tokio_timer/delay_queue.rs
1//! A queue of delayed elements.
2//!
3//! See [`DelayQueue`] for more details.
4//!
5//! [`DelayQueue`]: struct.DelayQueue.html
6
7use clock::now;
8use timer::Handle;
9use wheel::{self, Wheel};
10use {Delay, Error};
11
12use futures::{Future, Poll, Stream};
13use slab::Slab;
14
15use std::cmp;
16use std::marker::PhantomData;
17use std::time::{Duration, Instant};
18
19/// A queue of delayed elements.
20///
21/// Once an element is inserted into the `DelayQueue`, it is yielded once the
22/// specified deadline has been reached.
23///
24/// # Usage
25///
26/// Elements are inserted into `DelayQueue` using the [`insert`] or
27/// [`insert_at`] methods. A deadline is provided with the item and a [`Key`] is
28/// returned. The key is used to remove the entry or to change the deadline at
29/// which it should be yielded back.
30///
31/// Once delays have been configured, the `DelayQueue` is used via its
32/// [`Stream`] implementation. [`poll`] is called. If an entry has reached its
33/// deadline, it is returned. If not, `Async::NotReady` indicating that the
34/// current task will be notified once the deadline has been reached.
35///
36/// # `Stream` implementation
37///
38/// Items are retrieved from the queue via [`Stream::poll`]. If no delays have
39/// expired, no items are returned. In this case, `NotReady` is returned and the
40/// current task is registered to be notified once the next item's delay has
41/// expired.
42///
43/// If no items are in the queue, i.e. `is_empty()` returns `true`, then `poll`
44/// returns `Ready(None)`. This indicates that the stream has reached an end.
45/// However, if a new item is inserted *after*, `poll` will once again start
46/// returning items or `NotReady.
47///
48/// Items are returned ordered by their expirations. Items that are configured
49/// to expire first will be returned first. There are no ordering guarantees
50/// for items configured to expire the same instant. Also note that delays are
51/// rounded to the closest millisecond.
52///
53/// # Implementation
54///
55/// The `DelayQueue` is backed by the same hashed timing wheel implementation as
56/// [`Timer`] as such, it offers the same performance benefits. See [`Timer`]
57/// for further implementation notes.
58///
59/// State associated with each entry is stored in a [`slab`]. This allows
60/// amortizing the cost of allocation. Space created for expired entries is
61/// reused when inserting new entries.
62///
63/// Capacity can be checked using [`capacity`] and allocated preemptively by using
64/// the [`reserve`] method.
65///
66/// # Usage
67///
68/// Using `DelayQueue` to manage cache entries.
69///
70/// ```rust
71/// #[macro_use]
72/// extern crate futures;
73/// extern crate tokio;
74/// # type CacheKey = String;
75/// # type Value = String;
76/// use tokio::timer::{delay_queue, DelayQueue, Error};
77/// use futures::{Async, Poll, Stream};
78/// use std::collections::HashMap;
79/// use std::time::Duration;
80///
81/// struct Cache {
82/// entries: HashMap<CacheKey, (Value, delay_queue::Key)>,
83/// expirations: DelayQueue<CacheKey>,
84/// }
85///
86/// const TTL_SECS: u64 = 30;
87///
88/// impl Cache {
89/// fn insert(&mut self, key: CacheKey, value: Value) {
90/// let delay = self.expirations
91/// .insert(key.clone(), Duration::from_secs(TTL_SECS));
92///
93/// self.entries.insert(key, (value, delay));
94/// }
95///
96/// fn get(&self, key: &CacheKey) -> Option<&Value> {
97/// self.entries.get(key)
98/// .map(|&(ref v, _)| v)
99/// }
100///
101/// fn remove(&mut self, key: &CacheKey) {
102/// if let Some((_, cache_key)) = self.entries.remove(key) {
103/// self.expirations.remove(&cache_key);
104/// }
105/// }
106///
107/// fn poll_purge(&mut self) -> Poll<(), Error> {
108/// while let Some(entry) = try_ready!(self.expirations.poll()) {
109/// self.entries.remove(entry.get_ref());
110/// }
111///
112/// Ok(Async::Ready(()))
113/// }
114/// }
115/// # fn main() {}
116/// ```
117///
118/// [`insert`]: #method.insert
119/// [`insert_at`]: #method.insert_at
120/// [`Key`]: struct.Key.html
121/// [`Stream`]: https://docs.rs/futures/0.1/futures/stream/trait.Stream.html
122/// [`poll`]: #method.poll
123/// [`Stream::poll`]: #method.poll
124/// [`Timer`]: ../struct.Timer.html
125/// [`slab`]: https://docs.rs/slab
126/// [`capacity`]: #method.capacity
127/// [`reserve`]: #method.reserve
128#[derive(Debug)]
129pub struct DelayQueue<T> {
130 /// Handle to the timer driving the `DelayQueue`
131 handle: Handle,
132
133 /// Stores data associated with entries
134 slab: Slab<Data<T>>,
135
136 /// Lookup structure tracking all delays in the queue
137 wheel: Wheel<Stack<T>>,
138
139 /// Delays that were inserted when already expired. These cannot be stored
140 /// in the wheel
141 expired: Stack<T>,
142
143 /// Delay expiring when the *first* item in the queue expires
144 delay: Option<Delay>,
145
146 /// Wheel polling state
147 poll: wheel::Poll,
148
149 /// Instant at which the timer starts
150 start: Instant,
151}
152
153/// An entry in `DelayQueue` that has expired and removed.
154///
155/// Values are returned by [`DelayQueue::poll`].
156///
157/// [`DelayQueue::poll`]: struct.DelayQueue.html#method.poll
158#[derive(Debug)]
159pub struct Expired<T> {
160 /// The data stored in the queue
161 data: T,
162
163 /// The expiration time
164 deadline: Instant,
165
166 /// The key associated with the entry
167 key: Key,
168}
169
170/// Token to a value stored in a `DelayQueue`.
171///
172/// Instances of `Key` are returned by [`DelayQueue::insert`]. See [`DelayQueue`]
173/// documentation for more details.
174///
175/// [`DelayQueue`]: struct.DelayQueue.html
176/// [`DelayQueue::insert`]: struct.DelayQueue.html#method.insert
177#[derive(Debug, Clone)]
178pub struct Key {
179 index: usize,
180}
181
182#[derive(Debug)]
183struct Stack<T> {
184 /// Head of the stack
185 head: Option<usize>,
186 _p: PhantomData<T>,
187}
188
189#[derive(Debug)]
190struct Data<T> {
191 /// The data being stored in the queue and will be returned at the requested
192 /// instant.
193 inner: T,
194
195 /// The instant at which the item is returned.
196 when: u64,
197
198 /// Set to true when stored in the `expired` queue
199 expired: bool,
200
201 /// Next entry in the stack
202 next: Option<usize>,
203
204 /// Previous entry in the stack
205 prev: Option<usize>,
206}
207
208/// Maximum number of entries the queue can handle
209const MAX_ENTRIES: usize = (1 << 30) - 1;
210
211impl<T> DelayQueue<T> {
212 /// Create a new, empty, `DelayQueue`
213 ///
214 /// The queue will not allocate storage until items are inserted into it.
215 ///
216 /// # Examples
217 ///
218 /// ```rust
219 /// # use tokio_timer::DelayQueue;
220 /// let delay_queue: DelayQueue<u32> = DelayQueue::new();
221 /// ```
222 pub fn new() -> DelayQueue<T> {
223 DelayQueue::with_capacity(0)
224 }
225
226 /// Create a new, empty, `DelayQueue` backed by the specified timer.
227 ///
228 /// The queue will not allocate storage until items are inserted into it.
229 ///
230 /// # Examples
231 ///
232 /// ```rust,no_run
233 /// # use tokio_timer::DelayQueue;
234 /// use tokio_timer::timer::Handle;
235 ///
236 /// let handle = Handle::default();
237 /// let delay_queue: DelayQueue<u32> = DelayQueue::with_capacity_and_handle(0, &handle);
238 /// ```
239 pub fn with_capacity_and_handle(capacity: usize, handle: &Handle) -> DelayQueue<T> {
240 DelayQueue {
241 handle: handle.clone(),
242 wheel: Wheel::new(),
243 slab: Slab::with_capacity(capacity),
244 expired: Stack::default(),
245 delay: None,
246 poll: wheel::Poll::new(0),
247 start: now(),
248 }
249 }
250
251 /// Create a new, empty, `DelayQueue` with the specified capacity.
252 ///
253 /// The queue will be able to hold at least `capacity` elements without
254 /// reallocating. If `capacity` is 0, the queue will not allocate for
255 /// storage.
256 ///
257 /// # Examples
258 ///
259 /// ```rust
260 /// # use tokio_timer::DelayQueue;
261 /// # use std::time::Duration;
262 /// let mut delay_queue = DelayQueue::with_capacity(10);
263 ///
264 /// // These insertions are done without further allocation
265 /// for i in 0..10 {
266 /// delay_queue.insert(i, Duration::from_secs(i));
267 /// }
268 ///
269 /// // This will make the queue allocate additional storage
270 /// delay_queue.insert(11, Duration::from_secs(11));
271 /// ```
272 pub fn with_capacity(capacity: usize) -> DelayQueue<T> {
273 DelayQueue::with_capacity_and_handle(capacity, &Handle::default())
274 }
275
276 /// Insert `value` into the queue set to expire at a specific instant in
277 /// time.
278 ///
279 /// This function is identical to `insert`, but takes an `Instant` instead
280 /// of a `Duration`.
281 ///
282 /// `value` is stored in the queue until `when` is reached. At which point,
283 /// `value` will be returned from [`poll`]. If `when` has already been
284 /// reached, then `value` is immediately made available to poll.
285 ///
286 /// The return value represents the insertion and is used at an argument to
287 /// [`remove`] and [`reset`]. Note that [`Key`] is token and is reused once
288 /// `value` is removed from the queue either by calling [`poll`] after
289 /// `when` is reached or by calling [`remove`]. At this point, the caller
290 /// must take care to not use the returned [`Key`] again as it may reference
291 /// a different item in the queue.
292 ///
293 /// See [type] level documentation for more details.
294 ///
295 /// # Panics
296 ///
297 /// This function panics if `when` is too far in the future.
298 ///
299 /// # Examples
300 ///
301 /// Basic usage
302 ///
303 /// ```rust
304 /// # extern crate tokio;
305 /// use tokio::timer::DelayQueue;
306 /// use std::time::{Instant, Duration};
307 ///
308 /// # fn main() {
309 /// let mut delay_queue = DelayQueue::new();
310 /// let key = delay_queue.insert_at(
311 /// "foo", Instant::now() + Duration::from_secs(5));
312 ///
313 /// // Remove the entry
314 /// let item = delay_queue.remove(&key);
315 /// assert_eq!(*item.get_ref(), "foo");
316 /// # }
317 /// ```
318 ///
319 /// [`poll`]: #method.poll
320 /// [`remove`]: #method.remove
321 /// [`reset`]: #method.reset
322 /// [`Key`]: struct.Key.html
323 /// [type]: #
324 pub fn insert_at(&mut self, value: T, when: Instant) -> Key {
325 assert!(self.slab.len() < MAX_ENTRIES, "max entries exceeded");
326
327 // Normalize the deadline. Values cannot be set to expire in the past.
328 let when = self.normalize_deadline(when);
329
330 // Insert the value in the store
331 let key = self.slab.insert(Data {
332 inner: value,
333 when,
334 expired: false,
335 next: None,
336 prev: None,
337 });
338
339 self.insert_idx(when, key);
340
341 // Set a new delay if the current's deadline is later than the one of the new item
342 let should_set_delay = if let Some(ref delay) = self.delay {
343 let current_exp = self.normalize_deadline(delay.deadline());
344 current_exp > when
345 } else {
346 true
347 };
348
349 if should_set_delay {
350 self.delay = Some(self.handle.delay(self.start + Duration::from_millis(when)));
351 }
352
353 Key::new(key)
354 }
355
356 /// Insert `value` into the queue set to expire after the requested duration
357 /// elapses.
358 ///
359 /// This function is identical to `insert_at`, but takes a `Duration`
360 /// instead of an `Instant`.
361 ///
362 /// `value` is stored in the queue until `when` is reached. At which point,
363 /// `value` will be returned from [`poll`]. If `when` has already been
364 /// reached, then `value` is immediately made available to poll.
365 ///
366 /// The return value represents the insertion and is used at an argument to
367 /// [`remove`] and [`reset`]. Note that [`Key`] is token and is reused once
368 /// `value` is removed from the queue either by calling [`poll`] after
369 /// `when` is reached or by calling [`remove`]. At this point, the caller
370 /// must take care to not use the returned [`Key`] again as it may reference
371 /// a different item in the queue.
372 ///
373 /// See [type] level documentation for more details.
374 ///
375 /// # Panics
376 ///
377 /// This function panics if `timeout` is greater than the maximum supported
378 /// duration.
379 ///
380 /// # Examples
381 ///
382 /// Basic usage
383 ///
384 /// ```rust
385 /// # extern crate tokio;
386 /// use tokio::timer::DelayQueue;
387 /// use std::time::Duration;
388 ///
389 /// # fn main() {
390 /// let mut delay_queue = DelayQueue::new();
391 /// let key = delay_queue.insert("foo", Duration::from_secs(5));
392 ///
393 /// // Remove the entry
394 /// let item = delay_queue.remove(&key);
395 /// assert_eq!(*item.get_ref(), "foo");
396 /// # }
397 /// ```
398 ///
399 /// [`poll`]: #method.poll
400 /// [`remove`]: #method.remove
401 /// [`reset`]: #method.reset
402 /// [`Key`]: struct.Key.html
403 /// [type]: #
404 pub fn insert(&mut self, value: T, timeout: Duration) -> Key {
405 self.insert_at(value, now() + timeout)
406 }
407
408 fn insert_idx(&mut self, when: u64, key: usize) {
409 use self::wheel::{InsertError, Stack};
410
411 // Register the deadline with the timer wheel
412 match self.wheel.insert(when, key, &mut self.slab) {
413 Ok(_) => {}
414 Err((_, InsertError::Elapsed)) => {
415 self.slab[key].expired = true;
416 // The delay is already expired, store it in the expired queue
417 self.expired.push(key, &mut self.slab);
418 }
419 Err((_, err)) => panic!("invalid deadline; err={:?}", err),
420 }
421 }
422
423 /// Remove the item associated with `key` from the queue.
424 ///
425 /// There must be an item associated with `key`. The function returns the
426 /// removed item as well as the `Instant` at which it will the delay will
427 /// have expired.
428 ///
429 /// # Panics
430 ///
431 /// The function panics if `key` is not contained by the queue.
432 ///
433 /// # Examples
434 ///
435 /// Basic usage
436 ///
437 /// ```rust
438 /// # extern crate tokio;
439 /// use tokio::timer::DelayQueue;
440 /// use std::time::Duration;
441 ///
442 /// # fn main() {
443 /// let mut delay_queue = DelayQueue::new();
444 /// let key = delay_queue.insert("foo", Duration::from_secs(5));
445 ///
446 /// // Remove the entry
447 /// let item = delay_queue.remove(&key);
448 /// assert_eq!(*item.get_ref(), "foo");
449 /// # }
450 /// ```
451 pub fn remove(&mut self, key: &Key) -> Expired<T> {
452 use wheel::Stack;
453
454 // Special case the `expired` queue
455 if self.slab[key.index].expired {
456 self.expired.remove(&key.index, &mut self.slab);
457 } else {
458 self.wheel.remove(&key.index, &mut self.slab);
459 }
460
461 let data = self.slab.remove(key.index);
462
463 Expired {
464 key: Key::new(key.index),
465 data: data.inner,
466 deadline: self.start + Duration::from_millis(data.when),
467 }
468 }
469
470 /// Sets the delay of the item associated with `key` to expire at `when`.
471 ///
472 /// This function is identical to `reset` but takes an `Instant` instead of
473 /// a `Duration`.
474 ///
475 /// The item remains in the queue but the delay is set to expire at `when`.
476 /// If `when` is in the past, then the item is immediately made available to
477 /// the caller.
478 ///
479 /// # Panics
480 ///
481 /// This function panics if `when` is too far in the future or if `key` is
482 /// not contained by the queue.
483 ///
484 /// # Examples
485 ///
486 /// Basic usage
487 ///
488 /// ```rust
489 /// # extern crate tokio;
490 /// use tokio::timer::DelayQueue;
491 /// use std::time::{Duration, Instant};
492 ///
493 /// # fn main() {
494 /// let mut delay_queue = DelayQueue::new();
495 /// let key = delay_queue.insert("foo", Duration::from_secs(5));
496 ///
497 /// // "foo" is scheduled to be returned in 5 seconds
498 ///
499 /// delay_queue.reset_at(&key, Instant::now() + Duration::from_secs(10));
500 ///
501 /// // "foo"is now scheduled to be returned in 10 seconds
502 /// # }
503 /// ```
504 pub fn reset_at(&mut self, key: &Key, when: Instant) {
505 self.wheel.remove(&key.index, &mut self.slab);
506
507 // Normalize the deadline. Values cannot be set to expire in the past.
508 let when = self.normalize_deadline(when);
509
510 self.slab[key.index].when = when;
511 self.insert_idx(when, key.index);
512
513 let next_deadline = self.next_deadline();
514 if let (Some(ref mut delay), Some(deadline)) = (&mut self.delay, next_deadline) {
515 delay.reset(deadline);
516 }
517 }
518
519 /// Returns the next time poll as determined by the wheel
520 fn next_deadline(&mut self) -> Option<Instant> {
521 self.wheel
522 .poll_at()
523 .map(|poll_at| self.start + Duration::from_millis(poll_at))
524 }
525
526 /// Sets the delay of the item associated with `key` to expire after
527 /// `timeout`.
528 ///
529 /// This function is identical to `reset_at` but takes a `Duration` instead
530 /// of an `Instant`.
531 ///
532 /// The item remains in the queue but the delay is set to expire after
533 /// `timeout`. If `timeout` is zero, then the item is immediately made
534 /// available to the caller.
535 ///
536 /// # Panics
537 ///
538 /// This function panics if `timeout` is greater than the maximum supported
539 /// duration or if `key` is not contained by the queue.
540 ///
541 /// # Examples
542 ///
543 /// Basic usage
544 ///
545 /// ```rust
546 /// # extern crate tokio;
547 /// use tokio::timer::DelayQueue;
548 /// use std::time::Duration;
549 ///
550 /// # fn main() {
551 /// let mut delay_queue = DelayQueue::new();
552 /// let key = delay_queue.insert("foo", Duration::from_secs(5));
553 ///
554 /// // "foo" is scheduled to be returned in 5 seconds
555 ///
556 /// delay_queue.reset(&key, Duration::from_secs(10));
557 ///
558 /// // "foo"is now scheduled to be returned in 10 seconds
559 /// # }
560 /// ```
561 pub fn reset(&mut self, key: &Key, timeout: Duration) {
562 self.reset_at(key, now() + timeout);
563 }
564
565 /// Clears the queue, removing all items.
566 ///
567 /// After calling `clear`, [`poll`] will return `Ok(Ready(None))`.
568 ///
569 /// Note that this method has no effect on the allocated capacity.
570 ///
571 /// [`poll`]: #method.poll
572 ///
573 /// # Examples
574 ///
575 /// ```rust
576 /// # extern crate tokio;
577 /// use tokio::timer::DelayQueue;
578 /// use std::time::Duration;
579 ///
580 /// # fn main() {
581 /// let mut delay_queue = DelayQueue::new();
582 ///
583 /// delay_queue.insert("foo", Duration::from_secs(5));
584 ///
585 /// assert!(!delay_queue.is_empty());
586 ///
587 /// delay_queue.clear();
588 ///
589 /// assert!(delay_queue.is_empty());
590 /// # }
591 /// ```
592 pub fn clear(&mut self) {
593 self.slab.clear();
594 self.expired = Stack::default();
595 self.wheel = Wheel::new();
596 self.delay = None;
597 }
598
599 /// Returns the number of elements the queue can hold without reallocating.
600 ///
601 /// # Examples
602 ///
603 /// ```rust
604 /// # use tokio_timer::DelayQueue;
605 /// let delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10);
606 /// assert_eq!(delay_queue.capacity(), 10);
607 /// ```
608 pub fn capacity(&self) -> usize {
609 self.slab.capacity()
610 }
611
612 /// Reserve capacity for at least `additional` more items to be queued
613 /// without allocating.
614 ///
615 /// `reserve` does nothing if the queue already has sufficient capacity for
616 /// `additional` more values. If more capacity is required, a new segment of
617 /// memory will be allocated and all existing values will be copied into it.
618 /// As such, if the queue is already very large, a call to `reserve` can end
619 /// up being expensive.
620 ///
621 /// The queue may reserve more than `additional` extra space in order to
622 /// avoid frequent reallocations.
623 ///
624 /// # Panics
625 ///
626 /// Panics if the new capacity exceeds the maximum number of entries the
627 /// queue can contain.
628 ///
629 /// # Examples
630 ///
631 /// ```
632 /// # use tokio_timer::DelayQueue;
633 /// # use std::time::Duration;
634 /// let mut delay_queue = DelayQueue::new();
635 /// delay_queue.insert("hello", Duration::from_secs(10));
636 /// delay_queue.reserve(10);
637 /// assert!(delay_queue.capacity() >= 11);
638 /// ```
639 pub fn reserve(&mut self, additional: usize) {
640 self.slab.reserve(additional);
641 }
642
643 /// Returns `true` if there are no items in the queue.
644 ///
645 /// Note that this function returns `false` even if all items have not yet
646 /// expired and a call to `poll` will return `NotReady`.
647 ///
648 /// # Examples
649 ///
650 /// ```
651 /// # use tokio_timer::DelayQueue;
652 /// use std::time::Duration;
653 /// let mut delay_queue = DelayQueue::new();
654 /// assert!(delay_queue.is_empty());
655 ///
656 /// delay_queue.insert("hello", Duration::from_secs(5));
657 /// assert!(!delay_queue.is_empty());
658 /// ```
659 pub fn is_empty(&self) -> bool {
660 self.slab.is_empty()
661 }
662
663 /// Polls the queue, returning the index of the next slot in the slab that
664 /// should be returned.
665 ///
666 /// A slot should be returned when the associated deadline has been reached.
667 fn poll_idx(&mut self) -> Poll<Option<usize>, Error> {
668 use self::wheel::Stack;
669
670 let expired = self.expired.pop(&mut self.slab);
671
672 if expired.is_some() {
673 return Ok(expired.into());
674 }
675
676 loop {
677 if let Some(ref mut delay) = self.delay {
678 if !delay.is_elapsed() {
679 try_ready!(delay.poll());
680 }
681
682 let now = ::ms(delay.deadline() - self.start, ::Round::Down);
683
684 self.poll = wheel::Poll::new(now);
685 }
686
687 self.delay = None;
688
689 if let Some(idx) = self.wheel.poll(&mut self.poll, &mut self.slab) {
690 return Ok(Some(idx).into());
691 }
692
693 if let Some(deadline) = self.next_deadline() {
694 self.delay = Some(self.handle.delay(deadline));
695 } else {
696 return Ok(None.into());
697 }
698 }
699 }
700
701 fn normalize_deadline(&self, when: Instant) -> u64 {
702 let when = if when < self.start {
703 0
704 } else {
705 ::ms(when - self.start, ::Round::Up)
706 };
707
708 cmp::max(when, self.wheel.elapsed())
709 }
710}
711
712impl<T> Stream for DelayQueue<T> {
713 type Item = Expired<T>;
714 type Error = Error;
715
716 fn poll(&mut self) -> Poll<Option<Self::Item>, Error> {
717 let item = try_ready!(self.poll_idx()).map(|idx| {
718 let data = self.slab.remove(idx);
719 debug_assert!(data.next.is_none());
720 debug_assert!(data.prev.is_none());
721
722 Expired {
723 key: Key::new(idx),
724 data: data.inner,
725 deadline: self.start + Duration::from_millis(data.when),
726 }
727 });
728
729 Ok(item.into())
730 }
731}
732
733impl<T> wheel::Stack for Stack<T> {
734 type Owned = usize;
735 type Borrowed = usize;
736 type Store = Slab<Data<T>>;
737
738 fn is_empty(&self) -> bool {
739 self.head.is_none()
740 }
741
742 fn push(&mut self, item: Self::Owned, store: &mut Self::Store) {
743 // Ensure the entry is not already in a stack.
744 debug_assert!(store[item].next.is_none());
745 debug_assert!(store[item].prev.is_none());
746
747 // Remove the old head entry
748 let old = self.head.take();
749
750 if let Some(idx) = old {
751 store[idx].prev = Some(item);
752 }
753
754 store[item].next = old;
755 self.head = Some(item)
756 }
757
758 fn pop(&mut self, store: &mut Self::Store) -> Option<Self::Owned> {
759 if let Some(idx) = self.head {
760 self.head = store[idx].next;
761
762 if let Some(idx) = self.head {
763 store[idx].prev = None;
764 }
765
766 store[idx].next = None;
767 debug_assert!(store[idx].prev.is_none());
768
769 Some(idx)
770 } else {
771 None
772 }
773 }
774
775 fn remove(&mut self, item: &Self::Borrowed, store: &mut Self::Store) {
776 assert!(store.contains(*item));
777
778 // Ensure that the entry is in fact contained by the stack
779 debug_assert!({
780 // This walks the full linked list even if an entry is found.
781 let mut next = self.head;
782 let mut contains = false;
783
784 while let Some(idx) = next {
785 if idx == *item {
786 debug_assert!(!contains);
787 contains = true;
788 }
789
790 next = store[idx].next;
791 }
792
793 contains
794 });
795
796 if let Some(next) = store[*item].next {
797 store[next].prev = store[*item].prev;
798 }
799
800 if let Some(prev) = store[*item].prev {
801 store[prev].next = store[*item].next;
802 } else {
803 self.head = store[*item].next;
804 }
805
806 store[*item].next = None;
807 store[*item].prev = None;
808 }
809
810 fn when(item: &Self::Borrowed, store: &Self::Store) -> u64 {
811 store[*item].when
812 }
813}
814
815impl<T> Default for Stack<T> {
816 fn default() -> Stack<T> {
817 Stack {
818 head: None,
819 _p: PhantomData,
820 }
821 }
822}
823
824impl Key {
825 pub(crate) fn new(index: usize) -> Key {
826 Key { index }
827 }
828}
829
830impl<T> Expired<T> {
831 /// Returns a reference to the inner value.
832 pub fn get_ref(&self) -> &T {
833 &self.data
834 }
835
836 /// Returns a mutable reference to the inner value.
837 pub fn get_mut(&mut self) -> &mut T {
838 &mut self.data
839 }
840
841 /// Consumes `self` and returns the inner value.
842 pub fn into_inner(self) -> T {
843 self.data
844 }
845}