tokio_trace/span.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
//! Spans represent periods of time in the execution of a program.
//!
//! # Entering a Span
//!
//! A thread of execution is said to _enter_ a span when it begins executing,
//! and _exit_ the span when it switches to another context. Spans may be
//! entered through the [`enter`] method, which enters the target span,
//! performs a given function (either a closure or a function pointer), exits
//! the span, and then returns the result.
//!
//! Calling `enter` on a span handle enters the span that handle corresponds to,
//! if the span exists:
//! ```
//! # #[macro_use] extern crate tokio_trace;
//! # use tokio_trace::Level;
//! # fn main() {
//! let my_var: u64 = 5;
//! let my_span = span!(Level::TRACE, "my_span", my_var = &my_var);
//!
//! my_span.enter(|| {
//! // perform some work in the context of `my_span`...
//! });
//!
//! // Perform some work outside of the context of `my_span`...
//!
//! my_span.enter(|| {
//! // Perform some more work in the context of `my_span`.
//! });
//! # }
//! ```
//!
//! # The Span Lifecycle
//!
//! Execution may enter and exit a span multiple times before that
//! span is _closed_. Consider, for example, a future which has an associated
//! span and enters that span every time it is polled:
//! ```rust
//! # extern crate tokio_trace;
//! # extern crate futures;
//! # use futures::{Future, Poll, Async};
//! struct MyFuture {
//! // data
//! span: tokio_trace::Span,
//! }
//!
//! impl Future for MyFuture {
//! type Item = ();
//! type Error = ();
//!
//! fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
//! self.span.enter(|| {
//! // Do actual future work
//! # Ok(Async::Ready(()))
//! })
//! }
//! }
//! ```
//!
//! If this future was spawned on an executor, it might yield one or more times
//! before `poll` returns `Ok(Async::Ready)`. If the future were to yield, then
//! the executor would move on to poll the next future, which may _also_ enter
//! an associated span or series of spans. Therefore, it is valid for a span to
//! be entered repeatedly before it completes. Only the time when that span or
//! one of its children was the current span is considered to be time spent in
//! that span. A span which is not executing and has not yet been closed is said
//! to be _idle_.
//!
//! Because spans may be entered and exited multiple times before they close,
//! [`Subscriber`]s have separate trait methods which are called to notify them
//! of span exits and when span handles are dropped. When execution exits a
//! span, [`exit`] will always be called with that span's ID to notify the
//! subscriber that the span has been exited. When span handles are dropped, the
//! [`drop_span`] method is called with that span's ID. The subscriber may use
//! this to determine whether or not the span will be entered again.
//!
//! If there is only a single handle with the capacity to exit a span, dropping
//! that handle "close" the span, since the capacity to enter it no longer
//! exists. For example:
//! ```
//! # #[macro_use] extern crate tokio_trace;
//! # use tokio_trace::Level;
//! # fn main() {
//! {
//! span!(Level::TRACE, "my_span").enter(|| {
//! // perform some work in the context of `my_span`...
//! }); // --> Subscriber::exit(my_span)
//!
//! // The handle to `my_span` only lives inside of this block; when it is
//! // dropped, the subscriber will be informed via `drop_span`.
//!
//! } // --> Subscriber::drop_span(my_span)
//! # }
//! ```
//!
//! However, if multiple handles exist, the span can still be re-entered even if
//! one or more is dropped. For determining when _all_ handles to a span have
//! been dropped, `Subscriber`s have a [`clone_span`] method, which is called
//! every time a span handle is cloned. Combined with `drop_span`, this may be
//! used to track the number of handles to a given span — if `drop_span` has
//! been called one more time than the number of calls to `clone_span` for a
//! given ID, then no more handles to the span with that ID exist. The
//! subscriber may then treat it as closed.
//!
//! # Accessing a Span's Attributes
//!
//! The [`Attributes`] type represents a *non-entering* reference to a `Span`'s data
//! — a set of key-value pairs (known as _fields_), a creation timestamp,
//! a reference to the span's parent in the trace tree, and metadata describing
//! the source code location where the span was created. This data is provided
//! to the [`Subscriber`] when the span is created; it may then choose to cache
//! the data for future use, record it in some manner, or discard it completely.
//!
//! [`clone_span`]: ../subscriber/trait.Subscriber.html#method.clone_span
//! [`drop_span`]: ../subscriber/trait.Subscriber.html#method.drop_span
//! [`exit`]: ../subscriber/trait.Subscriber.html#tymethod.exit
//! [`Subscriber`]: ../subscriber/trait.Subscriber.html
//! [`Attributes`]: struct.Attributes.html
//! [`enter`]: struct.Span.html#method.enter
pub use tokio_trace_core::span::{Attributes, Id, Record};
use std::{
cmp, fmt,
hash::{Hash, Hasher},
};
use {dispatcher::Dispatch, field, Metadata};
/// Trait implemented by types which have a span `Id`.
pub trait AsId: ::sealed::Sealed {
/// Returns the `Id` of the span that `self` corresponds to, or `None` if
/// this corresponds to a disabled span.
fn as_id(&self) -> Option<&Id>;
}
/// A handle representing a span, with the capability to enter the span if it
/// exists.
///
/// If the span was rejected by the current `Subscriber`'s filter, entering the
/// span will silently do nothing. Thus, the handle can be used in the same
/// manner regardless of whether or not the trace is currently being collected.
#[derive(Clone)]
pub struct Span {
/// A handle used to enter the span when it is not executing.
///
/// If this is `None`, then the span has either closed or was never enabled.
inner: Option<Inner>,
meta: &'static Metadata<'static>,
}
/// A handle representing the capacity to enter a span which is known to exist.
///
/// Unlike `Span`, this type is only constructed for spans which _have_ been
/// enabled by the current filter. This type is primarily used for implementing
/// span handles; users should typically not need to interact with it directly.
#[derive(Debug)]
pub(crate) struct Inner {
/// The span's ID, as provided by `subscriber`.
id: Id,
/// The subscriber that will receive events relating to this span.
///
/// This should be the same subscriber that provided this span with its
/// `id`.
subscriber: Dispatch,
}
/// A guard representing a span which has been entered and is currently
/// executing.
///
/// This guard may be used to exit the span, returning an `Enter` to
/// re-enter it.
///
/// This type is primarily used for implementing span handles; users should
/// typically not need to interact with it directly.
#[derive(Debug)]
#[must_use = "once a span has been entered, it should be exited"]
struct Entered<'a> {
inner: &'a Inner,
}
// ===== impl Span =====
impl Span {
/// Constructs a new `Span` with the given [metadata] and set of
/// [field values].
///
/// The new span will be constructed by the currently-active [`Subscriber`],
/// with the current span as its parent (if one exists).
///
/// After the span is constructed, [field values] and/or [`follows_from`]
/// annotations may be added to it.
///
/// [metadata]: ../metadata
/// [`Subscriber`]: ../subscriber/trait.Subscriber.html
/// [field values]: ../field/struct.ValueSet.html
/// [`follows_from`]: ../struct.Span.html#method.follows_from
#[inline]
pub fn new(meta: &'static Metadata<'static>, values: &field::ValueSet) -> Span {
let new_span = Attributes::new(meta, values);
Self::make(meta, new_span)
}
/// Constructs a new `Span` as the root of its own trace tree, with the
/// given [metadata] and set of [field values].
///
/// After the span is constructed, [field values] and/or [`follows_from`]
/// annotations may be added to it.
///
/// [metadata]: ../metadata
/// [field values]: ../field/struct.ValueSet.html
/// [`follows_from`]: ../struct.Span.html#method.follows_from
#[inline]
pub fn new_root(meta: &'static Metadata<'static>, values: &field::ValueSet) -> Span {
Self::make(meta, Attributes::new_root(meta, values))
}
/// Constructs a new `Span` as child of the given parent span, with the
/// given [metadata] and set of [field values].
///
/// After the span is constructed, [field values] and/or [`follows_from`]
/// annotations may be added to it.
///
/// [metadata]: ../metadata
/// [field values]: ../field/struct.ValueSet.html
/// [`follows_from`]: ../struct.Span.html#method.follows_from
pub fn child_of<I>(
parent: I,
meta: &'static Metadata<'static>,
values: &field::ValueSet,
) -> Span
where
I: AsId,
{
let new_span = match parent.as_id() {
Some(parent) => Attributes::child_of(parent.clone(), meta, values),
None => Attributes::new_root(meta, values),
};
Self::make(meta, new_span)
}
/// Constructs a new disabled span.
#[inline(always)]
pub fn new_disabled(meta: &'static Metadata<'static>) -> Span {
Span { inner: None, meta }
}
fn make(meta: &'static Metadata<'static>, new_span: Attributes) -> Span {
let attrs = &new_span;
let inner = ::dispatcher::get_default(move |dispatch| {
let id = dispatch.new_span(attrs);
Some(Inner::new(id, dispatch))
});
let span = Self { inner, meta };
span.log(format_args!("{}; {}", meta.name(), FmtAttrs(&new_span)));
span
}
/// Executes the given function in the context of this span.
///
/// If this span is enabled, then this function enters the span, invokes
/// and then exits the span. If the span is disabled, `f` will still be
/// invoked, but in the context of the currently-executing span (if there is
/// one).
///
/// Returns the result of evaluating `f`.
pub fn enter<F: FnOnce() -> T, T>(&self, f: F) -> T {
self.log(format_args!("-> {}", self.meta.name));
let _enter = self.inner.as_ref().map(Inner::enter);
let result = f();
self.log(format_args!("<- {}", self.meta.name));
result
}
/// Returns a [`Field`](../field/struct.Field.html) for the field with the
/// given `name`, if one exists,
pub fn field<Q: ?Sized>(&self, field: &Q) -> Option<field::Field>
where
Q: field::AsField,
{
self.metadata().and_then(|meta| field.as_field(meta))
}
/// Returns true if this `Span` has a field for the given
/// [`Field`](../field/struct.Field.html) or field name.
#[inline]
pub fn has_field<Q: ?Sized>(&self, field: &Q) -> bool
where
Q: field::AsField,
{
self.field(field).is_some()
}
/// Visits that the field described by `field` has the value `value`.
pub fn record<Q: ?Sized, V>(&self, field: &Q, value: &V) -> &Self
where
Q: field::AsField,
V: field::Value,
{
if let Some(field) = field.as_field(self.meta) {
self.record_all(
&self
.meta
.fields()
.value_set(&[(&field, Some(value as &field::Value))]),
);
}
self
}
/// Visit all the fields in the span
pub fn record_all(&self, values: &field::ValueSet) -> &Self {
let record = Record::new(values);
if let Some(ref inner) = self.inner {
inner.record(&record);
}
self.log(format_args!("{}; {}", self.meta.name(), FmtValues(&record)));
self
}
/// Returns `true` if this span was disabled by the subscriber and does not
/// exist.
#[inline]
pub fn is_disabled(&self) -> bool {
self.inner.is_none()
}
/// Indicates that the span with the given ID has an indirect causal
/// relationship with this span.
///
/// This relationship differs somewhat from the parent-child relationship: a
/// span may have any number of prior spans, rather than a single one; and
/// spans are not considered to be executing _inside_ of the spans they
/// follow from. This means that a span may close even if subsequent spans
/// that follow from it are still open, and time spent inside of a
/// subsequent span should not be included in the time its precedents were
/// executing. This is used to model causal relationships such as when a
/// single future spawns several related background tasks, et cetera.
///
/// If this span is disabled, or the resulting follows-from relationship
/// would be invalid, this function will do nothing.
pub fn follows_from<I>(&self, from: I) -> &Self
where
I: AsId,
{
if let Some(ref inner) = self.inner {
if let Some(from) = from.as_id() {
inner.follows_from(from);
}
}
self
}
/// Returns this span's `Id`, if it is enabled.
pub fn id(&self) -> Option<Id> {
self.inner.as_ref().map(Inner::id)
}
/// Returns this span's `Metadata`, if it is enabled.
pub fn metadata(&self) -> Option<&'static Metadata<'static>> {
if self.inner.is_some() {
Some(self.meta)
} else {
None
}
}
#[cfg(feature = "log")]
#[inline]
fn log(&self, message: fmt::Arguments) {
use log;
let logger = log::logger();
let log_meta = log::Metadata::builder()
.level(level_to_log!(self.meta.level))
.target(self.meta.target)
.build();
if logger.enabled(&log_meta) {
logger.log(
&log::Record::builder()
.metadata(log_meta)
.module_path(self.meta.module_path)
.file(self.meta.file)
.line(self.meta.line)
.args(message)
.build(),
);
}
}
#[cfg(not(feature = "log"))]
#[inline]
fn log(&self, _: fmt::Arguments) {}
}
impl cmp::PartialEq for Span {
fn eq(&self, other: &Self) -> bool {
self.meta.callsite() == other.meta.callsite() && self.inner == other.inner
}
}
impl Hash for Span {
fn hash<H: Hasher>(&self, hasher: &mut H) {
self.inner.hash(hasher);
}
}
impl fmt::Debug for Span {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut span = f.debug_struct("Span");
span.field("name", &self.meta.name())
.field("level", &self.meta.level())
.field("target", &self.meta.target());
if let Some(ref inner) = self.inner {
span.field("id", &inner.id());
} else {
span.field("disabled", &true);
}
if let Some(ref path) = self.meta.module_path() {
span.field("module_path", &path);
}
if let Some(ref line) = self.meta.line() {
span.field("line", &line);
}
if let Some(ref file) = self.meta.file() {
span.field("file", &file);
}
span.finish()
}
}
// ===== impl Inner =====
impl Inner {
/// Enters the span, returning a guard that may be used to exit the span and
/// re-enter the prior span.
///
/// This is used internally to implement `Span::enter`. It may be used for
/// writing custom span handles, but should generally not be called directly
/// when entering a span.
#[inline]
fn enter(&self) -> Entered {
self.subscriber.enter(&self.id);
Entered { inner: self }
}
/// Indicates that the span with the given ID has an indirect causal
/// relationship with this span.
///
/// This relationship differs somewhat from the parent-child relationship: a
/// span may have any number of prior spans, rather than a single one; and
/// spans are not considered to be executing _inside_ of the spans they
/// follow from. This means that a span may close even if subsequent spans
/// that follow from it are still open, and time spent inside of a
/// subsequent span should not be included in the time its precedents were
/// executing. This is used to model causal relationships such as when a
/// single future spawns several related background tasks, et cetera.
///
/// If this span is disabled, this function will do nothing. Otherwise, it
/// returns `Ok(())` if the other span was added as a precedent of this
/// span, or an error if this was not possible.
fn follows_from(&self, from: &Id) {
self.subscriber.record_follows_from(&self.id, &from)
}
/// Returns the span's ID.
fn id(&self) -> Id {
self.id.clone()
}
fn record(&self, values: &Record) {
self.subscriber.record(&self.id, values)
}
fn new(id: Id, subscriber: &Dispatch) -> Self {
Inner {
id,
subscriber: subscriber.clone(),
}
}
}
impl cmp::PartialEq for Inner {
fn eq(&self, other: &Self) -> bool {
self.id == other.id
}
}
impl Hash for Inner {
fn hash<H: Hasher>(&self, state: &mut H) {
self.id.hash(state);
}
}
impl Drop for Inner {
fn drop(&mut self) {
self.subscriber.drop_span(self.id.clone());
}
}
impl Clone for Inner {
fn clone(&self) -> Self {
Inner {
id: self.subscriber.clone_span(&self.id),
subscriber: self.subscriber.clone(),
}
}
}
// ===== impl Entered =====
impl<'a> Drop for Entered<'a> {
#[inline]
fn drop(&mut self) {
// Dropping the guard exits the span.
//
// Running this behaviour on drop rather than with an explicit function
// call means that spans may still be exited when unwinding.
self.inner.subscriber.exit(&self.inner.id);
}
}
struct FmtValues<'a>(&'a Record<'a>);
impl<'a> fmt::Display for FmtValues<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut res = Ok(());
self.0.record(&mut |k: &field::Field, v: &fmt::Debug| {
res = write!(f, "{}={:?} ", k, v);
});
res
}
}
struct FmtAttrs<'a>(&'a Attributes<'a>);
impl<'a> fmt::Display for FmtAttrs<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut res = Ok(());
self.0.record(&mut |k: &field::Field, v: &fmt::Debug| {
res = write!(f, "{}={:?} ", k, v);
});
res
}
}
// ===== impl AsId =====
impl ::sealed::Sealed for Span {}
impl AsId for Span {
fn as_id(&self) -> Option<&Id> {
self.inner.as_ref().map(|inner| &inner.id)
}
}
impl<'a> ::sealed::Sealed for &'a Span {}
impl<'a> AsId for &'a Span {
fn as_id(&self) -> Option<&Id> {
self.inner.as_ref().map(|inner| &inner.id)
}
}
impl ::sealed::Sealed for Id {}
impl AsId for Id {
fn as_id(&self) -> Option<&Id> {
Some(self)
}
}
impl<'a> ::sealed::Sealed for &'a Id {}
impl<'a> AsId for &'a Id {
fn as_id(&self) -> Option<&Id> {
Some(self)
}
}
impl ::sealed::Sealed for Option<Id> {}
impl AsId for Option<Id> {
fn as_id(&self) -> Option<&Id> {
self.as_ref()
}
}
impl<'a> ::sealed::Sealed for &'a Option<Id> {}
impl<'a> AsId for &'a Option<Id> {
fn as_id(&self) -> Option<&Id> {
self.as_ref()
}
}
#[cfg(test)]
mod test {
use super::*;
trait AssertSend: Send {}
impl AssertSend for Span {}
trait AssertSync: Sync {}
impl AssertSync for Span {}
}