1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
use crate::runtime::{context, scheduler, RuntimeFlavor};

/// Handle to the runtime.
///
/// The handle is internally reference-counted and can be freely cloned. A handle can be
/// obtained using the [`Runtime::handle`] method.
///
/// [`Runtime::handle`]: crate::runtime::Runtime::handle()
#[derive(Debug, Clone)]
// When the `rt` feature is *not* enabled, this type is still defined, but not
// included in the public API.
pub struct Handle {
    pub(crate) inner: scheduler::Handle,
}

use crate::runtime::task::JoinHandle;
use crate::util::error::{CONTEXT_MISSING_ERROR, THREAD_LOCAL_DESTROYED_ERROR};

use std::future::Future;
use std::marker::PhantomData;
use std::{error, fmt};

/// Runtime context guard.
///
/// Returned by [`Runtime::enter`] and [`Handle::enter`], the context guard exits
/// the runtime context on drop.
///
/// [`Runtime::enter`]: fn@crate::runtime::Runtime::enter
#[derive(Debug)]
#[must_use = "Creating and dropping a guard does nothing"]
pub struct EnterGuard<'a> {
    _guard: context::SetCurrentGuard,
    _handle_lifetime: PhantomData<&'a Handle>,
}

impl Handle {
    /// Enters the runtime context. This allows you to construct types that must
    /// have an executor available on creation such as [`Sleep`] or [`TcpStream`].
    /// It will also allow you to call methods such as [`tokio::spawn`] and [`Handle::current`]
    /// without panicking.
    ///
    /// [`Sleep`]: struct@crate::time::Sleep
    /// [`TcpStream`]: struct@crate::net::TcpStream
    /// [`tokio::spawn`]: fn@crate::spawn
    pub fn enter(&self) -> EnterGuard<'_> {
        EnterGuard {
            _guard: match context::try_set_current(&self.inner) {
                Some(guard) => guard,
                None => panic!("{}", crate::util::error::THREAD_LOCAL_DESTROYED_ERROR),
            },
            _handle_lifetime: PhantomData,
        }
    }

    /// Returns a `Handle` view over the currently running `Runtime`.
    ///
    /// # Panics
    ///
    /// This will panic if called outside the context of a Tokio runtime. That means that you must
    /// call this on one of the threads **being run by the runtime**, or from a thread with an active
    /// `EnterGuard`. Calling this from within a thread created by `std::thread::spawn` (for example)
    /// will cause a panic unless that thread has an active `EnterGuard`.
    ///
    /// # Examples
    ///
    /// This can be used to obtain the handle of the surrounding runtime from an async
    /// block or function running on that runtime.
    ///
    /// ```
    /// # use std::thread;
    /// # use tokio::runtime::Runtime;
    /// # fn dox() {
    /// # let rt = Runtime::new().unwrap();
    /// # rt.spawn(async {
    /// use tokio::runtime::Handle;
    ///
    /// // Inside an async block or function.
    /// let handle = Handle::current();
    /// handle.spawn(async {
    ///     println!("now running in the existing Runtime");
    /// });
    ///
    /// # let handle =
    /// thread::spawn(move || {
    ///     // Notice that the handle is created outside of this thread and then moved in
    ///     handle.spawn(async { /* ... */ });
    ///     // This next line would cause a panic because we haven't entered the runtime
    ///     // and created an EnterGuard
    ///     // let handle2 = Handle::current(); // panic
    ///     // So we create a guard here with Handle::enter();
    ///     let _guard = handle.enter();
    ///     // Now we can call Handle::current();
    ///     let handle2 = Handle::current();
    /// });
    /// # handle.join().unwrap();
    /// # });
    /// # }
    /// ```
    #[track_caller]
    pub fn current() -> Self {
        Handle {
            inner: scheduler::Handle::current(),
        }
    }

    /// Returns a Handle view over the currently running Runtime
    ///
    /// Returns an error if no Runtime has been started
    ///
    /// Contrary to `current`, this never panics
    pub fn try_current() -> Result<Self, TryCurrentError> {
        context::try_current().map(|inner| Handle { inner })
    }

    /// Spawns a future onto the Tokio runtime.
    ///
    /// This spawns the given future onto the runtime's executor, usually a
    /// thread pool. The thread pool is then responsible for polling the future
    /// until it completes.
    ///
    /// The provided future will start running in the background immediately
    /// when `spawn` is called, even if you don't await the returned
    /// `JoinHandle`.
    ///
    /// See [module level][mod] documentation for more details.
    ///
    /// [mod]: index.html
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::runtime::Runtime;
    ///
    /// # fn dox() {
    /// // Create the runtime
    /// let rt = Runtime::new().unwrap();
    /// // Get a handle from this runtime
    /// let handle = rt.handle();
    ///
    /// // Spawn a future onto the runtime using the handle
    /// handle.spawn(async {
    ///     println!("now running on a worker thread");
    /// });
    /// # }
    /// ```
    #[track_caller]
    pub fn spawn<F>(&self, future: F) -> JoinHandle<F::Output>
    where
        F: Future + Send + 'static,
        F::Output: Send + 'static,
    {
        self.spawn_named(future, None)
    }

    /// Runs the provided function on an executor dedicated to blocking.
    /// operations.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::runtime::Runtime;
    ///
    /// # fn dox() {
    /// // Create the runtime
    /// let rt = Runtime::new().unwrap();
    /// // Get a handle from this runtime
    /// let handle = rt.handle();
    ///
    /// // Spawn a blocking function onto the runtime using the handle
    /// handle.spawn_blocking(|| {
    ///     println!("now running on a worker thread");
    /// });
    /// # }
    #[track_caller]
    pub fn spawn_blocking<F, R>(&self, func: F) -> JoinHandle<R>
    where
        F: FnOnce() -> R + Send + 'static,
        R: Send + 'static,
    {
        self.inner.blocking_spawner().spawn_blocking(self, func)
    }

    /// Runs a future to completion on this `Handle`'s associated `Runtime`.
    ///
    /// This runs the given future on the current thread, blocking until it is
    /// complete, and yielding its resolved result. Any tasks or timers which
    /// the future spawns internally will be executed on the runtime.
    ///
    /// When this is used on a `current_thread` runtime, only the
    /// [`Runtime::block_on`] method can drive the IO and timer drivers, but the
    /// `Handle::block_on` method cannot drive them. This means that, when using
    /// this method on a current_thread runtime, anything that relies on IO or
    /// timers will not work unless there is another thread currently calling
    /// [`Runtime::block_on`] on the same runtime.
    ///
    /// # If the runtime has been shut down
    ///
    /// If the `Handle`'s associated `Runtime` has been shut down (through
    /// [`Runtime::shutdown_background`], [`Runtime::shutdown_timeout`], or by
    /// dropping it) and `Handle::block_on` is used it might return an error or
    /// panic. Specifically IO resources will return an error and timers will
    /// panic. Runtime independent futures will run as normal.
    ///
    /// # Panics
    ///
    /// This function panics if the provided future panics, if called within an
    /// asynchronous execution context, or if a timer future is executed on a
    /// runtime that has been shut down.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::runtime::Runtime;
    ///
    /// // Create the runtime
    /// let rt  = Runtime::new().unwrap();
    ///
    /// // Get a handle from this runtime
    /// let handle = rt.handle();
    ///
    /// // Execute the future, blocking the current thread until completion
    /// handle.block_on(async {
    ///     println!("hello");
    /// });
    /// ```
    ///
    /// Or using `Handle::current`:
    ///
    /// ```
    /// use tokio::runtime::Handle;
    ///
    /// #[tokio::main]
    /// async fn main () {
    ///     let handle = Handle::current();
    ///     std::thread::spawn(move || {
    ///         // Using Handle::block_on to run async code in the new thread.
    ///         handle.block_on(async {
    ///             println!("hello");
    ///         });
    ///     });
    /// }
    /// ```
    ///
    /// [`JoinError`]: struct@crate::task::JoinError
    /// [`JoinHandle`]: struct@crate::task::JoinHandle
    /// [`Runtime::block_on`]: fn@crate::runtime::Runtime::block_on
    /// [`Runtime::shutdown_background`]: fn@crate::runtime::Runtime::shutdown_background
    /// [`Runtime::shutdown_timeout`]: fn@crate::runtime::Runtime::shutdown_timeout
    /// [`spawn_blocking`]: crate::task::spawn_blocking
    /// [`tokio::fs`]: crate::fs
    /// [`tokio::net`]: crate::net
    /// [`tokio::time`]: crate::time
    #[track_caller]
    pub fn block_on<F: Future>(&self, future: F) -> F::Output {
        #[cfg(all(tokio_unstable, feature = "tracing"))]
        let future =
            crate::util::trace::task(future, "block_on", None, super::task::Id::next().as_u64());

        // Enter the runtime context. This sets the current driver handles and
        // prevents blocking an existing runtime.
        let mut enter = context::enter_runtime(&self.inner, true);

        // Block on the future
        enter
            .blocking
            .block_on(future)
            .expect("failed to park thread")
    }

    #[track_caller]
    pub(crate) fn spawn_named<F>(&self, future: F, _name: Option<&str>) -> JoinHandle<F::Output>
    where
        F: Future + Send + 'static,
        F::Output: Send + 'static,
    {
        let id = crate::runtime::task::Id::next();
        #[cfg(all(tokio_unstable, feature = "tracing"))]
        let future = crate::util::trace::task(future, "task", _name, id.as_u64());
        self.inner.spawn(future, id)
    }

    /// Returns the flavor of the current `Runtime`.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::runtime::{Handle, RuntimeFlavor};
    ///
    /// #[tokio::main(flavor = "current_thread")]
    /// async fn main() {
    ///   assert_eq!(RuntimeFlavor::CurrentThread, Handle::current().runtime_flavor());
    /// }
    /// ```
    ///
    /// ```
    /// use tokio::runtime::{Handle, RuntimeFlavor};
    ///
    /// #[tokio::main(flavor = "multi_thread", worker_threads = 4)]
    /// async fn main() {
    ///   assert_eq!(RuntimeFlavor::MultiThread, Handle::current().runtime_flavor());
    /// }
    /// ```
    pub fn runtime_flavor(&self) -> RuntimeFlavor {
        match self.inner {
            scheduler::Handle::CurrentThread(_) => RuntimeFlavor::CurrentThread,
            #[cfg(all(feature = "rt-multi-thread", not(tokio_wasi)))]
            scheduler::Handle::MultiThread(_) => RuntimeFlavor::MultiThread,
        }
    }
}

cfg_metrics! {
    use crate::runtime::RuntimeMetrics;

    impl Handle {
        /// Returns a view that lets you get information about how the runtime
        /// is performing.
        pub fn metrics(&self) -> RuntimeMetrics {
            RuntimeMetrics::new(self.clone())
        }
    }
}

/// Error returned by `try_current` when no Runtime has been started
#[derive(Debug)]
pub struct TryCurrentError {
    kind: TryCurrentErrorKind,
}

impl TryCurrentError {
    pub(crate) fn new_no_context() -> Self {
        Self {
            kind: TryCurrentErrorKind::NoContext,
        }
    }

    pub(crate) fn new_thread_local_destroyed() -> Self {
        Self {
            kind: TryCurrentErrorKind::ThreadLocalDestroyed,
        }
    }

    /// Returns true if the call failed because there is currently no runtime in
    /// the Tokio context.
    pub fn is_missing_context(&self) -> bool {
        matches!(self.kind, TryCurrentErrorKind::NoContext)
    }

    /// Returns true if the call failed because the Tokio context thread-local
    /// had been destroyed. This can usually only happen if in the destructor of
    /// other thread-locals.
    pub fn is_thread_local_destroyed(&self) -> bool {
        matches!(self.kind, TryCurrentErrorKind::ThreadLocalDestroyed)
    }
}

enum TryCurrentErrorKind {
    NoContext,
    ThreadLocalDestroyed,
}

impl fmt::Debug for TryCurrentErrorKind {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        use TryCurrentErrorKind::*;
        match self {
            NoContext => f.write_str("NoContext"),
            ThreadLocalDestroyed => f.write_str("ThreadLocalDestroyed"),
        }
    }
}

impl fmt::Display for TryCurrentError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        use TryCurrentErrorKind::*;
        match self.kind {
            NoContext => f.write_str(CONTEXT_MISSING_ERROR),
            ThreadLocalDestroyed => f.write_str(THREAD_LOCAL_DESTROYED_ERROR),
        }
    }
}

impl error::Error for TryCurrentError {}