tokio_util/time/
delay_queue.rs

1//! A queue of delayed elements.
2//!
3//! See [`DelayQueue`] for more details.
4//!
5//! [`DelayQueue`]: struct@DelayQueue
6
7use crate::time::wheel::{self, Wheel};
8
9use tokio::time::{sleep_until, Duration, Instant, Sleep};
10
11use core::ops::{Index, IndexMut};
12use slab::Slab;
13use std::cmp;
14use std::collections::HashMap;
15use std::convert::From;
16use std::fmt;
17use std::fmt::Debug;
18use std::future::Future;
19use std::marker::PhantomData;
20use std::pin::Pin;
21use std::task::{self, ready, Poll, Waker};
22
23/// A queue of delayed elements.
24///
25/// Once an element is inserted into the `DelayQueue`, it is yielded once the
26/// specified deadline has been reached.
27///
28/// # Usage
29///
30/// Elements are inserted into `DelayQueue` using the [`insert`] or
31/// [`insert_at`] methods. A deadline is provided with the item and a [`Key`] is
32/// returned. The key is used to remove the entry or to change the deadline at
33/// which it should be yielded back.
34///
35/// Once delays have been configured, the `DelayQueue` is used via its
36/// [`Stream`] implementation. [`poll_expired`] is called. If an entry has reached its
37/// deadline, it is returned. If not, `Poll::Pending` is returned indicating that the
38/// current task will be notified once the deadline has been reached.
39///
40/// # `Stream` implementation
41///
42/// Items are retrieved from the queue via [`DelayQueue::poll_expired`]. If no delays have
43/// expired, no items are returned. In this case, `Poll::Pending` is returned and the
44/// current task is registered to be notified once the next item's delay has
45/// expired.
46///
47/// If no items are in the queue, i.e. `is_empty()` returns `true`, then `poll`
48/// returns `Poll::Ready(None)`. This indicates that the stream has reached an end.
49/// However, if a new item is inserted *after*, `poll` will once again start
50/// returning items or `Poll::Pending`.
51///
52/// Items are returned ordered by their expirations. Items that are configured
53/// to expire first will be returned first. There are no ordering guarantees
54/// for items configured to expire at the same instant. Also note that delays are
55/// rounded to the closest millisecond.
56///
57/// # Implementation
58///
59/// The [`DelayQueue`] is backed by a separate instance of a timer wheel similar to that used internally
60/// by Tokio's standalone timer utilities such as [`sleep`]. Because of this, it offers the same
61/// performance and scalability benefits.
62///
63/// State associated with each entry is stored in a [`slab`]. This amortizes the cost of allocation,
64/// and allows reuse of the memory allocated for expired entries.
65///
66/// Capacity can be checked using [`capacity`] and allocated preemptively by using
67/// the [`reserve`] method.
68///
69/// # Usage
70///
71/// Using `DelayQueue` to manage cache entries.
72///
73/// ```rust,no_run
74/// use tokio_util::time::{DelayQueue, delay_queue};
75///
76/// use std::collections::HashMap;
77/// use std::task::{ready, Context, Poll};
78/// use std::time::Duration;
79/// # type CacheKey = String;
80/// # type Value = String;
81///
82/// struct Cache {
83///     entries: HashMap<CacheKey, (Value, delay_queue::Key)>,
84///     expirations: DelayQueue<CacheKey>,
85/// }
86///
87/// const TTL_SECS: u64 = 30;
88///
89/// impl Cache {
90///     fn insert(&mut self, key: CacheKey, value: Value) {
91///         let delay = self.expirations
92///             .insert(key.clone(), Duration::from_secs(TTL_SECS));
93///
94///         self.entries.insert(key, (value, delay));
95///     }
96///
97///     fn get(&self, key: &CacheKey) -> Option<&Value> {
98///         self.entries.get(key)
99///             .map(|&(ref v, _)| v)
100///     }
101///
102///     fn remove(&mut self, key: &CacheKey) {
103///         if let Some((_, cache_key)) = self.entries.remove(key) {
104///             self.expirations.remove(&cache_key);
105///         }
106///     }
107///
108///     fn poll_purge(&mut self, cx: &mut Context<'_>) -> Poll<()> {
109///         while let Some(entry) = ready!(self.expirations.poll_expired(cx)) {
110///             self.entries.remove(entry.get_ref());
111///         }
112///
113///         Poll::Ready(())
114///     }
115/// }
116/// ```
117///
118/// [`insert`]: method@Self::insert
119/// [`insert_at`]: method@Self::insert_at
120/// [`Key`]: struct@Key
121/// [`Stream`]: https://docs.rs/futures/0.1/futures/stream/trait.Stream.html
122/// [`poll_expired`]: method@Self::poll_expired
123/// [`Stream::poll_expired`]: method@Self::poll_expired
124/// [`DelayQueue`]: struct@DelayQueue
125/// [`sleep`]: fn@tokio::time::sleep
126/// [`slab`]: slab
127/// [`capacity`]: method@Self::capacity
128/// [`reserve`]: method@Self::reserve
129#[derive(Debug)]
130pub struct DelayQueue<T> {
131    /// Stores data associated with entries
132    slab: SlabStorage<T>,
133
134    /// Lookup structure tracking all delays in the queue
135    wheel: Wheel<Stack<T>>,
136
137    /// Delays that were inserted when already expired. These cannot be stored
138    /// in the wheel
139    expired: Stack<T>,
140
141    /// Delay expiring when the *first* item in the queue expires
142    delay: Option<Pin<Box<Sleep>>>,
143
144    /// Wheel polling state
145    wheel_now: u64,
146
147    /// Instant at which the timer starts
148    start: Instant,
149
150    /// Waker that is invoked when we potentially need to reset the timer.
151    /// Because we lazily create the timer when the first entry is created, we
152    /// need to awaken any poller that polled us before that point.
153    waker: Option<Waker>,
154}
155
156#[derive(Default)]
157struct SlabStorage<T> {
158    inner: Slab<Data<T>>,
159
160    // A `compact` call requires a re-mapping of the `Key`s that were changed
161    // during the `compact` call of the `slab`. Since the keys that were given out
162    // cannot be changed retroactively we need to keep track of these re-mappings.
163    // The keys of `key_map` correspond to the old keys that were given out and
164    // the values to the `Key`s that were re-mapped by the `compact` call.
165    key_map: HashMap<Key, KeyInternal>,
166
167    // Index used to create new keys to hand out.
168    next_key_index: usize,
169
170    // Whether `compact` has been called, necessary in order to decide whether
171    // to include keys in `key_map`.
172    compact_called: bool,
173}
174
175impl<T> SlabStorage<T> {
176    pub(crate) fn with_capacity(capacity: usize) -> SlabStorage<T> {
177        SlabStorage {
178            inner: Slab::with_capacity(capacity),
179            key_map: HashMap::new(),
180            next_key_index: 0,
181            compact_called: false,
182        }
183    }
184
185    // Inserts data into the inner slab and re-maps keys if necessary
186    pub(crate) fn insert(&mut self, val: Data<T>) -> Key {
187        let mut key = KeyInternal::new(self.inner.insert(val));
188        let key_contained = self.key_map.contains_key(&key.into());
189
190        if key_contained {
191            // It's possible that a `compact` call creates capacity in `self.inner` in
192            // such a way that a `self.inner.insert` call creates a `key` which was
193            // previously given out during an `insert` call prior to the `compact` call.
194            // If `key` is contained in `self.key_map`, we have encountered this exact situation,
195            // We need to create a new key `key_to_give_out` and include the relation
196            // `key_to_give_out` -> `key` in `self.key_map`.
197            let key_to_give_out = self.create_new_key();
198            assert!(!self.key_map.contains_key(&key_to_give_out.into()));
199            self.key_map.insert(key_to_give_out.into(), key);
200            key = key_to_give_out;
201        } else if self.compact_called {
202            // Include an identity mapping in `self.key_map` in order to allow us to
203            // panic if a key that was handed out is removed more than once.
204            self.key_map.insert(key.into(), key);
205        }
206
207        key.into()
208    }
209
210    // Re-map the key in case compact was previously called.
211    // Note: Since we include identity mappings in key_map after compact was called,
212    // we have information about all keys that were handed out. In the case in which
213    // compact was called and we try to remove a Key that was previously removed
214    // we can detect invalid keys if no key is found in `key_map`. This is necessary
215    // in order to prevent situations in which a previously removed key
216    // corresponds to a re-mapped key internally and which would then be incorrectly
217    // removed from the slab.
218    //
219    // Example to illuminate this problem:
220    //
221    // Let's assume our `key_map` is {1 -> 2, 2 -> 1} and we call remove(1). If we
222    // were to remove 1 again, we would not find it inside `key_map` anymore.
223    // If we were to imply from this that no re-mapping was necessary, we would
224    // incorrectly remove 1 from `self.slab.inner`, which corresponds to the
225    // handed-out key 2.
226    pub(crate) fn remove(&mut self, key: &Key) -> Data<T> {
227        let remapped_key = if self.compact_called {
228            match self.key_map.remove(key) {
229                Some(key_internal) => key_internal,
230                None => panic!("invalid key"),
231            }
232        } else {
233            (*key).into()
234        };
235
236        self.inner.remove(remapped_key.index)
237    }
238
239    pub(crate) fn shrink_to_fit(&mut self) {
240        self.inner.shrink_to_fit();
241        self.key_map.shrink_to_fit();
242    }
243
244    pub(crate) fn compact(&mut self) {
245        if !self.compact_called {
246            for (key, _) in self.inner.iter() {
247                self.key_map.insert(Key::new(key), KeyInternal::new(key));
248            }
249        }
250
251        let mut remapping = HashMap::new();
252        self.inner.compact(|_, from, to| {
253            remapping.insert(from, to);
254            true
255        });
256
257        // At this point `key_map` contains a mapping for every element.
258        for internal_key in self.key_map.values_mut() {
259            if let Some(new_internal_key) = remapping.get(&internal_key.index) {
260                *internal_key = KeyInternal::new(*new_internal_key);
261            }
262        }
263
264        if self.key_map.capacity() > 2 * self.key_map.len() {
265            self.key_map.shrink_to_fit();
266        }
267
268        self.compact_called = true;
269    }
270
271    // Tries to re-map a `Key` that was given out to the user to its
272    // corresponding internal key.
273    fn remap_key(&self, key: &Key) -> Option<KeyInternal> {
274        let key_map = &self.key_map;
275        if self.compact_called {
276            key_map.get(key).copied()
277        } else {
278            Some((*key).into())
279        }
280    }
281
282    fn create_new_key(&mut self) -> KeyInternal {
283        while self.key_map.contains_key(&Key::new(self.next_key_index)) {
284            self.next_key_index = self.next_key_index.wrapping_add(1);
285        }
286
287        KeyInternal::new(self.next_key_index)
288    }
289
290    pub(crate) fn len(&self) -> usize {
291        self.inner.len()
292    }
293
294    pub(crate) fn capacity(&self) -> usize {
295        self.inner.capacity()
296    }
297
298    pub(crate) fn clear(&mut self) {
299        self.inner.clear();
300        self.key_map.clear();
301        self.compact_called = false;
302    }
303
304    pub(crate) fn reserve(&mut self, additional: usize) {
305        self.inner.reserve(additional);
306
307        if self.compact_called {
308            self.key_map.reserve(additional);
309        }
310    }
311
312    pub(crate) fn is_empty(&self) -> bool {
313        self.inner.is_empty()
314    }
315
316    pub(crate) fn contains(&self, key: &Key) -> bool {
317        let remapped_key = self.remap_key(key);
318
319        match remapped_key {
320            Some(internal_key) => self.inner.contains(internal_key.index),
321            None => false,
322        }
323    }
324}
325
326impl<T> fmt::Debug for SlabStorage<T>
327where
328    T: fmt::Debug,
329{
330    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
331        if fmt.alternate() {
332            fmt.debug_map().entries(self.inner.iter()).finish()
333        } else {
334            fmt.debug_struct("Slab")
335                .field("len", &self.len())
336                .field("cap", &self.capacity())
337                .finish()
338        }
339    }
340}
341
342impl<T> Index<Key> for SlabStorage<T> {
343    type Output = Data<T>;
344
345    fn index(&self, key: Key) -> &Self::Output {
346        let remapped_key = self.remap_key(&key);
347
348        match remapped_key {
349            Some(internal_key) => &self.inner[internal_key.index],
350            None => panic!("Invalid index {}", key.index),
351        }
352    }
353}
354
355impl<T> IndexMut<Key> for SlabStorage<T> {
356    fn index_mut(&mut self, key: Key) -> &mut Data<T> {
357        let remapped_key = self.remap_key(&key);
358
359        match remapped_key {
360            Some(internal_key) => &mut self.inner[internal_key.index],
361            None => panic!("Invalid index {}", key.index),
362        }
363    }
364}
365
366/// An entry in `DelayQueue` that has expired and been removed.
367///
368/// Values are returned by [`DelayQueue::poll_expired`].
369///
370/// [`DelayQueue::poll_expired`]: method@DelayQueue::poll_expired
371#[derive(Debug)]
372pub struct Expired<T> {
373    /// The data stored in the queue
374    data: T,
375
376    /// The expiration time
377    deadline: Instant,
378
379    /// The key associated with the entry
380    key: Key,
381}
382
383/// Token to a value stored in a `DelayQueue`.
384///
385/// Instances of `Key` are returned by [`DelayQueue::insert`]. See [`DelayQueue`]
386/// documentation for more details.
387///
388/// [`DelayQueue`]: struct@DelayQueue
389/// [`DelayQueue::insert`]: method@DelayQueue::insert
390#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
391pub struct Key {
392    index: usize,
393}
394
395// Whereas `Key` is given out to users that use `DelayQueue`, internally we use
396// `KeyInternal` as the key type in order to make the logic of mapping between keys
397// as a result of `compact` calls clearer.
398#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
399struct KeyInternal {
400    index: usize,
401}
402
403#[derive(Debug)]
404struct Stack<T> {
405    /// Head of the stack
406    head: Option<Key>,
407    _p: PhantomData<fn() -> T>,
408}
409
410#[derive(Debug)]
411struct Data<T> {
412    /// The data being stored in the queue and will be returned at the requested
413    /// instant.
414    inner: T,
415
416    /// The instant at which the item is returned.
417    when: u64,
418
419    /// Set to true when stored in the `expired` queue
420    expired: bool,
421
422    /// Next entry in the stack
423    next: Option<Key>,
424
425    /// Previous entry in the stack
426    prev: Option<Key>,
427}
428
429/// Maximum number of entries the queue can handle
430const MAX_ENTRIES: usize = (1 << 30) - 1;
431
432impl<T> DelayQueue<T> {
433    /// Creates a new, empty, `DelayQueue`.
434    ///
435    /// The queue will not allocate storage until items are inserted into it.
436    ///
437    /// # Examples
438    ///
439    /// ```rust
440    /// # use tokio_util::time::DelayQueue;
441    /// let delay_queue: DelayQueue<u32> = DelayQueue::new();
442    /// ```
443    pub fn new() -> DelayQueue<T> {
444        DelayQueue::with_capacity(0)
445    }
446
447    /// Creates a new, empty, `DelayQueue` with the specified capacity.
448    ///
449    /// The queue will be able to hold at least `capacity` elements without
450    /// reallocating. If `capacity` is 0, the queue will not allocate for
451    /// storage.
452    ///
453    /// # Examples
454    ///
455    /// ```rust
456    /// # use tokio_util::time::DelayQueue;
457    /// # use std::time::Duration;
458    ///
459    /// # #[tokio::main]
460    /// # async fn main() {
461    /// let mut delay_queue = DelayQueue::with_capacity(10);
462    ///
463    /// // These insertions are done without further allocation
464    /// for i in 0..10 {
465    ///     delay_queue.insert(i, Duration::from_secs(i));
466    /// }
467    ///
468    /// // This will make the queue allocate additional storage
469    /// delay_queue.insert(11, Duration::from_secs(11));
470    /// # }
471    /// ```
472    pub fn with_capacity(capacity: usize) -> DelayQueue<T> {
473        DelayQueue {
474            wheel: Wheel::new(),
475            slab: SlabStorage::with_capacity(capacity),
476            expired: Stack::default(),
477            delay: None,
478            wheel_now: 0,
479            start: Instant::now(),
480            waker: None,
481        }
482    }
483
484    /// Inserts `value` into the queue set to expire at a specific instant in
485    /// time.
486    ///
487    /// This function is identical to `insert`, but takes an `Instant` instead
488    /// of a `Duration`.
489    ///
490    /// `value` is stored in the queue until `when` is reached. At which point,
491    /// `value` will be returned from [`poll_expired`]. If `when` has already been
492    /// reached, then `value` is immediately made available to poll.
493    ///
494    /// The return value represents the insertion and is used as an argument to
495    /// [`remove`] and [`reset`]. Note that [`Key`] is a token and is reused once
496    /// `value` is removed from the queue either by calling [`poll_expired`] after
497    /// `when` is reached or by calling [`remove`]. At this point, the caller
498    /// must take care to not use the returned [`Key`] again as it may reference
499    /// a different item in the queue.
500    ///
501    /// See [type] level documentation for more details.
502    ///
503    /// # Panics
504    ///
505    /// This function panics if `when` is too far in the future.
506    ///
507    /// # Examples
508    ///
509    /// Basic usage
510    ///
511    /// ```rust
512    /// use tokio::time::{Duration, Instant};
513    /// use tokio_util::time::DelayQueue;
514    ///
515    /// # #[tokio::main]
516    /// # async fn main() {
517    /// let mut delay_queue = DelayQueue::new();
518    /// let key = delay_queue.insert_at(
519    ///     "foo", Instant::now() + Duration::from_secs(5));
520    ///
521    /// // Remove the entry
522    /// let item = delay_queue.remove(&key);
523    /// assert_eq!(*item.get_ref(), "foo");
524    /// # }
525    /// ```
526    ///
527    /// [`poll_expired`]: method@Self::poll_expired
528    /// [`remove`]: method@Self::remove
529    /// [`reset`]: method@Self::reset
530    /// [`Key`]: struct@Key
531    /// [type]: #
532    #[track_caller]
533    pub fn insert_at(&mut self, value: T, when: Instant) -> Key {
534        assert!(self.slab.len() < MAX_ENTRIES, "max entries exceeded");
535
536        // Normalize the deadline. Values cannot be set to expire in the past.
537        let when = self.normalize_deadline(when);
538
539        // Insert the value in the store
540        let key = self.slab.insert(Data {
541            inner: value,
542            when,
543            expired: false,
544            next: None,
545            prev: None,
546        });
547
548        self.insert_idx(when, key);
549
550        // Set a new delay if the current's deadline is later than the one of the new item
551        let should_set_delay = if let Some(ref delay) = self.delay {
552            let current_exp = self.normalize_deadline(delay.deadline());
553            current_exp > when
554        } else {
555            true
556        };
557
558        if should_set_delay {
559            if let Some(waker) = self.waker.take() {
560                waker.wake();
561            }
562
563            let delay_time = self.start + Duration::from_millis(when);
564            if let Some(ref mut delay) = &mut self.delay {
565                delay.as_mut().reset(delay_time);
566            } else {
567                self.delay = Some(Box::pin(sleep_until(delay_time)));
568            }
569        }
570
571        key
572    }
573
574    /// Attempts to pull out the next value of the delay queue, registering the
575    /// current task for wakeup if the value is not yet available, and returning
576    /// `None` if the queue is exhausted.
577    pub fn poll_expired(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Expired<T>>> {
578        if !self
579            .waker
580            .as_ref()
581            .map(|w| w.will_wake(cx.waker()))
582            .unwrap_or(false)
583        {
584            self.waker = Some(cx.waker().clone());
585        }
586
587        let item = ready!(self.poll_idx(cx));
588        Poll::Ready(item.map(|key| {
589            let data = self.slab.remove(&key);
590            debug_assert!(data.next.is_none());
591            debug_assert!(data.prev.is_none());
592
593            Expired {
594                key,
595                data: data.inner,
596                deadline: self.start + Duration::from_millis(data.when),
597            }
598        }))
599    }
600
601    /// Inserts `value` into the queue set to expire after the requested duration
602    /// elapses.
603    ///
604    /// This function is identical to `insert_at`, but takes a `Duration`
605    /// instead of an `Instant`.
606    ///
607    /// `value` is stored in the queue until `timeout` duration has
608    /// elapsed after `insert` was called. At that point, `value` will
609    /// be returned from [`poll_expired`]. If `timeout` is a `Duration` of
610    /// zero, then `value` is immediately made available to poll.
611    ///
612    /// The return value represents the insertion and is used as an
613    /// argument to [`remove`] and [`reset`]. Note that [`Key`] is a
614    /// token and is reused once `value` is removed from the queue
615    /// either by calling [`poll_expired`] after `timeout` has elapsed
616    /// or by calling [`remove`]. At this point, the caller must not
617    /// use the returned [`Key`] again as it may reference a different
618    /// item in the queue.
619    ///
620    /// See [type] level documentation for more details.
621    ///
622    /// # Panics
623    ///
624    /// This function panics if `timeout` is greater than the maximum
625    /// duration supported by the timer in the current `Runtime`.
626    ///
627    /// # Examples
628    ///
629    /// Basic usage
630    ///
631    /// ```rust
632    /// use tokio_util::time::DelayQueue;
633    /// use std::time::Duration;
634    ///
635    /// # #[tokio::main]
636    /// # async fn main() {
637    /// let mut delay_queue = DelayQueue::new();
638    /// let key = delay_queue.insert("foo", Duration::from_secs(5));
639    ///
640    /// // Remove the entry
641    /// let item = delay_queue.remove(&key);
642    /// assert_eq!(*item.get_ref(), "foo");
643    /// # }
644    /// ```
645    ///
646    /// [`poll_expired`]: method@Self::poll_expired
647    /// [`remove`]: method@Self::remove
648    /// [`reset`]: method@Self::reset
649    /// [`Key`]: struct@Key
650    /// [type]: #
651    #[track_caller]
652    pub fn insert(&mut self, value: T, timeout: Duration) -> Key {
653        self.insert_at(value, Instant::now() + timeout)
654    }
655
656    #[track_caller]
657    fn insert_idx(&mut self, when: u64, key: Key) {
658        use self::wheel::{InsertError, Stack};
659
660        // Register the deadline with the timer wheel
661        match self.wheel.insert(when, key, &mut self.slab) {
662            Ok(_) => {}
663            Err((_, InsertError::Elapsed)) => {
664                self.slab[key].expired = true;
665                // The delay is already expired, store it in the expired queue
666                self.expired.push(key, &mut self.slab);
667            }
668            Err((_, err)) => panic!("invalid deadline; err={err:?}"),
669        }
670    }
671
672    /// Returns the deadline of the item associated with `key`.
673    ///
674    /// Since the queue operates at millisecond granularity, the returned
675    /// deadline may not exactly match the value that was given when initially
676    /// inserting the item into the queue.
677    ///
678    /// # Panics
679    ///
680    /// This function panics if `key` is not contained by the queue.
681    ///
682    /// # Examples
683    ///
684    /// Basic usage
685    ///
686    /// ```rust
687    /// use tokio_util::time::DelayQueue;
688    /// use std::time::Duration;
689    ///
690    /// # #[tokio::main]
691    /// # async fn main() {
692    /// let mut delay_queue = DelayQueue::new();
693    ///
694    /// let key1 = delay_queue.insert("foo", Duration::from_secs(5));
695    /// let key2 = delay_queue.insert("bar", Duration::from_secs(10));
696    ///
697    /// assert!(delay_queue.deadline(&key1) < delay_queue.deadline(&key2));
698    /// # }
699    /// ```
700    #[track_caller]
701    pub fn deadline(&self, key: &Key) -> Instant {
702        self.start + Duration::from_millis(self.slab[*key].when)
703    }
704
705    /// Removes the key from the expired queue or the timer wheel
706    /// depending on its expiration status.
707    ///
708    /// # Panics
709    ///
710    /// Panics if the key is not contained in the expired queue or the wheel.
711    #[track_caller]
712    fn remove_key(&mut self, key: &Key) {
713        use crate::time::wheel::Stack;
714
715        // Special case the `expired` queue
716        if self.slab[*key].expired {
717            self.expired.remove(key, &mut self.slab);
718        } else {
719            self.wheel.remove(key, &mut self.slab);
720        }
721    }
722
723    /// Removes the item associated with `key` from the queue.
724    ///
725    /// There must be an item associated with `key`. The function returns the
726    /// removed item as well as the `Instant` at which it will the delay will
727    /// have expired.
728    ///
729    /// # Panics
730    ///
731    /// The function panics if `key` is not contained by the queue.
732    ///
733    /// # Examples
734    ///
735    /// Basic usage
736    ///
737    /// ```rust
738    /// use tokio_util::time::DelayQueue;
739    /// use std::time::Duration;
740    ///
741    /// # #[tokio::main]
742    /// # async fn main() {
743    /// let mut delay_queue = DelayQueue::new();
744    /// let key = delay_queue.insert("foo", Duration::from_secs(5));
745    ///
746    /// // Remove the entry
747    /// let item = delay_queue.remove(&key);
748    /// assert_eq!(*item.get_ref(), "foo");
749    /// # }
750    /// ```
751    #[track_caller]
752    pub fn remove(&mut self, key: &Key) -> Expired<T> {
753        let prev_deadline = self.next_deadline();
754
755        self.remove_key(key);
756        let data = self.slab.remove(key);
757
758        let next_deadline = self.next_deadline();
759        if prev_deadline != next_deadline {
760            match (next_deadline, &mut self.delay) {
761                (None, _) => self.delay = None,
762                (Some(deadline), Some(delay)) => delay.as_mut().reset(deadline),
763                (Some(deadline), None) => self.delay = Some(Box::pin(sleep_until(deadline))),
764            }
765        }
766
767        if self.slab.is_empty() {
768            if let Some(waker) = self.waker.take() {
769                waker.wake();
770            }
771        }
772
773        Expired {
774            key: Key::new(key.index),
775            data: data.inner,
776            deadline: self.start + Duration::from_millis(data.when),
777        }
778    }
779
780    /// Attempts to remove the item associated with `key` from the queue.
781    ///
782    /// Removes the item associated with `key`, and returns it along with the
783    /// `Instant` at which it would have expired, if it exists.
784    ///
785    /// Returns `None` if `key` is not in the queue.
786    ///
787    /// # Examples
788    ///
789    /// Basic usage
790    ///
791    /// ```rust
792    /// use tokio_util::time::DelayQueue;
793    /// use std::time::Duration;
794    ///
795    /// # #[tokio::main(flavor = "current_thread")]
796    /// # async fn main() {
797    /// let mut delay_queue = DelayQueue::new();
798    /// let key = delay_queue.insert("foo", Duration::from_secs(5));
799    ///
800    /// // The item is in the queue, `try_remove` returns `Some(Expired("foo"))`.
801    /// let item = delay_queue.try_remove(&key);
802    /// assert_eq!(item.unwrap().into_inner(), "foo");
803    ///
804    /// // The item is not in the queue anymore, `try_remove` returns `None`.
805    /// let item = delay_queue.try_remove(&key);
806    /// assert!(item.is_none());
807    /// # }
808    /// ```
809    pub fn try_remove(&mut self, key: &Key) -> Option<Expired<T>> {
810        if self.slab.contains(key) {
811            Some(self.remove(key))
812        } else {
813            None
814        }
815    }
816
817    /// Sets the delay of the item associated with `key` to expire at `when`.
818    ///
819    /// This function is identical to `reset` but takes an `Instant` instead of
820    /// a `Duration`.
821    ///
822    /// The item remains in the queue but the delay is set to expire at `when`.
823    /// If `when` is in the past, then the item is immediately made available to
824    /// the caller.
825    ///
826    /// # Panics
827    ///
828    /// This function panics if `when` is too far in the future or if `key` is
829    /// not contained by the queue.
830    ///
831    /// # Examples
832    ///
833    /// Basic usage
834    ///
835    /// ```rust
836    /// use tokio::time::{Duration, Instant};
837    /// use tokio_util::time::DelayQueue;
838    ///
839    /// # #[tokio::main]
840    /// # async fn main() {
841    /// let mut delay_queue = DelayQueue::new();
842    /// let key = delay_queue.insert("foo", Duration::from_secs(5));
843    ///
844    /// // "foo" is scheduled to be returned in 5 seconds
845    ///
846    /// delay_queue.reset_at(&key, Instant::now() + Duration::from_secs(10));
847    ///
848    /// // "foo" is now scheduled to be returned in 10 seconds
849    /// # }
850    /// ```
851    #[track_caller]
852    pub fn reset_at(&mut self, key: &Key, when: Instant) {
853        self.remove_key(key);
854
855        // Normalize the deadline. Values cannot be set to expire in the past.
856        let when = self.normalize_deadline(when);
857
858        self.slab[*key].when = when;
859        self.slab[*key].expired = false;
860
861        self.insert_idx(when, *key);
862
863        let next_deadline = self.next_deadline();
864        if let (Some(ref mut delay), Some(deadline)) = (&mut self.delay, next_deadline) {
865            // This should awaken us if necessary (ie, if already expired)
866            delay.as_mut().reset(deadline);
867        }
868    }
869
870    /// Shrink the capacity of the slab, which `DelayQueue` uses internally for storage allocation.
871    /// This function is not guaranteed to, and in most cases, won't decrease the capacity of the slab
872    /// to the number of elements still contained in it, because elements cannot be moved to a different
873    /// index. To decrease the capacity to the size of the slab use [`compact`].
874    ///
875    /// This function can take O(n) time even when the capacity cannot be reduced or the allocation is
876    /// shrunk in place. Repeated calls run in O(1) though.
877    ///
878    /// [`compact`]: method@Self::compact
879    pub fn shrink_to_fit(&mut self) {
880        self.slab.shrink_to_fit();
881    }
882
883    /// Shrink the capacity of the slab, which `DelayQueue` uses internally for storage allocation,
884    /// to the number of elements that are contained in it.
885    ///
886    /// This methods runs in O(n).
887    ///
888    /// # Examples
889    ///
890    /// Basic usage
891    ///
892    /// ```rust
893    /// use tokio_util::time::DelayQueue;
894    /// use std::time::Duration;
895    ///
896    /// # #[tokio::main]
897    /// # async fn main() {
898    /// let mut delay_queue = DelayQueue::with_capacity(10);
899    ///
900    /// let key1 = delay_queue.insert(5, Duration::from_secs(5));
901    /// let key2 = delay_queue.insert(10, Duration::from_secs(10));
902    /// let key3 = delay_queue.insert(15, Duration::from_secs(15));
903    ///
904    /// delay_queue.remove(&key2);
905    ///
906    /// delay_queue.compact();
907    /// assert_eq!(delay_queue.capacity(), 2);
908    /// # }
909    /// ```
910    pub fn compact(&mut self) {
911        self.slab.compact();
912    }
913
914    /// Gets the [`Key`] that [`poll_expired`] will pull out of the queue next, without
915    /// pulling it out or waiting for the deadline to expire.
916    ///
917    /// Entries that have already expired may be returned in any order, but it is
918    /// guaranteed that this method returns them in the same order as when items
919    /// are popped from the `DelayQueue`.
920    ///
921    /// # Examples
922    ///
923    /// Basic usage
924    ///
925    /// ```rust
926    /// use tokio_util::time::DelayQueue;
927    /// use std::time::Duration;
928    ///
929    /// # #[tokio::main]
930    /// # async fn main() {
931    /// let mut delay_queue = DelayQueue::new();
932    ///
933    /// let key1 = delay_queue.insert("foo", Duration::from_secs(10));
934    /// let key2 = delay_queue.insert("bar", Duration::from_secs(5));
935    /// let key3 = delay_queue.insert("baz", Duration::from_secs(15));
936    ///
937    /// assert_eq!(delay_queue.peek().unwrap(), key2);
938    /// # }
939    /// ```
940    ///
941    /// [`Key`]: struct@Key
942    /// [`poll_expired`]: method@Self::poll_expired
943    pub fn peek(&self) -> Option<Key> {
944        use self::wheel::Stack;
945
946        self.expired.peek().or_else(|| self.wheel.peek())
947    }
948
949    /// Returns the next time to poll as determined by the wheel.
950    ///
951    /// Note that this does not include deadlines in the `expired` queue.
952    fn next_deadline(&self) -> Option<Instant> {
953        self.wheel
954            .poll_at()
955            .map(|poll_at| self.start + Duration::from_millis(poll_at))
956    }
957
958    /// Sets the delay of the item associated with `key` to expire after
959    /// `timeout`.
960    ///
961    /// This function is identical to `reset_at` but takes a `Duration` instead
962    /// of an `Instant`.
963    ///
964    /// The item remains in the queue but the delay is set to expire after
965    /// `timeout`. If `timeout` is zero, then the item is immediately made
966    /// available to the caller.
967    ///
968    /// # Panics
969    ///
970    /// This function panics if `timeout` is greater than the maximum supported
971    /// duration or if `key` is not contained by the queue.
972    ///
973    /// # Examples
974    ///
975    /// Basic usage
976    ///
977    /// ```rust
978    /// use tokio_util::time::DelayQueue;
979    /// use std::time::Duration;
980    ///
981    /// # #[tokio::main]
982    /// # async fn main() {
983    /// let mut delay_queue = DelayQueue::new();
984    /// let key = delay_queue.insert("foo", Duration::from_secs(5));
985    ///
986    /// // "foo" is scheduled to be returned in 5 seconds
987    ///
988    /// delay_queue.reset(&key, Duration::from_secs(10));
989    ///
990    /// // "foo"is now scheduled to be returned in 10 seconds
991    /// # }
992    /// ```
993    #[track_caller]
994    pub fn reset(&mut self, key: &Key, timeout: Duration) {
995        self.reset_at(key, Instant::now() + timeout);
996    }
997
998    /// Clears the queue, removing all items.
999    ///
1000    /// After calling `clear`, [`poll_expired`] will return `Ok(Ready(None))`.
1001    ///
1002    /// Note that this method has no effect on the allocated capacity.
1003    ///
1004    /// [`poll_expired`]: method@Self::poll_expired
1005    ///
1006    /// # Examples
1007    ///
1008    /// ```rust
1009    /// use tokio_util::time::DelayQueue;
1010    /// use std::time::Duration;
1011    ///
1012    /// # #[tokio::main]
1013    /// # async fn main() {
1014    /// let mut delay_queue = DelayQueue::new();
1015    ///
1016    /// delay_queue.insert("foo", Duration::from_secs(5));
1017    ///
1018    /// assert!(!delay_queue.is_empty());
1019    ///
1020    /// delay_queue.clear();
1021    ///
1022    /// assert!(delay_queue.is_empty());
1023    /// # }
1024    /// ```
1025    pub fn clear(&mut self) {
1026        self.slab.clear();
1027        self.expired = Stack::default();
1028        self.wheel = Wheel::new();
1029        self.delay = None;
1030    }
1031
1032    /// Returns the number of elements the queue can hold without reallocating.
1033    ///
1034    /// # Examples
1035    ///
1036    /// ```rust
1037    /// use tokio_util::time::DelayQueue;
1038    ///
1039    /// let delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10);
1040    /// assert_eq!(delay_queue.capacity(), 10);
1041    /// ```
1042    pub fn capacity(&self) -> usize {
1043        self.slab.capacity()
1044    }
1045
1046    /// Returns the number of elements currently in the queue.
1047    ///
1048    /// # Examples
1049    ///
1050    /// ```rust
1051    /// use tokio_util::time::DelayQueue;
1052    /// use std::time::Duration;
1053    ///
1054    /// # #[tokio::main]
1055    /// # async fn main() {
1056    /// let mut delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10);
1057    /// assert_eq!(delay_queue.len(), 0);
1058    /// delay_queue.insert(3, Duration::from_secs(5));
1059    /// assert_eq!(delay_queue.len(), 1);
1060    /// # }
1061    /// ```
1062    pub fn len(&self) -> usize {
1063        self.slab.len()
1064    }
1065
1066    /// Reserves capacity for at least `additional` more items to be queued
1067    /// without allocating.
1068    ///
1069    /// `reserve` does nothing if the queue already has sufficient capacity for
1070    /// `additional` more values. If more capacity is required, a new segment of
1071    /// memory will be allocated and all existing values will be copied into it.
1072    /// As such, if the queue is already very large, a call to `reserve` can end
1073    /// up being expensive.
1074    ///
1075    /// The queue may reserve more than `additional` extra space in order to
1076    /// avoid frequent reallocations.
1077    ///
1078    /// # Panics
1079    ///
1080    /// Panics if the new capacity exceeds the maximum number of entries the
1081    /// queue can contain.
1082    ///
1083    /// # Examples
1084    ///
1085    /// ```
1086    /// use tokio_util::time::DelayQueue;
1087    /// use std::time::Duration;
1088    ///
1089    /// # #[tokio::main]
1090    /// # async fn main() {
1091    /// let mut delay_queue = DelayQueue::new();
1092    ///
1093    /// delay_queue.insert("hello", Duration::from_secs(10));
1094    /// delay_queue.reserve(10);
1095    ///
1096    /// assert!(delay_queue.capacity() >= 11);
1097    /// # }
1098    /// ```
1099    #[track_caller]
1100    pub fn reserve(&mut self, additional: usize) {
1101        assert!(
1102            self.slab.capacity() + additional <= MAX_ENTRIES,
1103            "max queue capacity exceeded"
1104        );
1105        self.slab.reserve(additional);
1106    }
1107
1108    /// Returns `true` if there are no items in the queue.
1109    ///
1110    /// Note that this function returns `false` even if all items have not yet
1111    /// expired and a call to `poll` will return `Poll::Pending`.
1112    ///
1113    /// # Examples
1114    ///
1115    /// ```
1116    /// use tokio_util::time::DelayQueue;
1117    /// use std::time::Duration;
1118    ///
1119    /// # #[tokio::main]
1120    /// # async fn main() {
1121    /// let mut delay_queue = DelayQueue::new();
1122    /// assert!(delay_queue.is_empty());
1123    ///
1124    /// delay_queue.insert("hello", Duration::from_secs(5));
1125    /// assert!(!delay_queue.is_empty());
1126    /// # }
1127    /// ```
1128    pub fn is_empty(&self) -> bool {
1129        self.slab.is_empty()
1130    }
1131
1132    /// Polls the queue, returning the index of the next slot in the slab that
1133    /// should be returned.
1134    ///
1135    /// A slot should be returned when the associated deadline has been reached.
1136    fn poll_idx(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Key>> {
1137        use self::wheel::Stack;
1138
1139        let expired = self.expired.pop(&mut self.slab);
1140
1141        if expired.is_some() {
1142            return Poll::Ready(expired);
1143        }
1144
1145        loop {
1146            if let Some(ref mut delay) = self.delay {
1147                if !delay.is_elapsed() {
1148                    ready!(Pin::new(&mut *delay).poll(cx));
1149                }
1150
1151                let now = crate::time::ms(delay.deadline() - self.start, crate::time::Round::Down);
1152
1153                self.wheel_now = now;
1154            }
1155
1156            // We poll the wheel to get the next value out before finding the next deadline.
1157            let wheel_idx = self.wheel.poll(self.wheel_now, &mut self.slab);
1158
1159            self.delay = self.next_deadline().map(|when| Box::pin(sleep_until(when)));
1160
1161            if let Some(idx) = wheel_idx {
1162                return Poll::Ready(Some(idx));
1163            }
1164
1165            if self.delay.is_none() {
1166                return Poll::Ready(None);
1167            }
1168        }
1169    }
1170
1171    fn normalize_deadline(&self, when: Instant) -> u64 {
1172        let when = if when < self.start {
1173            0
1174        } else {
1175            crate::time::ms(when - self.start, crate::time::Round::Up)
1176        };
1177
1178        cmp::max(when, self.wheel.elapsed())
1179    }
1180}
1181
1182// We never put `T` in a `Pin`...
1183impl<T> Unpin for DelayQueue<T> {}
1184
1185impl<T> Default for DelayQueue<T> {
1186    fn default() -> DelayQueue<T> {
1187        DelayQueue::new()
1188    }
1189}
1190
1191impl<T> futures_core::Stream for DelayQueue<T> {
1192    // DelayQueue seems much more specific, where a user may care that it
1193    // has reached capacity, so return those errors instead of panicking.
1194    type Item = Expired<T>;
1195
1196    fn poll_next(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Option<Self::Item>> {
1197        DelayQueue::poll_expired(self.get_mut(), cx)
1198    }
1199}
1200
1201impl<T> wheel::Stack for Stack<T> {
1202    type Owned = Key;
1203    type Borrowed = Key;
1204    type Store = SlabStorage<T>;
1205
1206    fn is_empty(&self) -> bool {
1207        self.head.is_none()
1208    }
1209
1210    fn push(&mut self, item: Self::Owned, store: &mut Self::Store) {
1211        // Ensure the entry is not already in a stack.
1212        debug_assert!(store[item].next.is_none());
1213        debug_assert!(store[item].prev.is_none());
1214
1215        // Remove the old head entry
1216        let old = self.head.take();
1217
1218        if let Some(idx) = old {
1219            store[idx].prev = Some(item);
1220        }
1221
1222        store[item].next = old;
1223        self.head = Some(item);
1224    }
1225
1226    fn pop(&mut self, store: &mut Self::Store) -> Option<Self::Owned> {
1227        if let Some(key) = self.head {
1228            self.head = store[key].next;
1229
1230            if let Some(idx) = self.head {
1231                store[idx].prev = None;
1232            }
1233
1234            store[key].next = None;
1235            debug_assert!(store[key].prev.is_none());
1236
1237            Some(key)
1238        } else {
1239            None
1240        }
1241    }
1242
1243    fn peek(&self) -> Option<Self::Owned> {
1244        self.head
1245    }
1246
1247    #[track_caller]
1248    fn remove(&mut self, item: &Self::Borrowed, store: &mut Self::Store) {
1249        let key = *item;
1250        assert!(store.contains(item));
1251
1252        // Ensure that the entry is in fact contained by the stack
1253        debug_assert!({
1254            // This walks the full linked list even if an entry is found.
1255            let mut next = self.head;
1256            let mut contains = false;
1257
1258            while let Some(idx) = next {
1259                let data = &store[idx];
1260
1261                if idx == *item {
1262                    debug_assert!(!contains);
1263                    contains = true;
1264                }
1265
1266                next = data.next;
1267            }
1268
1269            contains
1270        });
1271
1272        if let Some(next) = store[key].next {
1273            store[next].prev = store[key].prev;
1274        }
1275
1276        if let Some(prev) = store[key].prev {
1277            store[prev].next = store[key].next;
1278        } else {
1279            self.head = store[key].next;
1280        }
1281
1282        store[key].next = None;
1283        store[key].prev = None;
1284    }
1285
1286    fn when(item: &Self::Borrowed, store: &Self::Store) -> u64 {
1287        store[*item].when
1288    }
1289}
1290
1291impl<T> Default for Stack<T> {
1292    fn default() -> Stack<T> {
1293        Stack {
1294            head: None,
1295            _p: PhantomData,
1296        }
1297    }
1298}
1299
1300impl Key {
1301    pub(crate) fn new(index: usize) -> Key {
1302        Key { index }
1303    }
1304}
1305
1306impl KeyInternal {
1307    pub(crate) fn new(index: usize) -> KeyInternal {
1308        KeyInternal { index }
1309    }
1310}
1311
1312impl From<Key> for KeyInternal {
1313    fn from(item: Key) -> Self {
1314        KeyInternal::new(item.index)
1315    }
1316}
1317
1318impl From<KeyInternal> for Key {
1319    fn from(item: KeyInternal) -> Self {
1320        Key::new(item.index)
1321    }
1322}
1323
1324impl<T> Expired<T> {
1325    /// Returns a reference to the inner value.
1326    pub fn get_ref(&self) -> &T {
1327        &self.data
1328    }
1329
1330    /// Returns a mutable reference to the inner value.
1331    pub fn get_mut(&mut self) -> &mut T {
1332        &mut self.data
1333    }
1334
1335    /// Consumes `self` and returns the inner value.
1336    pub fn into_inner(self) -> T {
1337        self.data
1338    }
1339
1340    /// Returns the deadline that the expiration was set to.
1341    pub fn deadline(&self) -> Instant {
1342        self.deadline
1343    }
1344
1345    /// Returns the key that the expiration is indexed by.
1346    pub fn key(&self) -> Key {
1347        self.key
1348    }
1349}