1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
use futures_util::future::{AbortHandle, Abortable};
use std::fmt;
use std::fmt::{Debug, Formatter};
use std::future::Future;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;
use tokio::runtime::Builder;
use tokio::sync::mpsc::{unbounded_channel, UnboundedReceiver, UnboundedSender};
use tokio::sync::oneshot;
use tokio::task::{spawn_local, JoinHandle, LocalSet};
/// A cloneable handle to a local pool, used for spawning `!Send` tasks.
///
/// Internally the local pool uses a [`tokio::task::LocalSet`] for each worker thread
/// in the pool. Consequently you can also use [`tokio::task::spawn_local`] (which will
/// execute on the same thread) inside the Future you supply to the various spawn methods
/// of `LocalPoolHandle`,
///
/// [`tokio::task::LocalSet`]: tokio::task::LocalSet
/// [`tokio::task::spawn_local`]: tokio::task::spawn_local
///
/// # Examples
///
/// ```
/// use std::rc::Rc;
/// use tokio::task;
/// use tokio_util::task::LocalPoolHandle;
///
/// #[tokio::main(flavor = "current_thread")]
/// async fn main() {
/// let pool = LocalPoolHandle::new(5);
///
/// let output = pool.spawn_pinned(|| {
/// // `data` is !Send + !Sync
/// let data = Rc::new("local data");
/// let data_clone = data.clone();
///
/// async move {
/// task::spawn_local(async move {
/// println!("{}", data_clone);
/// });
///
/// data.to_string()
/// }
/// }).await.unwrap();
/// println!("output: {}", output);
/// }
/// ```
///
#[derive(Clone)]
pub struct LocalPoolHandle {
pool: Arc<LocalPool>,
}
impl LocalPoolHandle {
/// Create a new pool of threads to handle `!Send` tasks. Spawn tasks onto this
/// pool via [`LocalPoolHandle::spawn_pinned`].
///
/// # Panics
///
/// Panics if the pool size is less than one.
#[track_caller]
pub fn new(pool_size: usize) -> LocalPoolHandle {
assert!(pool_size > 0);
let workers = (0..pool_size)
.map(|_| LocalWorkerHandle::new_worker())
.collect();
let pool = Arc::new(LocalPool { workers });
LocalPoolHandle { pool }
}
/// Returns the number of threads of the Pool.
#[inline]
pub fn num_threads(&self) -> usize {
self.pool.workers.len()
}
/// Returns the number of tasks scheduled on each worker. The indices of the
/// worker threads correspond to the indices of the returned `Vec`.
pub fn get_task_loads_for_each_worker(&self) -> Vec<usize> {
self.pool
.workers
.iter()
.map(|worker| worker.task_count.load(Ordering::SeqCst))
.collect::<Vec<_>>()
}
/// Spawn a task onto a worker thread and pin it there so it can't be moved
/// off of the thread. Note that the future is not [`Send`], but the
/// [`FnOnce`] which creates it is.
///
/// # Examples
/// ```
/// use std::rc::Rc;
/// use tokio_util::task::LocalPoolHandle;
///
/// #[tokio::main]
/// async fn main() {
/// // Create the local pool
/// let pool = LocalPoolHandle::new(1);
///
/// // Spawn a !Send future onto the pool and await it
/// let output = pool
/// .spawn_pinned(|| {
/// // Rc is !Send + !Sync
/// let local_data = Rc::new("test");
///
/// // This future holds an Rc, so it is !Send
/// async move { local_data.to_string() }
/// })
/// .await
/// .unwrap();
///
/// assert_eq!(output, "test");
/// }
/// ```
pub fn spawn_pinned<F, Fut>(&self, create_task: F) -> JoinHandle<Fut::Output>
where
F: FnOnce() -> Fut,
F: Send + 'static,
Fut: Future + 'static,
Fut::Output: Send + 'static,
{
self.pool
.spawn_pinned(create_task, WorkerChoice::LeastBurdened)
}
/// Differs from `spawn_pinned` only in that you can choose a specific worker thread
/// of the pool, whereas `spawn_pinned` chooses the worker with the smallest
/// number of tasks scheduled.
///
/// A worker thread is chosen by index. Indices are 0 based and the largest index
/// is given by `num_threads() - 1`
///
/// # Panics
///
/// This method panics if the index is out of bounds.
///
/// # Examples
///
/// This method can be used to spawn a task on all worker threads of the pool:
///
/// ```
/// use tokio_util::task::LocalPoolHandle;
///
/// #[tokio::main]
/// async fn main() {
/// const NUM_WORKERS: usize = 3;
/// let pool = LocalPoolHandle::new(NUM_WORKERS);
/// let handles = (0..pool.num_threads())
/// .map(|worker_idx| {
/// pool.spawn_pinned_by_idx(
/// || {
/// async {
/// "test"
/// }
/// },
/// worker_idx,
/// )
/// })
/// .collect::<Vec<_>>();
///
/// for handle in handles {
/// handle.await.unwrap();
/// }
/// }
/// ```
///
#[track_caller]
pub fn spawn_pinned_by_idx<F, Fut>(&self, create_task: F, idx: usize) -> JoinHandle<Fut::Output>
where
F: FnOnce() -> Fut,
F: Send + 'static,
Fut: Future + 'static,
Fut::Output: Send + 'static,
{
self.pool
.spawn_pinned(create_task, WorkerChoice::ByIdx(idx))
}
}
impl Debug for LocalPoolHandle {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.write_str("LocalPoolHandle")
}
}
enum WorkerChoice {
LeastBurdened,
ByIdx(usize),
}
struct LocalPool {
workers: Vec<LocalWorkerHandle>,
}
impl LocalPool {
/// Spawn a `?Send` future onto a worker
#[track_caller]
fn spawn_pinned<F, Fut>(
&self,
create_task: F,
worker_choice: WorkerChoice,
) -> JoinHandle<Fut::Output>
where
F: FnOnce() -> Fut,
F: Send + 'static,
Fut: Future + 'static,
Fut::Output: Send + 'static,
{
let (sender, receiver) = oneshot::channel();
let (worker, job_guard) = match worker_choice {
WorkerChoice::LeastBurdened => self.find_and_incr_least_burdened_worker(),
WorkerChoice::ByIdx(idx) => self.find_worker_by_idx(idx),
};
let worker_spawner = worker.spawner.clone();
// Spawn a future onto the worker's runtime so we can immediately return
// a join handle.
worker.runtime_handle.spawn(async move {
// Move the job guard into the task
let _job_guard = job_guard;
// Propagate aborts via Abortable/AbortHandle
let (abort_handle, abort_registration) = AbortHandle::new_pair();
let _abort_guard = AbortGuard(abort_handle);
// Inside the future we can't run spawn_local yet because we're not
// in the context of a LocalSet. We need to send create_task to the
// LocalSet task for spawning.
let spawn_task = Box::new(move || {
// Once we're in the LocalSet context we can call spawn_local
let join_handle =
spawn_local(
async move { Abortable::new(create_task(), abort_registration).await },
);
// Send the join handle back to the spawner. If sending fails,
// we assume the parent task was canceled, so cancel this task
// as well.
if let Err(join_handle) = sender.send(join_handle) {
join_handle.abort()
}
});
// Send the callback to the LocalSet task
if let Err(e) = worker_spawner.send(spawn_task) {
// Propagate the error as a panic in the join handle.
panic!("Failed to send job to worker: {}", e);
}
// Wait for the task's join handle
let join_handle = match receiver.await {
Ok(handle) => handle,
Err(e) => {
// We sent the task successfully, but failed to get its
// join handle... We assume something happened to the worker
// and the task was not spawned. Propagate the error as a
// panic in the join handle.
panic!("Worker failed to send join handle: {}", e);
}
};
// Wait for the task to complete
let join_result = join_handle.await;
match join_result {
Ok(Ok(output)) => output,
Ok(Err(_)) => {
// Pinned task was aborted. But that only happens if this
// task is aborted. So this is an impossible branch.
unreachable!(
"Reaching this branch means this task was previously \
aborted but it continued running anyways"
)
}
Err(e) => {
if e.is_panic() {
std::panic::resume_unwind(e.into_panic());
} else if e.is_cancelled() {
// No one else should have the join handle, so this is
// unexpected. Forward this error as a panic in the join
// handle.
panic!("spawn_pinned task was canceled: {}", e);
} else {
// Something unknown happened (not a panic or
// cancellation). Forward this error as a panic in the
// join handle.
panic!("spawn_pinned task failed: {}", e);
}
}
}
})
}
/// Find the worker with the least number of tasks, increment its task
/// count, and return its handle. Make sure to actually spawn a task on
/// the worker so the task count is kept consistent with load.
///
/// A job count guard is also returned to ensure the task count gets
/// decremented when the job is done.
fn find_and_incr_least_burdened_worker(&self) -> (&LocalWorkerHandle, JobCountGuard) {
loop {
let (worker, task_count) = self
.workers
.iter()
.map(|worker| (worker, worker.task_count.load(Ordering::SeqCst)))
.min_by_key(|&(_, count)| count)
.expect("There must be more than one worker");
// Make sure the task count hasn't changed since when we choose this
// worker. Otherwise, restart the search.
if worker
.task_count
.compare_exchange(
task_count,
task_count + 1,
Ordering::SeqCst,
Ordering::Relaxed,
)
.is_ok()
{
return (worker, JobCountGuard(Arc::clone(&worker.task_count)));
}
}
}
#[track_caller]
fn find_worker_by_idx(&self, idx: usize) -> (&LocalWorkerHandle, JobCountGuard) {
let worker = &self.workers[idx];
worker.task_count.fetch_add(1, Ordering::SeqCst);
(worker, JobCountGuard(Arc::clone(&worker.task_count)))
}
}
/// Automatically decrements a worker's job count when a job finishes (when
/// this gets dropped).
struct JobCountGuard(Arc<AtomicUsize>);
impl Drop for JobCountGuard {
fn drop(&mut self) {
// Decrement the job count
let previous_value = self.0.fetch_sub(1, Ordering::SeqCst);
debug_assert!(previous_value >= 1);
}
}
/// Calls abort on the handle when dropped.
struct AbortGuard(AbortHandle);
impl Drop for AbortGuard {
fn drop(&mut self) {
self.0.abort();
}
}
type PinnedFutureSpawner = Box<dyn FnOnce() + Send + 'static>;
struct LocalWorkerHandle {
runtime_handle: tokio::runtime::Handle,
spawner: UnboundedSender<PinnedFutureSpawner>,
task_count: Arc<AtomicUsize>,
}
impl LocalWorkerHandle {
/// Create a new worker for executing pinned tasks
fn new_worker() -> LocalWorkerHandle {
let (sender, receiver) = unbounded_channel();
let runtime = Builder::new_current_thread()
.enable_all()
.build()
.expect("Failed to start a pinned worker thread runtime");
let runtime_handle = runtime.handle().clone();
let task_count = Arc::new(AtomicUsize::new(0));
let task_count_clone = Arc::clone(&task_count);
std::thread::spawn(|| Self::run(runtime, receiver, task_count_clone));
LocalWorkerHandle {
runtime_handle,
spawner: sender,
task_count,
}
}
fn run(
runtime: tokio::runtime::Runtime,
mut task_receiver: UnboundedReceiver<PinnedFutureSpawner>,
task_count: Arc<AtomicUsize>,
) {
let local_set = LocalSet::new();
local_set.block_on(&runtime, async {
while let Some(spawn_task) = task_receiver.recv().await {
// Calls spawn_local(future)
(spawn_task)();
}
});
// If there are any tasks on the runtime associated with a LocalSet task
// that has already completed, but whose output has not yet been
// reported, let that task complete.
//
// Since the task_count is decremented when the runtime task exits,
// reading that counter lets us know if any such tasks completed during
// the call to `block_on`.
//
// Tasks on the LocalSet can't complete during this loop since they're
// stored on the LocalSet and we aren't accessing it.
let mut previous_task_count = task_count.load(Ordering::SeqCst);
loop {
// This call will also run tasks spawned on the runtime.
runtime.block_on(tokio::task::yield_now());
let new_task_count = task_count.load(Ordering::SeqCst);
if new_task_count == previous_task_count {
break;
} else {
previous_task_count = new_task_count;
}
}
// It's now no longer possible for a task on the runtime to be
// associated with a LocalSet task that has completed. Drop both the
// LocalSet and runtime to let tasks on the runtime be cancelled if and
// only if they are still on the LocalSet.
//
// Drop the LocalSet task first so that anyone awaiting the runtime
// JoinHandle will see the cancelled error after the LocalSet task
// destructor has completed.
drop(local_set);
drop(runtime);
}
}