tower_buffer/service.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
use crate::{
error::Error,
future::ResponseFuture,
message::Message,
worker::{Handle, Worker},
};
use futures_core::ready;
use std::task::{Context, Poll};
use tokio::sync::{mpsc, oneshot};
use tower_service::Service;
/// Adds a buffer in front of an inner service.
///
/// See crate level documentation for more details.
#[derive(Debug)]
pub struct Buffer<T, Request>
where
T: Service<Request>,
{
tx: mpsc::Sender<Message<Request, T::Future>>,
handle: Handle,
}
impl<T, Request> Buffer<T, Request>
where
T: Service<Request>,
T::Error: Into<Error>,
{
/// Creates a new `Buffer` wrapping `service`.
///
/// `bound` gives the maximal number of requests that can be queued for the service before
/// backpressure is applied to callers.
///
/// The default Tokio executor is used to run the given service, which means that this method
/// must be called while on the Tokio runtime.
pub fn new(service: T, bound: usize) -> Self
where
T: Send + 'static,
T::Future: Send,
T::Error: Send + Sync,
Request: Send + 'static,
{
let (tx, rx) = mpsc::channel(bound);
let (handle, worker) = Worker::new(service, rx);
tokio::spawn(worker);
Buffer { tx, handle }
}
/// Creates a new `Buffer` wrapping `service` but returns the background worker.
///
/// This is useful if you do not want to spawn directly onto the `tokio` runtime
/// but instead want to use your own executor. This will return the `Buffer` and
/// the background `Worker` that you can then spawn.
pub fn pair(service: T, bound: usize) -> (Buffer<T, Request>, Worker<T, Request>)
where
T: Send + 'static,
T::Error: Send + Sync,
Request: Send + 'static,
{
let (tx, rx) = mpsc::channel(bound);
let (handle, worker) = Worker::new(service, rx);
(Buffer { tx, handle }, worker)
}
fn get_worker_error(&self) -> Error {
self.handle.get_error_on_closed()
}
}
impl<T, Request> Service<Request> for Buffer<T, Request>
where
T: Service<Request>,
T::Error: Into<Error>,
{
type Response = T::Response;
type Error = Error;
type Future = ResponseFuture<T::Future>;
fn poll_ready(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
// If the inner service has errored, then we error here.
if let Err(_) = ready!(self.tx.poll_ready(cx)) {
Poll::Ready(Err(self.get_worker_error()))
} else {
Poll::Ready(Ok(()))
}
}
fn call(&mut self, request: Request) -> Self::Future {
// TODO:
// ideally we'd poll_ready again here so we don't allocate the oneshot
// if the try_send is about to fail, but sadly we can't call poll_ready
// outside of task context.
let (tx, rx) = oneshot::channel();
// get the current Span so that we can explicitly propagate it to the worker
// if we didn't do this, events on the worker related to this span wouldn't be counted
// towards that span since the worker would have no way of entering it.
let span = tracing::Span::current();
tracing::trace!(parent: &span, "sending request to buffer worker");
match self.tx.try_send(Message { request, span, tx }) {
Err(mpsc::error::TrySendError::Closed(_)) => {
ResponseFuture::failed(self.get_worker_error())
}
Err(mpsc::error::TrySendError::Full(_)) => {
// When `mpsc::Sender::poll_ready` returns `Ready`, a slot
// in the channel is reserved for the handle. Other `Sender`
// handles may not send a message using that slot. This
// guarantees capacity for `request`.
//
// Given this, the only way to hit this code path is if
// `poll_ready` has not been called & `Ready` returned.
panic!("buffer full; poll_ready must be called first");
}
Ok(_) => ResponseFuture::new(rx),
}
}
}
impl<T, Request> Clone for Buffer<T, Request>
where
T: Service<Request>,
{
fn clone(&self) -> Self {
Self {
tx: self.tx.clone(),
handle: self.handle.clone(),
}
}
}