tokio_util/time/delay_queue.rs
1//! A queue of delayed elements.
2//!
3//! See [`DelayQueue`] for more details.
4//!
5//! [`DelayQueue`]: struct@DelayQueue
6
7use crate::time::wheel::{self, Wheel};
8
9use tokio::time::{sleep_until, Duration, Instant, Sleep};
10
11use core::ops::{Index, IndexMut};
12use slab::Slab;
13use std::cmp;
14use std::collections::HashMap;
15use std::convert::From;
16use std::fmt;
17use std::fmt::Debug;
18use std::future::Future;
19use std::marker::PhantomData;
20use std::pin::Pin;
21use std::task::{self, ready, Poll, Waker};
22
23/// A queue of delayed elements.
24///
25/// Once an element is inserted into the `DelayQueue`, it is yielded once the
26/// specified deadline has been reached.
27///
28/// # Usage
29///
30/// Elements are inserted into `DelayQueue` using the [`insert`] or
31/// [`insert_at`] methods. A deadline is provided with the item and a [`Key`] is
32/// returned. The key is used to remove the entry or to change the deadline at
33/// which it should be yielded back.
34///
35/// Once delays have been configured, the `DelayQueue` is used via its
36/// [`Stream`] implementation. [`poll_expired`] is called. If an entry has reached its
37/// deadline, it is returned. If not, `Poll::Pending` is returned indicating that the
38/// current task will be notified once the deadline has been reached.
39///
40/// # `Stream` implementation
41///
42/// Items are retrieved from the queue via [`DelayQueue::poll_expired`]. If no delays have
43/// expired, no items are returned. In this case, `Poll::Pending` is returned and the
44/// current task is registered to be notified once the next item's delay has
45/// expired.
46///
47/// If no items are in the queue, i.e. `is_empty()` returns `true`, then `poll`
48/// returns `Poll::Ready(None)`. This indicates that the stream has reached an end.
49/// However, if a new item is inserted *after*, `poll` will once again start
50/// returning items or `Poll::Pending`.
51///
52/// Items are returned ordered by their expirations. Items that are configured
53/// to expire first will be returned first. There are no ordering guarantees
54/// for items configured to expire at the same instant. Also note that delays are
55/// rounded to the closest millisecond.
56///
57/// # Implementation
58///
59/// The [`DelayQueue`] is backed by a separate instance of a timer wheel similar to that used internally
60/// by Tokio's standalone timer utilities such as [`sleep`]. Because of this, it offers the same
61/// performance and scalability benefits.
62///
63/// State associated with each entry is stored in a [`slab`]. This amortizes the cost of allocation,
64/// and allows reuse of the memory allocated for expired entries.
65///
66/// Capacity can be checked using [`capacity`] and allocated preemptively by using
67/// the [`reserve`] method.
68///
69/// # Usage
70///
71/// Using `DelayQueue` to manage cache entries.
72///
73/// ```rust,no_run
74/// use tokio_util::time::{DelayQueue, delay_queue};
75///
76/// use std::collections::HashMap;
77/// use std::task::{ready, Context, Poll};
78/// use std::time::Duration;
79/// # type CacheKey = String;
80/// # type Value = String;
81///
82/// struct Cache {
83/// entries: HashMap<CacheKey, (Value, delay_queue::Key)>,
84/// expirations: DelayQueue<CacheKey>,
85/// }
86///
87/// const TTL_SECS: u64 = 30;
88///
89/// impl Cache {
90/// fn insert(&mut self, key: CacheKey, value: Value) {
91/// let delay = self.expirations
92/// .insert(key.clone(), Duration::from_secs(TTL_SECS));
93///
94/// self.entries.insert(key, (value, delay));
95/// }
96///
97/// fn get(&self, key: &CacheKey) -> Option<&Value> {
98/// self.entries.get(key)
99/// .map(|&(ref v, _)| v)
100/// }
101///
102/// fn remove(&mut self, key: &CacheKey) {
103/// if let Some((_, cache_key)) = self.entries.remove(key) {
104/// self.expirations.remove(&cache_key);
105/// }
106/// }
107///
108/// fn poll_purge(&mut self, cx: &mut Context<'_>) -> Poll<()> {
109/// while let Some(entry) = ready!(self.expirations.poll_expired(cx)) {
110/// self.entries.remove(entry.get_ref());
111/// }
112///
113/// Poll::Ready(())
114/// }
115/// }
116/// ```
117///
118/// [`insert`]: method@Self::insert
119/// [`insert_at`]: method@Self::insert_at
120/// [`Key`]: struct@Key
121/// [`Stream`]: https://docs.rs/futures/0.1/futures/stream/trait.Stream.html
122/// [`poll_expired`]: method@Self::poll_expired
123/// [`Stream::poll_expired`]: method@Self::poll_expired
124/// [`DelayQueue`]: struct@DelayQueue
125/// [`sleep`]: fn@tokio::time::sleep
126/// [`slab`]: slab
127/// [`capacity`]: method@Self::capacity
128/// [`reserve`]: method@Self::reserve
129#[derive(Debug)]
130pub struct DelayQueue<T> {
131 /// Stores data associated with entries
132 slab: SlabStorage<T>,
133
134 /// Lookup structure tracking all delays in the queue
135 wheel: Wheel<Stack<T>>,
136
137 /// Delays that were inserted when already expired. These cannot be stored
138 /// in the wheel
139 expired: Stack<T>,
140
141 /// Delay expiring when the *first* item in the queue expires
142 delay: Option<Pin<Box<Sleep>>>,
143
144 /// Wheel polling state
145 wheel_now: u64,
146
147 /// Instant at which the timer starts
148 start: Instant,
149
150 /// Waker that is invoked when we potentially need to reset the timer.
151 /// Because we lazily create the timer when the first entry is created, we
152 /// need to awaken any poller that polled us before that point.
153 waker: Option<Waker>,
154}
155
156#[derive(Default)]
157struct SlabStorage<T> {
158 inner: Slab<Data<T>>,
159
160 // A `compact` call requires a re-mapping of the `Key`s that were changed
161 // during the `compact` call of the `slab`. Since the keys that were given out
162 // cannot be changed retroactively we need to keep track of these re-mappings.
163 // The keys of `key_map` correspond to the old keys that were given out and
164 // the values to the `Key`s that were re-mapped by the `compact` call.
165 key_map: HashMap<Key, KeyInternal>,
166
167 // Index used to create new keys to hand out.
168 next_key_index: usize,
169
170 // Whether `compact` has been called, necessary in order to decide whether
171 // to include keys in `key_map`.
172 compact_called: bool,
173}
174
175impl<T> SlabStorage<T> {
176 pub(crate) fn with_capacity(capacity: usize) -> SlabStorage<T> {
177 SlabStorage {
178 inner: Slab::with_capacity(capacity),
179 key_map: HashMap::new(),
180 next_key_index: 0,
181 compact_called: false,
182 }
183 }
184
185 // Inserts data into the inner slab and re-maps keys if necessary
186 pub(crate) fn insert(&mut self, val: Data<T>) -> Key {
187 let mut key = KeyInternal::new(self.inner.insert(val));
188 let key_contained = self.key_map.contains_key(&key.into());
189
190 if key_contained {
191 // It's possible that a `compact` call creates capacity in `self.inner` in
192 // such a way that a `self.inner.insert` call creates a `key` which was
193 // previously given out during an `insert` call prior to the `compact` call.
194 // If `key` is contained in `self.key_map`, we have encountered this exact situation,
195 // We need to create a new key `key_to_give_out` and include the relation
196 // `key_to_give_out` -> `key` in `self.key_map`.
197 let key_to_give_out = self.create_new_key();
198 assert!(!self.key_map.contains_key(&key_to_give_out.into()));
199 self.key_map.insert(key_to_give_out.into(), key);
200 key = key_to_give_out;
201 } else if self.compact_called {
202 // Include an identity mapping in `self.key_map` in order to allow us to
203 // panic if a key that was handed out is removed more than once.
204 self.key_map.insert(key.into(), key);
205 }
206
207 key.into()
208 }
209
210 // Re-map the key in case compact was previously called.
211 // Note: Since we include identity mappings in key_map after compact was called,
212 // we have information about all keys that were handed out. In the case in which
213 // compact was called and we try to remove a Key that was previously removed
214 // we can detect invalid keys if no key is found in `key_map`. This is necessary
215 // in order to prevent situations in which a previously removed key
216 // corresponds to a re-mapped key internally and which would then be incorrectly
217 // removed from the slab.
218 //
219 // Example to illuminate this problem:
220 //
221 // Let's assume our `key_map` is {1 -> 2, 2 -> 1} and we call remove(1). If we
222 // were to remove 1 again, we would not find it inside `key_map` anymore.
223 // If we were to imply from this that no re-mapping was necessary, we would
224 // incorrectly remove 1 from `self.slab.inner`, which corresponds to the
225 // handed-out key 2.
226 pub(crate) fn remove(&mut self, key: &Key) -> Data<T> {
227 let remapped_key = if self.compact_called {
228 match self.key_map.remove(key) {
229 Some(key_internal) => key_internal,
230 None => panic!("invalid key"),
231 }
232 } else {
233 (*key).into()
234 };
235
236 self.inner.remove(remapped_key.index)
237 }
238
239 pub(crate) fn shrink_to_fit(&mut self) {
240 self.inner.shrink_to_fit();
241 self.key_map.shrink_to_fit();
242 }
243
244 pub(crate) fn compact(&mut self) {
245 if !self.compact_called {
246 for (key, _) in self.inner.iter() {
247 self.key_map.insert(Key::new(key), KeyInternal::new(key));
248 }
249 }
250
251 let mut remapping = HashMap::new();
252 self.inner.compact(|_, from, to| {
253 remapping.insert(from, to);
254 true
255 });
256
257 // At this point `key_map` contains a mapping for every element.
258 for internal_key in self.key_map.values_mut() {
259 if let Some(new_internal_key) = remapping.get(&internal_key.index) {
260 *internal_key = KeyInternal::new(*new_internal_key);
261 }
262 }
263
264 if self.key_map.capacity() > 2 * self.key_map.len() {
265 self.key_map.shrink_to_fit();
266 }
267
268 self.compact_called = true;
269 }
270
271 // Tries to re-map a `Key` that was given out to the user to its
272 // corresponding internal key.
273 fn remap_key(&self, key: &Key) -> Option<KeyInternal> {
274 let key_map = &self.key_map;
275 if self.compact_called {
276 key_map.get(key).copied()
277 } else {
278 Some((*key).into())
279 }
280 }
281
282 fn create_new_key(&mut self) -> KeyInternal {
283 while self.key_map.contains_key(&Key::new(self.next_key_index)) {
284 self.next_key_index = self.next_key_index.wrapping_add(1);
285 }
286
287 KeyInternal::new(self.next_key_index)
288 }
289
290 pub(crate) fn len(&self) -> usize {
291 self.inner.len()
292 }
293
294 pub(crate) fn capacity(&self) -> usize {
295 self.inner.capacity()
296 }
297
298 pub(crate) fn clear(&mut self) {
299 self.inner.clear();
300 self.key_map.clear();
301 self.compact_called = false;
302 }
303
304 pub(crate) fn reserve(&mut self, additional: usize) {
305 self.inner.reserve(additional);
306
307 if self.compact_called {
308 self.key_map.reserve(additional);
309 }
310 }
311
312 pub(crate) fn is_empty(&self) -> bool {
313 self.inner.is_empty()
314 }
315
316 pub(crate) fn contains(&self, key: &Key) -> bool {
317 let remapped_key = self.remap_key(key);
318
319 match remapped_key {
320 Some(internal_key) => self.inner.contains(internal_key.index),
321 None => false,
322 }
323 }
324}
325
326impl<T> fmt::Debug for SlabStorage<T>
327where
328 T: fmt::Debug,
329{
330 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
331 if fmt.alternate() {
332 fmt.debug_map().entries(self.inner.iter()).finish()
333 } else {
334 fmt.debug_struct("Slab")
335 .field("len", &self.len())
336 .field("cap", &self.capacity())
337 .finish()
338 }
339 }
340}
341
342impl<T> Index<Key> for SlabStorage<T> {
343 type Output = Data<T>;
344
345 fn index(&self, key: Key) -> &Self::Output {
346 let remapped_key = self.remap_key(&key);
347
348 match remapped_key {
349 Some(internal_key) => &self.inner[internal_key.index],
350 None => panic!("Invalid index {}", key.index),
351 }
352 }
353}
354
355impl<T> IndexMut<Key> for SlabStorage<T> {
356 fn index_mut(&mut self, key: Key) -> &mut Data<T> {
357 let remapped_key = self.remap_key(&key);
358
359 match remapped_key {
360 Some(internal_key) => &mut self.inner[internal_key.index],
361 None => panic!("Invalid index {}", key.index),
362 }
363 }
364}
365
366/// An entry in `DelayQueue` that has expired and been removed.
367///
368/// Values are returned by [`DelayQueue::poll_expired`].
369///
370/// [`DelayQueue::poll_expired`]: method@DelayQueue::poll_expired
371#[derive(Debug)]
372pub struct Expired<T> {
373 /// The data stored in the queue
374 data: T,
375
376 /// The expiration time
377 deadline: Instant,
378
379 /// The key associated with the entry
380 key: Key,
381}
382
383/// Token to a value stored in a `DelayQueue`.
384///
385/// Instances of `Key` are returned by [`DelayQueue::insert`]. See [`DelayQueue`]
386/// documentation for more details.
387///
388/// [`DelayQueue`]: struct@DelayQueue
389/// [`DelayQueue::insert`]: method@DelayQueue::insert
390#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
391pub struct Key {
392 index: usize,
393}
394
395// Whereas `Key` is given out to users that use `DelayQueue`, internally we use
396// `KeyInternal` as the key type in order to make the logic of mapping between keys
397// as a result of `compact` calls clearer.
398#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
399struct KeyInternal {
400 index: usize,
401}
402
403#[derive(Debug)]
404struct Stack<T> {
405 /// Head of the stack
406 head: Option<Key>,
407 _p: PhantomData<fn() -> T>,
408}
409
410#[derive(Debug)]
411struct Data<T> {
412 /// The data being stored in the queue and will be returned at the requested
413 /// instant.
414 inner: T,
415
416 /// The instant at which the item is returned.
417 when: u64,
418
419 /// Set to true when stored in the `expired` queue
420 expired: bool,
421
422 /// Next entry in the stack
423 next: Option<Key>,
424
425 /// Previous entry in the stack
426 prev: Option<Key>,
427}
428
429/// Maximum number of entries the queue can handle
430const MAX_ENTRIES: usize = (1 << 30) - 1;
431
432impl<T> DelayQueue<T> {
433 /// Creates a new, empty, `DelayQueue`.
434 ///
435 /// The queue will not allocate storage until items are inserted into it.
436 ///
437 /// # Examples
438 ///
439 /// ```rust
440 /// # use tokio_util::time::DelayQueue;
441 /// let delay_queue: DelayQueue<u32> = DelayQueue::new();
442 /// ```
443 pub fn new() -> DelayQueue<T> {
444 DelayQueue::with_capacity(0)
445 }
446
447 /// Creates a new, empty, `DelayQueue` with the specified capacity.
448 ///
449 /// The queue will be able to hold at least `capacity` elements without
450 /// reallocating. If `capacity` is 0, the queue will not allocate for
451 /// storage.
452 ///
453 /// # Examples
454 ///
455 /// ```rust
456 /// # use tokio_util::time::DelayQueue;
457 /// # use std::time::Duration;
458 ///
459 /// # #[tokio::main]
460 /// # async fn main() {
461 /// let mut delay_queue = DelayQueue::with_capacity(10);
462 ///
463 /// // These insertions are done without further allocation
464 /// for i in 0..10 {
465 /// delay_queue.insert(i, Duration::from_secs(i));
466 /// }
467 ///
468 /// // This will make the queue allocate additional storage
469 /// delay_queue.insert(11, Duration::from_secs(11));
470 /// # }
471 /// ```
472 pub fn with_capacity(capacity: usize) -> DelayQueue<T> {
473 DelayQueue {
474 wheel: Wheel::new(),
475 slab: SlabStorage::with_capacity(capacity),
476 expired: Stack::default(),
477 delay: None,
478 wheel_now: 0,
479 start: Instant::now(),
480 waker: None,
481 }
482 }
483
484 /// Inserts `value` into the queue set to expire at a specific instant in
485 /// time.
486 ///
487 /// This function is identical to `insert`, but takes an `Instant` instead
488 /// of a `Duration`.
489 ///
490 /// `value` is stored in the queue until `when` is reached. At which point,
491 /// `value` will be returned from [`poll_expired`]. If `when` has already been
492 /// reached, then `value` is immediately made available to poll.
493 ///
494 /// The return value represents the insertion and is used as an argument to
495 /// [`remove`] and [`reset`]. Note that [`Key`] is a token and is reused once
496 /// `value` is removed from the queue either by calling [`poll_expired`] after
497 /// `when` is reached or by calling [`remove`]. At this point, the caller
498 /// must take care to not use the returned [`Key`] again as it may reference
499 /// a different item in the queue.
500 ///
501 /// See [type] level documentation for more details.
502 ///
503 /// # Panics
504 ///
505 /// This function panics if `when` is too far in the future.
506 ///
507 /// # Examples
508 ///
509 /// Basic usage
510 ///
511 /// ```rust
512 /// use tokio::time::{Duration, Instant};
513 /// use tokio_util::time::DelayQueue;
514 ///
515 /// # #[tokio::main]
516 /// # async fn main() {
517 /// let mut delay_queue = DelayQueue::new();
518 /// let key = delay_queue.insert_at(
519 /// "foo", Instant::now() + Duration::from_secs(5));
520 ///
521 /// // Remove the entry
522 /// let item = delay_queue.remove(&key);
523 /// assert_eq!(*item.get_ref(), "foo");
524 /// # }
525 /// ```
526 ///
527 /// [`poll_expired`]: method@Self::poll_expired
528 /// [`remove`]: method@Self::remove
529 /// [`reset`]: method@Self::reset
530 /// [`Key`]: struct@Key
531 /// [type]: #
532 #[track_caller]
533 pub fn insert_at(&mut self, value: T, when: Instant) -> Key {
534 assert!(self.slab.len() < MAX_ENTRIES, "max entries exceeded");
535
536 // Normalize the deadline. Values cannot be set to expire in the past.
537 let when = self.normalize_deadline(when);
538
539 // Insert the value in the store
540 let key = self.slab.insert(Data {
541 inner: value,
542 when,
543 expired: false,
544 next: None,
545 prev: None,
546 });
547
548 self.insert_idx(when, key);
549
550 // Set a new delay if the current's deadline is later than the one of the new item
551 let should_set_delay = if let Some(ref delay) = self.delay {
552 let current_exp = self.normalize_deadline(delay.deadline());
553 current_exp > when
554 } else {
555 true
556 };
557
558 if should_set_delay {
559 if let Some(waker) = self.waker.take() {
560 waker.wake();
561 }
562
563 let delay_time = self.start + Duration::from_millis(when);
564 if let Some(ref mut delay) = &mut self.delay {
565 delay.as_mut().reset(delay_time);
566 } else {
567 self.delay = Some(Box::pin(sleep_until(delay_time)));
568 }
569 }
570
571 key
572 }
573
574 /// Attempts to pull out the next value of the delay queue, registering the
575 /// current task for wakeup if the value is not yet available, and returning
576 /// `None` if the queue is exhausted.
577 pub fn poll_expired(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Expired<T>>> {
578 if !self
579 .waker
580 .as_ref()
581 .map(|w| w.will_wake(cx.waker()))
582 .unwrap_or(false)
583 {
584 self.waker = Some(cx.waker().clone());
585 }
586
587 let item = ready!(self.poll_idx(cx));
588 Poll::Ready(item.map(|key| {
589 let data = self.slab.remove(&key);
590 debug_assert!(data.next.is_none());
591 debug_assert!(data.prev.is_none());
592
593 Expired {
594 key,
595 data: data.inner,
596 deadline: self.start + Duration::from_millis(data.when),
597 }
598 }))
599 }
600
601 /// Inserts `value` into the queue set to expire after the requested duration
602 /// elapses.
603 ///
604 /// This function is identical to `insert_at`, but takes a `Duration`
605 /// instead of an `Instant`.
606 ///
607 /// `value` is stored in the queue until `timeout` duration has
608 /// elapsed after `insert` was called. At that point, `value` will
609 /// be returned from [`poll_expired`]. If `timeout` is a `Duration` of
610 /// zero, then `value` is immediately made available to poll.
611 ///
612 /// The return value represents the insertion and is used as an
613 /// argument to [`remove`] and [`reset`]. Note that [`Key`] is a
614 /// token and is reused once `value` is removed from the queue
615 /// either by calling [`poll_expired`] after `timeout` has elapsed
616 /// or by calling [`remove`]. At this point, the caller must not
617 /// use the returned [`Key`] again as it may reference a different
618 /// item in the queue.
619 ///
620 /// See [type] level documentation for more details.
621 ///
622 /// # Panics
623 ///
624 /// This function panics if `timeout` is greater than the maximum
625 /// duration supported by the timer in the current `Runtime`.
626 ///
627 /// # Examples
628 ///
629 /// Basic usage
630 ///
631 /// ```rust
632 /// use tokio_util::time::DelayQueue;
633 /// use std::time::Duration;
634 ///
635 /// # #[tokio::main]
636 /// # async fn main() {
637 /// let mut delay_queue = DelayQueue::new();
638 /// let key = delay_queue.insert("foo", Duration::from_secs(5));
639 ///
640 /// // Remove the entry
641 /// let item = delay_queue.remove(&key);
642 /// assert_eq!(*item.get_ref(), "foo");
643 /// # }
644 /// ```
645 ///
646 /// [`poll_expired`]: method@Self::poll_expired
647 /// [`remove`]: method@Self::remove
648 /// [`reset`]: method@Self::reset
649 /// [`Key`]: struct@Key
650 /// [type]: #
651 #[track_caller]
652 pub fn insert(&mut self, value: T, timeout: Duration) -> Key {
653 self.insert_at(value, Instant::now() + timeout)
654 }
655
656 #[track_caller]
657 fn insert_idx(&mut self, when: u64, key: Key) {
658 use self::wheel::{InsertError, Stack};
659
660 // Register the deadline with the timer wheel
661 match self.wheel.insert(when, key, &mut self.slab) {
662 Ok(_) => {}
663 Err((_, InsertError::Elapsed)) => {
664 self.slab[key].expired = true;
665 // The delay is already expired, store it in the expired queue
666 self.expired.push(key, &mut self.slab);
667 }
668 Err((_, err)) => panic!("invalid deadline; err={err:?}"),
669 }
670 }
671
672 /// Returns the deadline of the item associated with `key`.
673 ///
674 /// Since the queue operates at millisecond granularity, the returned
675 /// deadline may not exactly match the value that was given when initially
676 /// inserting the item into the queue.
677 ///
678 /// # Panics
679 ///
680 /// This function panics if `key` is not contained by the queue.
681 ///
682 /// # Examples
683 ///
684 /// Basic usage
685 ///
686 /// ```rust
687 /// use tokio_util::time::DelayQueue;
688 /// use std::time::Duration;
689 ///
690 /// # #[tokio::main]
691 /// # async fn main() {
692 /// let mut delay_queue = DelayQueue::new();
693 ///
694 /// let key1 = delay_queue.insert("foo", Duration::from_secs(5));
695 /// let key2 = delay_queue.insert("bar", Duration::from_secs(10));
696 ///
697 /// assert!(delay_queue.deadline(&key1) < delay_queue.deadline(&key2));
698 /// # }
699 /// ```
700 #[track_caller]
701 pub fn deadline(&self, key: &Key) -> Instant {
702 self.start + Duration::from_millis(self.slab[*key].when)
703 }
704
705 /// Removes the key from the expired queue or the timer wheel
706 /// depending on its expiration status.
707 ///
708 /// # Panics
709 ///
710 /// Panics if the key is not contained in the expired queue or the wheel.
711 #[track_caller]
712 fn remove_key(&mut self, key: &Key) {
713 use crate::time::wheel::Stack;
714
715 // Special case the `expired` queue
716 if self.slab[*key].expired {
717 self.expired.remove(key, &mut self.slab);
718 } else {
719 self.wheel.remove(key, &mut self.slab);
720 }
721 }
722
723 /// Removes the item associated with `key` from the queue.
724 ///
725 /// There must be an item associated with `key`. The function returns the
726 /// removed item as well as the `Instant` at which it will the delay will
727 /// have expired.
728 ///
729 /// # Panics
730 ///
731 /// The function panics if `key` is not contained by the queue.
732 ///
733 /// # Examples
734 ///
735 /// Basic usage
736 ///
737 /// ```rust
738 /// use tokio_util::time::DelayQueue;
739 /// use std::time::Duration;
740 ///
741 /// # #[tokio::main]
742 /// # async fn main() {
743 /// let mut delay_queue = DelayQueue::new();
744 /// let key = delay_queue.insert("foo", Duration::from_secs(5));
745 ///
746 /// // Remove the entry
747 /// let item = delay_queue.remove(&key);
748 /// assert_eq!(*item.get_ref(), "foo");
749 /// # }
750 /// ```
751 #[track_caller]
752 pub fn remove(&mut self, key: &Key) -> Expired<T> {
753 let prev_deadline = self.next_deadline();
754
755 self.remove_key(key);
756 let data = self.slab.remove(key);
757
758 let next_deadline = self.next_deadline();
759 if prev_deadline != next_deadline {
760 match (next_deadline, &mut self.delay) {
761 (None, _) => self.delay = None,
762 (Some(deadline), Some(delay)) => delay.as_mut().reset(deadline),
763 (Some(deadline), None) => self.delay = Some(Box::pin(sleep_until(deadline))),
764 }
765 }
766
767 if self.slab.is_empty() {
768 if let Some(waker) = self.waker.take() {
769 waker.wake();
770 }
771 }
772
773 Expired {
774 key: Key::new(key.index),
775 data: data.inner,
776 deadline: self.start + Duration::from_millis(data.when),
777 }
778 }
779
780 /// Attempts to remove the item associated with `key` from the queue.
781 ///
782 /// Removes the item associated with `key`, and returns it along with the
783 /// `Instant` at which it would have expired, if it exists.
784 ///
785 /// Returns `None` if `key` is not in the queue.
786 ///
787 /// # Examples
788 ///
789 /// Basic usage
790 ///
791 /// ```rust
792 /// use tokio_util::time::DelayQueue;
793 /// use std::time::Duration;
794 ///
795 /// # #[tokio::main(flavor = "current_thread")]
796 /// # async fn main() {
797 /// let mut delay_queue = DelayQueue::new();
798 /// let key = delay_queue.insert("foo", Duration::from_secs(5));
799 ///
800 /// // The item is in the queue, `try_remove` returns `Some(Expired("foo"))`.
801 /// let item = delay_queue.try_remove(&key);
802 /// assert_eq!(item.unwrap().into_inner(), "foo");
803 ///
804 /// // The item is not in the queue anymore, `try_remove` returns `None`.
805 /// let item = delay_queue.try_remove(&key);
806 /// assert!(item.is_none());
807 /// # }
808 /// ```
809 pub fn try_remove(&mut self, key: &Key) -> Option<Expired<T>> {
810 if self.slab.contains(key) {
811 Some(self.remove(key))
812 } else {
813 None
814 }
815 }
816
817 /// Sets the delay of the item associated with `key` to expire at `when`.
818 ///
819 /// This function is identical to `reset` but takes an `Instant` instead of
820 /// a `Duration`.
821 ///
822 /// The item remains in the queue but the delay is set to expire at `when`.
823 /// If `when` is in the past, then the item is immediately made available to
824 /// the caller.
825 ///
826 /// # Panics
827 ///
828 /// This function panics if `when` is too far in the future or if `key` is
829 /// not contained by the queue.
830 ///
831 /// # Examples
832 ///
833 /// Basic usage
834 ///
835 /// ```rust
836 /// use tokio::time::{Duration, Instant};
837 /// use tokio_util::time::DelayQueue;
838 ///
839 /// # #[tokio::main]
840 /// # async fn main() {
841 /// let mut delay_queue = DelayQueue::new();
842 /// let key = delay_queue.insert("foo", Duration::from_secs(5));
843 ///
844 /// // "foo" is scheduled to be returned in 5 seconds
845 ///
846 /// delay_queue.reset_at(&key, Instant::now() + Duration::from_secs(10));
847 ///
848 /// // "foo" is now scheduled to be returned in 10 seconds
849 /// # }
850 /// ```
851 #[track_caller]
852 pub fn reset_at(&mut self, key: &Key, when: Instant) {
853 self.remove_key(key);
854
855 // Normalize the deadline. Values cannot be set to expire in the past.
856 let when = self.normalize_deadline(when);
857
858 self.slab[*key].when = when;
859 self.slab[*key].expired = false;
860
861 self.insert_idx(when, *key);
862
863 let next_deadline = self.next_deadline();
864 if let (Some(ref mut delay), Some(deadline)) = (&mut self.delay, next_deadline) {
865 // This should awaken us if necessary (ie, if already expired)
866 delay.as_mut().reset(deadline);
867 }
868 }
869
870 /// Shrink the capacity of the slab, which `DelayQueue` uses internally for storage allocation.
871 /// This function is not guaranteed to, and in most cases, won't decrease the capacity of the slab
872 /// to the number of elements still contained in it, because elements cannot be moved to a different
873 /// index. To decrease the capacity to the size of the slab use [`compact`].
874 ///
875 /// This function can take O(n) time even when the capacity cannot be reduced or the allocation is
876 /// shrunk in place. Repeated calls run in O(1) though.
877 ///
878 /// [`compact`]: method@Self::compact
879 pub fn shrink_to_fit(&mut self) {
880 self.slab.shrink_to_fit();
881 }
882
883 /// Shrink the capacity of the slab, which `DelayQueue` uses internally for storage allocation,
884 /// to the number of elements that are contained in it.
885 ///
886 /// This methods runs in O(n).
887 ///
888 /// # Examples
889 ///
890 /// Basic usage
891 ///
892 /// ```rust
893 /// use tokio_util::time::DelayQueue;
894 /// use std::time::Duration;
895 ///
896 /// # #[tokio::main]
897 /// # async fn main() {
898 /// let mut delay_queue = DelayQueue::with_capacity(10);
899 ///
900 /// let key1 = delay_queue.insert(5, Duration::from_secs(5));
901 /// let key2 = delay_queue.insert(10, Duration::from_secs(10));
902 /// let key3 = delay_queue.insert(15, Duration::from_secs(15));
903 ///
904 /// delay_queue.remove(&key2);
905 ///
906 /// delay_queue.compact();
907 /// assert_eq!(delay_queue.capacity(), 2);
908 /// # }
909 /// ```
910 pub fn compact(&mut self) {
911 self.slab.compact();
912 }
913
914 /// Gets the [`Key`] that [`poll_expired`] will pull out of the queue next, without
915 /// pulling it out or waiting for the deadline to expire.
916 ///
917 /// Entries that have already expired may be returned in any order, but it is
918 /// guaranteed that this method returns them in the same order as when items
919 /// are popped from the `DelayQueue`.
920 ///
921 /// # Examples
922 ///
923 /// Basic usage
924 ///
925 /// ```rust
926 /// use tokio_util::time::DelayQueue;
927 /// use std::time::Duration;
928 ///
929 /// # #[tokio::main]
930 /// # async fn main() {
931 /// let mut delay_queue = DelayQueue::new();
932 ///
933 /// let key1 = delay_queue.insert("foo", Duration::from_secs(10));
934 /// let key2 = delay_queue.insert("bar", Duration::from_secs(5));
935 /// let key3 = delay_queue.insert("baz", Duration::from_secs(15));
936 ///
937 /// assert_eq!(delay_queue.peek().unwrap(), key2);
938 /// # }
939 /// ```
940 ///
941 /// [`Key`]: struct@Key
942 /// [`poll_expired`]: method@Self::poll_expired
943 pub fn peek(&self) -> Option<Key> {
944 use self::wheel::Stack;
945
946 self.expired.peek().or_else(|| self.wheel.peek())
947 }
948
949 /// Returns the next time to poll as determined by the wheel.
950 ///
951 /// Note that this does not include deadlines in the `expired` queue.
952 fn next_deadline(&self) -> Option<Instant> {
953 self.wheel
954 .poll_at()
955 .map(|poll_at| self.start + Duration::from_millis(poll_at))
956 }
957
958 /// Sets the delay of the item associated with `key` to expire after
959 /// `timeout`.
960 ///
961 /// This function is identical to `reset_at` but takes a `Duration` instead
962 /// of an `Instant`.
963 ///
964 /// The item remains in the queue but the delay is set to expire after
965 /// `timeout`. If `timeout` is zero, then the item is immediately made
966 /// available to the caller.
967 ///
968 /// # Panics
969 ///
970 /// This function panics if `timeout` is greater than the maximum supported
971 /// duration or if `key` is not contained by the queue.
972 ///
973 /// # Examples
974 ///
975 /// Basic usage
976 ///
977 /// ```rust
978 /// use tokio_util::time::DelayQueue;
979 /// use std::time::Duration;
980 ///
981 /// # #[tokio::main]
982 /// # async fn main() {
983 /// let mut delay_queue = DelayQueue::new();
984 /// let key = delay_queue.insert("foo", Duration::from_secs(5));
985 ///
986 /// // "foo" is scheduled to be returned in 5 seconds
987 ///
988 /// delay_queue.reset(&key, Duration::from_secs(10));
989 ///
990 /// // "foo"is now scheduled to be returned in 10 seconds
991 /// # }
992 /// ```
993 #[track_caller]
994 pub fn reset(&mut self, key: &Key, timeout: Duration) {
995 self.reset_at(key, Instant::now() + timeout);
996 }
997
998 /// Clears the queue, removing all items.
999 ///
1000 /// After calling `clear`, [`poll_expired`] will return `Ok(Ready(None))`.
1001 ///
1002 /// Note that this method has no effect on the allocated capacity.
1003 ///
1004 /// [`poll_expired`]: method@Self::poll_expired
1005 ///
1006 /// # Examples
1007 ///
1008 /// ```rust
1009 /// use tokio_util::time::DelayQueue;
1010 /// use std::time::Duration;
1011 ///
1012 /// # #[tokio::main]
1013 /// # async fn main() {
1014 /// let mut delay_queue = DelayQueue::new();
1015 ///
1016 /// delay_queue.insert("foo", Duration::from_secs(5));
1017 ///
1018 /// assert!(!delay_queue.is_empty());
1019 ///
1020 /// delay_queue.clear();
1021 ///
1022 /// assert!(delay_queue.is_empty());
1023 /// # }
1024 /// ```
1025 pub fn clear(&mut self) {
1026 self.slab.clear();
1027 self.expired = Stack::default();
1028 self.wheel = Wheel::new();
1029 self.delay = None;
1030 }
1031
1032 /// Returns the number of elements the queue can hold without reallocating.
1033 ///
1034 /// # Examples
1035 ///
1036 /// ```rust
1037 /// use tokio_util::time::DelayQueue;
1038 ///
1039 /// let delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10);
1040 /// assert_eq!(delay_queue.capacity(), 10);
1041 /// ```
1042 pub fn capacity(&self) -> usize {
1043 self.slab.capacity()
1044 }
1045
1046 /// Returns the number of elements currently in the queue.
1047 ///
1048 /// # Examples
1049 ///
1050 /// ```rust
1051 /// use tokio_util::time::DelayQueue;
1052 /// use std::time::Duration;
1053 ///
1054 /// # #[tokio::main]
1055 /// # async fn main() {
1056 /// let mut delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10);
1057 /// assert_eq!(delay_queue.len(), 0);
1058 /// delay_queue.insert(3, Duration::from_secs(5));
1059 /// assert_eq!(delay_queue.len(), 1);
1060 /// # }
1061 /// ```
1062 pub fn len(&self) -> usize {
1063 self.slab.len()
1064 }
1065
1066 /// Reserves capacity for at least `additional` more items to be queued
1067 /// without allocating.
1068 ///
1069 /// `reserve` does nothing if the queue already has sufficient capacity for
1070 /// `additional` more values. If more capacity is required, a new segment of
1071 /// memory will be allocated and all existing values will be copied into it.
1072 /// As such, if the queue is already very large, a call to `reserve` can end
1073 /// up being expensive.
1074 ///
1075 /// The queue may reserve more than `additional` extra space in order to
1076 /// avoid frequent reallocations.
1077 ///
1078 /// # Panics
1079 ///
1080 /// Panics if the new capacity exceeds the maximum number of entries the
1081 /// queue can contain.
1082 ///
1083 /// # Examples
1084 ///
1085 /// ```
1086 /// use tokio_util::time::DelayQueue;
1087 /// use std::time::Duration;
1088 ///
1089 /// # #[tokio::main]
1090 /// # async fn main() {
1091 /// let mut delay_queue = DelayQueue::new();
1092 ///
1093 /// delay_queue.insert("hello", Duration::from_secs(10));
1094 /// delay_queue.reserve(10);
1095 ///
1096 /// assert!(delay_queue.capacity() >= 11);
1097 /// # }
1098 /// ```
1099 #[track_caller]
1100 pub fn reserve(&mut self, additional: usize) {
1101 assert!(
1102 self.slab.capacity() + additional <= MAX_ENTRIES,
1103 "max queue capacity exceeded"
1104 );
1105 self.slab.reserve(additional);
1106 }
1107
1108 /// Returns `true` if there are no items in the queue.
1109 ///
1110 /// Note that this function returns `false` even if all items have not yet
1111 /// expired and a call to `poll` will return `Poll::Pending`.
1112 ///
1113 /// # Examples
1114 ///
1115 /// ```
1116 /// use tokio_util::time::DelayQueue;
1117 /// use std::time::Duration;
1118 ///
1119 /// # #[tokio::main]
1120 /// # async fn main() {
1121 /// let mut delay_queue = DelayQueue::new();
1122 /// assert!(delay_queue.is_empty());
1123 ///
1124 /// delay_queue.insert("hello", Duration::from_secs(5));
1125 /// assert!(!delay_queue.is_empty());
1126 /// # }
1127 /// ```
1128 pub fn is_empty(&self) -> bool {
1129 self.slab.is_empty()
1130 }
1131
1132 /// Polls the queue, returning the index of the next slot in the slab that
1133 /// should be returned.
1134 ///
1135 /// A slot should be returned when the associated deadline has been reached.
1136 fn poll_idx(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Key>> {
1137 use self::wheel::Stack;
1138
1139 let expired = self.expired.pop(&mut self.slab);
1140
1141 if expired.is_some() {
1142 return Poll::Ready(expired);
1143 }
1144
1145 loop {
1146 if let Some(ref mut delay) = self.delay {
1147 if !delay.is_elapsed() {
1148 ready!(Pin::new(&mut *delay).poll(cx));
1149 }
1150
1151 let now = crate::time::ms(delay.deadline() - self.start, crate::time::Round::Down);
1152
1153 self.wheel_now = now;
1154 }
1155
1156 // We poll the wheel to get the next value out before finding the next deadline.
1157 let wheel_idx = self.wheel.poll(self.wheel_now, &mut self.slab);
1158
1159 self.delay = self.next_deadline().map(|when| Box::pin(sleep_until(when)));
1160
1161 if let Some(idx) = wheel_idx {
1162 return Poll::Ready(Some(idx));
1163 }
1164
1165 if self.delay.is_none() {
1166 return Poll::Ready(None);
1167 }
1168 }
1169 }
1170
1171 fn normalize_deadline(&self, when: Instant) -> u64 {
1172 let when = if when < self.start {
1173 0
1174 } else {
1175 crate::time::ms(when - self.start, crate::time::Round::Up)
1176 };
1177
1178 cmp::max(when, self.wheel.elapsed())
1179 }
1180}
1181
1182// We never put `T` in a `Pin`...
1183impl<T> Unpin for DelayQueue<T> {}
1184
1185impl<T> Default for DelayQueue<T> {
1186 fn default() -> DelayQueue<T> {
1187 DelayQueue::new()
1188 }
1189}
1190
1191impl<T> futures_core::Stream for DelayQueue<T> {
1192 // DelayQueue seems much more specific, where a user may care that it
1193 // has reached capacity, so return those errors instead of panicking.
1194 type Item = Expired<T>;
1195
1196 fn poll_next(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Option<Self::Item>> {
1197 DelayQueue::poll_expired(self.get_mut(), cx)
1198 }
1199}
1200
1201impl<T> wheel::Stack for Stack<T> {
1202 type Owned = Key;
1203 type Borrowed = Key;
1204 type Store = SlabStorage<T>;
1205
1206 fn is_empty(&self) -> bool {
1207 self.head.is_none()
1208 }
1209
1210 fn push(&mut self, item: Self::Owned, store: &mut Self::Store) {
1211 // Ensure the entry is not already in a stack.
1212 debug_assert!(store[item].next.is_none());
1213 debug_assert!(store[item].prev.is_none());
1214
1215 // Remove the old head entry
1216 let old = self.head.take();
1217
1218 if let Some(idx) = old {
1219 store[idx].prev = Some(item);
1220 }
1221
1222 store[item].next = old;
1223 self.head = Some(item);
1224 }
1225
1226 fn pop(&mut self, store: &mut Self::Store) -> Option<Self::Owned> {
1227 if let Some(key) = self.head {
1228 self.head = store[key].next;
1229
1230 if let Some(idx) = self.head {
1231 store[idx].prev = None;
1232 }
1233
1234 store[key].next = None;
1235 debug_assert!(store[key].prev.is_none());
1236
1237 Some(key)
1238 } else {
1239 None
1240 }
1241 }
1242
1243 fn peek(&self) -> Option<Self::Owned> {
1244 self.head
1245 }
1246
1247 #[track_caller]
1248 fn remove(&mut self, item: &Self::Borrowed, store: &mut Self::Store) {
1249 let key = *item;
1250 assert!(store.contains(item));
1251
1252 // Ensure that the entry is in fact contained by the stack
1253 debug_assert!({
1254 // This walks the full linked list even if an entry is found.
1255 let mut next = self.head;
1256 let mut contains = false;
1257
1258 while let Some(idx) = next {
1259 let data = &store[idx];
1260
1261 if idx == *item {
1262 debug_assert!(!contains);
1263 contains = true;
1264 }
1265
1266 next = data.next;
1267 }
1268
1269 contains
1270 });
1271
1272 if let Some(next) = store[key].next {
1273 store[next].prev = store[key].prev;
1274 }
1275
1276 if let Some(prev) = store[key].prev {
1277 store[prev].next = store[key].next;
1278 } else {
1279 self.head = store[key].next;
1280 }
1281
1282 store[key].next = None;
1283 store[key].prev = None;
1284 }
1285
1286 fn when(item: &Self::Borrowed, store: &Self::Store) -> u64 {
1287 store[*item].when
1288 }
1289}
1290
1291impl<T> Default for Stack<T> {
1292 fn default() -> Stack<T> {
1293 Stack {
1294 head: None,
1295 _p: PhantomData,
1296 }
1297 }
1298}
1299
1300impl Key {
1301 pub(crate) fn new(index: usize) -> Key {
1302 Key { index }
1303 }
1304}
1305
1306impl KeyInternal {
1307 pub(crate) fn new(index: usize) -> KeyInternal {
1308 KeyInternal { index }
1309 }
1310}
1311
1312impl From<Key> for KeyInternal {
1313 fn from(item: Key) -> Self {
1314 KeyInternal::new(item.index)
1315 }
1316}
1317
1318impl From<KeyInternal> for Key {
1319 fn from(item: KeyInternal) -> Self {
1320 Key::new(item.index)
1321 }
1322}
1323
1324impl<T> Expired<T> {
1325 /// Returns a reference to the inner value.
1326 pub fn get_ref(&self) -> &T {
1327 &self.data
1328 }
1329
1330 /// Returns a mutable reference to the inner value.
1331 pub fn get_mut(&mut self) -> &mut T {
1332 &mut self.data
1333 }
1334
1335 /// Consumes `self` and returns the inner value.
1336 pub fn into_inner(self) -> T {
1337 self.data
1338 }
1339
1340 /// Returns the deadline that the expiration was set to.
1341 pub fn deadline(&self) -> Instant {
1342 self.deadline
1343 }
1344
1345 /// Returns the key that the expiration is indexed by.
1346 pub fn key(&self) -> Key {
1347 self.key
1348 }
1349}