` more values. If more capacity is required, a new segment of
/// memory will be allocated and all existing values will be copied into it.
/// As such, if the queue is already very large, a call to `reserve` can end
/// up being expensive.
///
/// The queue may reserve more than `additional` extra space in order to
/// avoid frequent reallocations.
///
/// # Panics
///
/// Panics if the new capacity exceeds the maximum number of entries the
/// queue can contain.
///
/// # Examples
///
/// ```
/// # use tokio_timer::DelayQueue;
/// # use std::time::Duration;
/// let mut delay_queue = DelayQueue::new();
/// delay_queue.insert("hello", Duration::from_secs(10));
/// delay_queue.reserve(10);
/// assert!(delay_queue.capacity() >= 11);
/// ```
pub fn reserve(&mut self, additional: usize) {
self.slab.reserve(additional);
}
/// Returns `true` if there are no items in the queue.
///
/// Note that this function returns `false` even if all items have not yet
/// expired and a call to `poll` will return `NotReady`.
///
/// # Examples
///
/// ```
/// # use tokio_timer::DelayQueue;
/// use std::time::Duration;
/// let mut delay_queue = DelayQueue::new();
/// assert!(delay_queue.is_empty());
///
/// delay_queue.insert("hello", Duration::from_secs(5));
/// assert!(!delay_queue.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.slab.is_empty()
}
/// Polls the queue, returning the index of the next slot in the slab that
/// should be returned.
///
/// A slot should be returned when the associated deadline has been reached.
fn poll_idx(&mut self) -> Poll<Option<usize>, Error> {
use self::wheel::Stack;
let expired = self.expired.pop(&mut self.slab);
if expired.is_some() {
return Ok(expired.into());
}
loop {
if let Some(ref mut delay) = self.delay {
if !delay.is_elapsed() {
try_ready!(delay.poll());
}
let now = ::ms(delay.deadline() - self.start, ::Round::Down);
self.poll = wheel::Poll::new(now);
}
self.delay = None;
if let Some(idx) = self.wheel.poll(&mut self.poll, &mut self.slab) {
return Ok(Some(idx).into());
}
if let Some(deadline) = self.next_deadline() {
self.delay = Some(self.handle.delay(deadline));
} else {
return Ok(None.into());
}
}
}
fn normalize_deadline(&self, when: Instant) -> u64 {
let when = if when < self.start {
0
} else {
::ms(when - self.start, ::Round::Up)
};
cmp::max(when, self.wheel.elapsed())
}
}
impl<T> Stream for DelayQueue<T> {
type Item = Expired<T>;
type Error = Error;
fn poll(&mut self) -> Poll<Option<Self::Item>, Error> {
let item = try_ready!(self.poll_idx()).map(|idx| {
let data = self.slab.remove(idx);
debug_assert!(data.next.is_none());
debug_assert!(data.prev.is_none());
Expired {
key: Key::new(idx),
data: data.inner,
deadline: self.start + Duration::from_millis(data.when),
}
});
Ok(item.into())
}
}
impl<T> wheel::Stack for Stack<T> {
type Owned = usize;
type Borrowed = usize;
type Store = Slab<Data<T>>;
fn is_empty(&self) -> bool {
self.head.is_none()
}
fn push(&mut self, item: Self::Owned, store: &mut Self::Store) {
// Ensure the entry is not already in a stack.
debug_assert!(store[item].next.is_none());
debug_assert!(store[item].prev.is_none());
// Remove the old head entry
let old = self.head.take();
if let Some(idx) = old {
store[idx].prev = Some(item);
}
store[item].next = old;
self.head = Some(item)
}
fn pop(&mut self, store: &mut Self::Store) -> Option<Self::Owned> {
if let Some(idx) = self.head {
self.head = store[idx].next;
if let Some(idx) = self.head {
store[idx].prev = None;
}
store[idx].next = None;
debug_assert!(store[idx].prev.is_none());
Some(idx)
} else {
None
}
}
fn remove(&mut self, item: &Self::Borrowed, store: &mut Self::Store) {
assert!(store.contains(*item));
// Ensure that the entry is in fact contained by the stack
debug_assert!({
// This walks the full linked list even if an entry is found.
let mut next = self.head;
let mut contains = false;
while let Some(idx) = next {
if idx == *item {
debug_assert!(!contains);
contains = true;
}
next = store[idx].next;
}
contains
});
if let Some(next) = store[*item].next {
store[next].prev = store[*item].prev;
}
if let Some(prev) = store[*item].prev {
store[prev].next = store[*item].next;
} else {
self.head = store[*item].next;
}
store[*item].next = None;
store[*item].prev = None;
}
fn when(item: &Self::Borrowed, store: &Self::Store) -> u64 {
store[*item].when
}
}
impl<T> Default for Stack<T> {
fn default() -> Stack<T> {
Stack {
head: None,
_p: PhantomData,
}
}
}
impl Key {
pub(crate) fn new(index: usize) -> Key {
Key { index }
}
}
impl<T> Expired<T> {
/// Returns a reference to the inner value.
pub fn get_ref(&self) -> &T {
&self.data
}
/// Returns a mutable reference to the inner value.
pub fn get_mut(&mut self) -> &mut T {
&mut self.data
}
/// Consumes `self` and returns the inner value.
pub fn into_inner(self) -> T {
self.data
}
}