tokio_util/context.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
//! Tokio context aware futures utilities.
//!
//! This module includes utilities around integrating tokio with other runtimes
//! by allowing the context to be attached to futures. This allows spawning
//! futures on other executors while still using tokio to drive them. This
//! can be useful if you need to use a tokio based library in an executor/runtime
//! that does not provide a tokio context.
use pin_project_lite::pin_project;
use std::{
future::Future,
pin::Pin,
task::{Context, Poll},
};
use tokio::runtime::{Handle, Runtime};
pin_project! {
/// `TokioContext` allows running futures that must be inside Tokio's
/// context on a non-Tokio runtime.
///
/// It contains a [`Handle`] to the runtime. A handle to the runtime can be
/// obtain by calling the [`Runtime::handle()`] method.
///
/// Note that the `TokioContext` wrapper only works if the `Runtime` it is
/// connected to has not yet been destroyed. You must keep the `Runtime`
/// alive until the future has finished executing.
///
/// **Warning:** If `TokioContext` is used together with a [current thread]
/// runtime, that runtime must be inside a call to `block_on` for the
/// wrapped future to work. For this reason, it is recommended to use a
/// [multi thread] runtime, even if you configure it to only spawn one
/// worker thread.
///
/// # Examples
///
/// This example creates two runtimes, but only [enables time] on one of
/// them. It then uses the context of the runtime with the timer enabled to
/// execute a [`sleep`] future on the runtime with timing disabled.
/// ```
/// use tokio::time::{sleep, Duration};
/// use tokio_util::context::RuntimeExt;
///
/// // This runtime has timers enabled.
/// let rt = tokio::runtime::Builder::new_multi_thread()
/// .enable_all()
/// .build()
/// .unwrap();
///
/// // This runtime has timers disabled.
/// let rt2 = tokio::runtime::Builder::new_multi_thread()
/// .build()
/// .unwrap();
///
/// // Wrap the sleep future in the context of rt.
/// let fut = rt.wrap(async { sleep(Duration::from_millis(2)).await });
///
/// // Execute the future on rt2.
/// rt2.block_on(fut);
/// ```
///
/// [`Handle`]: struct@tokio::runtime::Handle
/// [`Runtime::handle()`]: fn@tokio::runtime::Runtime::handle
/// [`RuntimeExt`]: trait@crate::context::RuntimeExt
/// [`new_static`]: fn@Self::new_static
/// [`sleep`]: fn@tokio::time::sleep
/// [current thread]: fn@tokio::runtime::Builder::new_current_thread
/// [enables time]: fn@tokio::runtime::Builder::enable_time
/// [multi thread]: fn@tokio::runtime::Builder::new_multi_thread
pub struct TokioContext<F> {
#[pin]
inner: F,
handle: Handle,
}
}
impl<F> TokioContext<F> {
/// Associate the provided future with the context of the runtime behind
/// the provided `Handle`.
///
/// This constructor uses a `'static` lifetime to opt-out of checking that
/// the runtime still exists.
///
/// # Examples
///
/// This is the same as the example above, but uses the `new` constructor
/// rather than [`RuntimeExt::wrap`].
///
/// [`RuntimeExt::wrap`]: fn@RuntimeExt::wrap
///
/// ```
/// use tokio::time::{sleep, Duration};
/// use tokio_util::context::TokioContext;
///
/// // This runtime has timers enabled.
/// let rt = tokio::runtime::Builder::new_multi_thread()
/// .enable_all()
/// .build()
/// .unwrap();
///
/// // This runtime has timers disabled.
/// let rt2 = tokio::runtime::Builder::new_multi_thread()
/// .build()
/// .unwrap();
///
/// let fut = TokioContext::new(
/// async { sleep(Duration::from_millis(2)).await },
/// rt.handle().clone(),
/// );
///
/// // Execute the future on rt2.
/// rt2.block_on(fut);
/// ```
pub fn new(future: F, handle: Handle) -> TokioContext<F> {
TokioContext {
inner: future,
handle,
}
}
/// Obtain a reference to the handle inside this `TokioContext`.
pub fn handle(&self) -> &Handle {
&self.handle
}
/// Remove the association between the Tokio runtime and the wrapped future.
pub fn into_inner(self) -> F {
self.inner
}
}
impl<F: Future> Future for TokioContext<F> {
type Output = F::Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let me = self.project();
let handle = me.handle;
let fut = me.inner;
let _enter = handle.enter();
fut.poll(cx)
}
}
/// Extension trait that simplifies bundling a `Handle` with a `Future`.
pub trait RuntimeExt {
/// Create a [`TokioContext`] that wraps the provided future and runs it in
/// this runtime's context.
///
/// # Examples
///
/// This example creates two runtimes, but only [enables time] on one of
/// them. It then uses the context of the runtime with the timer enabled to
/// execute a [`sleep`] future on the runtime with timing disabled.
///
/// ```
/// use tokio::time::{sleep, Duration};
/// use tokio_util::context::RuntimeExt;
///
/// // This runtime has timers enabled.
/// let rt = tokio::runtime::Builder::new_multi_thread()
/// .enable_all()
/// .build()
/// .unwrap();
///
/// // This runtime has timers disabled.
/// let rt2 = tokio::runtime::Builder::new_multi_thread()
/// .build()
/// .unwrap();
///
/// // Wrap the sleep future in the context of rt.
/// let fut = rt.wrap(async { sleep(Duration::from_millis(2)).await });
///
/// // Execute the future on rt2.
/// rt2.block_on(fut);
/// ```
///
/// [`TokioContext`]: struct@crate::context::TokioContext
/// [`sleep`]: fn@tokio::time::sleep
/// [enables time]: fn@tokio::runtime::Builder::enable_time
fn wrap<F: Future>(&self, fut: F) -> TokioContext<F>;
}
impl RuntimeExt for Runtime {
fn wrap<F: Future>(&self, fut: F) -> TokioContext<F> {
TokioContext {
inner: fut,
handle: self.handle().clone(),
}
}
}