1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
//! Storage for span data shared by multiple [`Layer`]s.
//!
//! ## Using the Span Registry
//!
//! This module provides the [`Registry`] type, a [`Subscriber`] implementation
//! which tracks per-span data and exposes it to [`Layer`]s. When a `Registry`
//! is used as the base `Subscriber` of a `Layer` stack, the
//! [`layer::Context`][ctx] type will provide methods allowing `Layer`s to
//! [look up span data][lookup] stored in the registry. While [`Registry`] is a
//! reasonable default for storing spans and events, other stores that implement
//! [`LookupSpan`] and [`Subscriber`] themselves (with [`SpanData`] implemented
//! by the per-span data they store) can be used as a drop-in replacement.
//!
//! For example, we might create a `Registry` and add multiple `Layer`s like so:
//! ```rust
//! use tracing_subscriber::{registry::Registry, Layer, prelude::*};
//! # use tracing_core::Subscriber;
//! # pub struct FooLayer {}
//! # pub struct BarLayer {}
//! # impl<S: Subscriber> Layer<S> for FooLayer {}
//! # impl<S: Subscriber> Layer<S> for BarLayer {}
//! # impl FooLayer {
//! # fn new() -> Self { Self {} }
//! # }
//! # impl BarLayer {
//! # fn new() -> Self { Self {} }
//! # }
//!
//! let subscriber = Registry::default()
//!     .with(FooLayer::new())
//!     .with(BarLayer::new());
//! ```
//!
//! If a type implementing `Layer` depends on the functionality of a `Registry`
//! implementation, it should bound its `Subscriber` type parameter with the
//! [`LookupSpan`] trait, like so:
//!
//! ```rust
//! use tracing_subscriber::{registry, Layer};
//! use tracing_core::Subscriber;
//!
//! pub struct MyLayer {
//!     // ...
//! }
//!
//! impl<S> Layer<S> for MyLayer
//! where
//!     S: Subscriber + for<'a> registry::LookupSpan<'a>,
//! {
//!     // ...
//! }
//! ```
//! When this bound is added, the `Layer` implementation will be guaranteed
//! access to the [`Context`][ctx] methods, such as [`Context::span`][lookup], that
//! require the root subscriber to be a registry.
//!
//! [`Layer`]: ../layer/trait.Layer.html
//! [`Subscriber`]:
//!     https://docs.rs/tracing-core/latest/tracing_core/subscriber/trait.Subscriber.html
//! [`Registry`]: struct.Registry.html
//! [ctx]: ../layer/struct.Context.html
//! [lookup]: ../layer/struct.Context.html#method.span
//! [`LookupSpan`]: trait.LookupSpan.html
//! [`SpanData`]: trait.SpanData.html
use std::fmt::Debug;

#[cfg(feature = "registry")]
use crate::filter::FilterId;
use tracing_core::{field::FieldSet, span::Id, Metadata};

/// A module containing a type map of span extensions.
mod extensions;
#[cfg(feature = "registry")]
mod sharded;
#[cfg(feature = "registry")]
mod stack;

pub use extensions::{Extensions, ExtensionsMut};
#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
pub use sharded::Data;
#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
pub use sharded::Registry;

/// Provides access to stored span data.
///
/// Subscribers which store span data and associate it with span IDs should
/// implement this trait; if they do, any [`Layer`]s wrapping them can look up
/// metadata via the [`Context`] type's [`span()`] method.
///
/// [`Layer`]: ../layer/trait.Layer.html
/// [`Context`]: ../layer/struct.Context.html
/// [`span()`]: ../layer/struct.Context.html#method.span
pub trait LookupSpan<'a> {
    /// The type of span data stored in this registry.
    type Data: SpanData<'a>;

    /// Returns the [`SpanData`] for a given `Id`, if it exists.
    ///
    /// <pre class="ignore" style="white-space:normal;font:inherit;">
    /// <strong>Note</strong>: users of the <code>LookupSpan</code> trait should
    /// typically call the <a href="#method.span"><code>span</code></a> method rather
    /// than this method. The <code>span</code> method is implemented by
    /// <em>calling</em> <code>span_data</code>, but returns a reference which is
    /// capable of performing more sophisiticated queries.
    /// </pre>
    ///
    /// [`SpanData`]: trait.SpanData.html
    fn span_data(&'a self, id: &Id) -> Option<Self::Data>;

    /// Returns a [`SpanRef`] for the span with the given `Id`, if it exists.
    ///
    /// A `SpanRef` is similar to [`SpanData`], but it allows performing
    /// additional lookups against the registryr that stores the wrapped data.
    ///
    /// In general, _users_ of the `LookupSpan` trait should use this method
    /// rather than the [`span_data`] method; while _implementors_ of this trait
    /// should only implement `span_data`.
    ///
    /// [`SpanRef`]: struct.SpanRef.html
    /// [`SpanData`]: trait.SpanData.html
    /// [`span_data`]: #method.span_data
    fn span(&'a self, id: &Id) -> Option<SpanRef<'_, Self>>
    where
        Self: Sized,
    {
        let data = self.span_data(id)?;
        Some(SpanRef {
            registry: self,
            data,
            #[cfg(feature = "registry")]
            filter: FilterId::none(),
        })
    }

    /// Registers a [`Filter`] for [per-layer filtering] with this
    /// [`Subscriber`].
    ///
    /// The [`Filter`] can then use the returned [`FilterId`] to
    /// [check if it previously enabled a span][check].
    ///
    /// # Panics
    ///
    /// If this `Subscriber` does not support [per-layer filtering].
    ///
    /// [`Filter`]: crate::layer::Filter
    /// [per-layer filtering]: crate::layer::Layer#per-layer-filtering
    /// [`Subscriber`]: tracing_core::Subscriber
    /// [`FilterId`]: crate::filter::FilterId
    /// [check]: SpanData::is_enabled_for
    #[cfg(feature = "registry")]
    #[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
    fn register_filter(&mut self) -> FilterId {
        panic!(
            "{} does not currently support filters",
            std::any::type_name::<Self>()
        )
    }
}

/// A stored representation of data associated with a span.
pub trait SpanData<'a> {
    /// Returns this span's ID.
    fn id(&self) -> Id;

    /// Returns a reference to the span's `Metadata`.
    fn metadata(&self) -> &'static Metadata<'static>;

    /// Returns a reference to the ID
    fn parent(&self) -> Option<&Id>;

    /// Returns a reference to this span's `Extensions`.
    ///
    /// The extensions may be used by `Layer`s to store additional data
    /// describing the span.
    fn extensions(&self) -> Extensions<'_>;

    /// Returns a mutable reference to this span's `Extensions`.
    ///
    /// The extensions may be used by `Layer`s to store additional data
    /// describing the span.
    fn extensions_mut(&self) -> ExtensionsMut<'_>;

    /// Returns `true` if this span is enabled for the [per-layer filter][plf]
    /// corresponding to the provided [`FilterId`].
    ///
    /// ## Default Implementation
    ///
    /// By default, this method assumes that the [`LookupSpan`] implementation
    /// does not support [per-layer filtering][plf], and always returns `true`.
    ///
    /// [plf]: crate::layer::Layer#per-layer-filtering
    /// [`FilterId`]: crate::filter::FilterId
    #[cfg(feature = "registry")]
    #[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
    fn is_enabled_for(&self, filter: FilterId) -> bool {
        let _ = filter;
        true
    }
}

/// A reference to [span data] and the associated [registry].
///
/// This type implements all the same methods as [`SpanData`][span data], and
/// provides additional methods for querying the registry based on values from
/// the span.
///
/// [span data]: trait.SpanData.html
/// [registry]: trait.LookupSpan.html
#[derive(Debug)]
pub struct SpanRef<'a, R: LookupSpan<'a>> {
    registry: &'a R,
    data: R::Data,

    #[cfg(feature = "registry")]
    filter: FilterId,
}

/// An iterator over the parents of a span, ordered from leaf to root.
///
/// This is returned by the [`SpanRef::scope`] method.
#[derive(Debug)]
pub struct Scope<'a, R> {
    registry: &'a R,
    next: Option<Id>,

    #[cfg(feature = "registry")]
    filter: FilterId,
}

impl<'a, R> Scope<'a, R>
where
    R: LookupSpan<'a>,
{
    /// Flips the order of the iterator, so that it is ordered from root to leaf.
    ///
    /// The iterator will first return the root span, then that span's immediate child,
    /// and so on until it finally returns the span that [`SpanRef::scope`] was called on.
    ///
    /// If any items were consumed from the [`Scope`] before calling this method then they
    /// will *not* be returned from the [`ScopeFromRoot`].
    ///
    /// **Note**: this will allocate if there are many spans remaining, or if the
    /// "smallvec" feature flag is not enabled.
    #[allow(clippy::wrong_self_convention)]
    pub fn from_root(self) -> ScopeFromRoot<'a, R> {
        #[cfg(feature = "smallvec")]
        type Buf<T> = smallvec::SmallVec<T>;
        #[cfg(not(feature = "smallvec"))]
        type Buf<T> = Vec<T>;
        ScopeFromRoot {
            spans: self.collect::<Buf<_>>().into_iter().rev(),
        }
    }
}

impl<'a, R> Iterator for Scope<'a, R>
where
    R: LookupSpan<'a>,
{
    type Item = SpanRef<'a, R>;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            let curr = self.registry.span(self.next.as_ref()?)?;

            #[cfg(feature = "registry")]
            let curr = curr.with_filter(self.filter);
            self.next = curr.data.parent().cloned();

            // If the `Scope` is filtered, check if the current span is enabled
            // by the selected filter ID.

            #[cfg(feature = "registry")]
            {
                if !curr.is_enabled_for(self.filter) {
                    // The current span in the chain is disabled for this
                    // filter. Try its parent.
                    continue;
                }
            }

            return Some(curr);
        }
    }
}

/// An iterator over the parents of a span, ordered from root to leaf.
///
/// This is returned by the [`Scope::from_root`] method.
pub struct ScopeFromRoot<'a, R>
where
    R: LookupSpan<'a>,
{
    #[cfg(feature = "smallvec")]
    spans: std::iter::Rev<smallvec::IntoIter<SpanRefVecArray<'a, R>>>,
    #[cfg(not(feature = "smallvec"))]
    spans: std::iter::Rev<std::vec::IntoIter<SpanRef<'a, R>>>,
}

impl<'a, R> Iterator for ScopeFromRoot<'a, R>
where
    R: LookupSpan<'a>,
{
    type Item = SpanRef<'a, R>;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        self.spans.next()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.spans.size_hint()
    }
}

impl<'a, R> Debug for ScopeFromRoot<'a, R>
where
    R: LookupSpan<'a>,
{
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.pad("ScopeFromRoot { .. }")
    }
}

/// An iterator over the parents of a span.
///
/// This is returned by the [`SpanRef::parents`] method.
///
/// [`SpanRef::parents`]: struct.SpanRef.html#method.parents
#[deprecated(note = "replaced by `Scope`")]
#[derive(Debug)]
pub struct Parents<'a, R>(Scope<'a, R>);

#[allow(deprecated)]
impl<'a, R> Iterator for Parents<'a, R>
where
    R: LookupSpan<'a>,
{
    type Item = SpanRef<'a, R>;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.next()
    }
}

/// An iterator over a span's parents, starting with the root of the trace
/// tree.
///
/// For additonal details, see [`SpanRef::from_root`].
///
/// [`Span::from_root`]: struct.SpanRef.html#method.from_root
#[deprecated(note = "replaced by `ScopeFromRoot`", since = "0.2.19")]
#[derive(Debug)]
pub struct FromRoot<'a, R>(ScopeFromRoot<'a, R>)
where
    R: LookupSpan<'a>;

#[allow(deprecated)]
impl<'a, R> Iterator for FromRoot<'a, R>
where
    R: LookupSpan<'a>,
{
    type Item = SpanRef<'a, R>;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.next()
    }
}

#[cfg(feature = "smallvec")]
type SpanRefVecArray<'span, L> = [SpanRef<'span, L>; 16];

impl<'a, R> SpanRef<'a, R>
where
    R: LookupSpan<'a>,
{
    /// Returns this span's ID.
    pub fn id(&self) -> Id {
        self.data.id()
    }

    /// Returns a static reference to the span's metadata.
    pub fn metadata(&self) -> &'static Metadata<'static> {
        self.data.metadata()
    }

    /// Returns the span's name,
    pub fn name(&self) -> &'static str {
        self.data.metadata().name()
    }

    /// Returns a list of [fields] defined by the span.
    ///
    /// [fields]: https://docs.rs/tracing-core/latest/tracing_core/field/index.html
    pub fn fields(&self) -> &FieldSet {
        self.data.metadata().fields()
    }

    /// Returns the ID of this span's parent, or `None` if this span is the root
    /// of its trace tree.
    #[deprecated(
        note = "this method cannot properly support per-layer filtering, and may \
            return the `Id` of a disabled span if per-layer filtering is in \
            use. use `.parent().map(SpanRef::id)` instead.",
        since = "0.2.21"
    )]
    pub fn parent_id(&self) -> Option<&Id> {
        // XXX(eliza): this doesn't work with PLF because the ID is potentially
        // borrowed from a parent we got from the registry, rather than from
        // `self`, so we can't return a borrowed parent. so, right now, we just
        // return the actual parent ID, and ignore PLF. which is not great.
        //
        // i think if we want this to play nice with PLF, we should just change
        // it to return the `Id` by value instead of `&Id` (which we ought to do
        // anyway since an `Id` is just a word) but that's a breaking change.
        // alternatively, we could deprecate this method since it can't support
        // PLF in its current form (which is what we would want to do if we want
        // to release PLF in a minor version)...

        // let mut id = self.data.parent()?;
        // loop {
        //     // Is this parent enabled by our filter?
        //     if self
        //         .filter
        //         .map(|filter| self.registry.is_enabled_for(id, filter))
        //         .unwrap_or(true)
        //     {
        //         return Some(id);
        //     }
        //     id = self.registry.span_data(id)?.parent()?;
        // }
        self.data.parent()
    }

    /// Returns a `SpanRef` describing this span's parent, or `None` if this
    /// span is the root of its trace tree.

    pub fn parent(&self) -> Option<Self> {
        let id = self.data.parent()?;
        let data = self.registry.span_data(id)?;

        #[cfg(feature = "registry")]
        {
            // move these into mut bindings if the registry feature is enabled,
            // since they may be mutated in the loop.
            let mut data = data;
            loop {
                // Is this parent enabled by our filter?
                if data.is_enabled_for(self.filter) {
                    return Some(Self {
                        registry: self.registry,
                        filter: self.filter,
                        data,
                    });
                }

                // It's not enabled. If the disabled span has a parent, try that!
                let id = data.parent()?;
                data = self.registry.span_data(id)?;
            }
        }

        #[cfg(not(feature = "registry"))]
        Some(Self {
            registry: self.registry,
            data,
        })
    }

    /// Returns an iterator over all parents of this span, starting with this span,
    /// ordered from leaf to root.
    ///
    /// The iterator will first return the span, then the span's immediate parent,
    /// followed by that span's parent, and so on, until it reaches a root span.
    ///
    /// ```rust
    /// use tracing::{span, Subscriber};
    /// use tracing_subscriber::{
    ///     layer::{Context, Layer},
    ///     prelude::*,
    ///     registry::LookupSpan,
    /// };
    ///
    /// struct PrintingLayer;
    /// impl<S> Layer<S> for PrintingLayer
    /// where
    ///     S: Subscriber + for<'lookup> LookupSpan<'lookup>,
    /// {
    ///     fn on_enter(&self, id: &span::Id, ctx: Context<S>) {
    ///         let span = ctx.span(id).unwrap();
    ///         let scope = span.scope().map(|span| span.name()).collect::<Vec<_>>();
    ///         println!("Entering span: {:?}", scope);
    ///     }
    /// }
    ///
    /// tracing::subscriber::with_default(tracing_subscriber::registry().with(PrintingLayer), || {
    ///     let _root = tracing::info_span!("root").entered();
    ///     // Prints: Entering span: ["root"]
    ///     let _child = tracing::info_span!("child").entered();
    ///     // Prints: Entering span: ["child", "root"]
    ///     let _leaf = tracing::info_span!("leaf").entered();
    ///     // Prints: Entering span: ["leaf", "child", "root"]
    /// });
    /// ```
    ///
    /// If the opposite order (from the root to this span) is desired, calling [`Scope::from_root`] on
    /// the returned iterator reverses the order.
    ///
    /// ```rust
    /// # use tracing::{span, Subscriber};
    /// # use tracing_subscriber::{
    /// #     layer::{Context, Layer},
    /// #     prelude::*,
    /// #     registry::LookupSpan,
    /// # };
    /// # struct PrintingLayer;
    /// impl<S> Layer<S> for PrintingLayer
    /// where
    ///     S: Subscriber + for<'lookup> LookupSpan<'lookup>,
    /// {
    ///     fn on_enter(&self, id: &span::Id, ctx: Context<S>) {
    ///         let span = ctx.span(id).unwrap();
    ///         let scope = span.scope().from_root().map(|span| span.name()).collect::<Vec<_>>();
    ///         println!("Entering span: {:?}", scope);
    ///     }
    /// }
    ///
    /// tracing::subscriber::with_default(tracing_subscriber::registry().with(PrintingLayer), || {
    ///     let _root = tracing::info_span!("root").entered();
    ///     // Prints: Entering span: ["root"]
    ///     let _child = tracing::info_span!("child").entered();
    ///     // Prints: Entering span: ["root", "child"]
    ///     let _leaf = tracing::info_span!("leaf").entered();
    ///     // Prints: Entering span: ["root", "child", "leaf"]
    /// });
    /// ```
    pub fn scope(&self) -> Scope<'a, R> {
        Scope {
            registry: self.registry,
            next: Some(self.id()),

            #[cfg(feature = "registry")]
            filter: self.filter,
        }
    }

    /// Returns an iterator over all parents of this span, starting with the
    /// immediate parent.
    ///
    /// The iterator will first return the span's immediate parent, followed by
    /// that span's parent, followed by _that_ span's parent, and so on, until a
    /// it reaches a root span.
    #[deprecated(
        note = "equivalent to `self.parent().into_iter().flat_map(SpanRef::scope)`, but consider whether excluding `self` is actually intended"
    )]
    #[allow(deprecated)]
    pub fn parents(&self) -> Parents<'a, R> {
        Parents(Scope {
            registry: self.registry,
            next: self.parent_id().cloned(),

            #[cfg(feature = "registry")]
            filter: self.filter,
        })
    }

    /// Returns an iterator over all parents of this span, starting with the
    /// root of the trace tree.
    ///
    /// The iterator will return the root of the trace tree, followed by the
    /// next span, and then the next, until this span's immediate parent is
    /// returned.
    ///
    /// **Note**: this will allocate if there are many spans remaining, or if the
    /// "smallvec" feature flag is not enabled.
    #[deprecated(
        note = "equivalent to `self.parent().into_iter().flat_map(|span| span.scope().from_root())`, but consider whether excluding `self` is actually intended",
        since = "0.2.19"
    )]
    #[allow(deprecated)]
    pub fn from_root(&self) -> FromRoot<'a, R> {
        FromRoot(self.parents().0.from_root())
    }

    /// Returns a reference to this span's `Extensions`.
    ///
    /// The extensions may be used by `Layer`s to store additional data
    /// describing the span.
    pub fn extensions(&self) -> Extensions<'_> {
        self.data.extensions()
    }

    /// Returns a mutable reference to this span's `Extensions`.
    ///
    /// The extensions may be used by `Layer`s to store additional data
    /// describing the span.
    pub fn extensions_mut(&self) -> ExtensionsMut<'_> {
        self.data.extensions_mut()
    }

    #[cfg(feature = "registry")]
    pub(crate) fn try_with_filter(self, filter: FilterId) -> Option<Self> {
        if self.is_enabled_for(filter) {
            return Some(self.with_filter(filter));
        }

        None
    }

    #[inline]
    #[cfg(feature = "registry")]
    pub(crate) fn is_enabled_for(&self, filter: FilterId) -> bool {
        self.data.is_enabled_for(filter)
    }

    #[inline]
    #[cfg(feature = "registry")]
    fn with_filter(self, filter: FilterId) -> Self {
        Self { filter, ..self }
    }
}

#[cfg(all(test, feature = "registry"))]
mod tests {
    use crate::{
        layer::{Context, Layer},
        prelude::*,
        registry::LookupSpan,
    };
    use std::sync::{Arc, Mutex};
    use tracing::{span, Subscriber};

    #[test]
    fn spanref_scope_iteration_order() {
        let last_entered_scope = Arc::new(Mutex::new(Vec::new()));

        #[derive(Default)]
        struct PrintingLayer {
            last_entered_scope: Arc<Mutex<Vec<&'static str>>>,
        }

        impl<S> Layer<S> for PrintingLayer
        where
            S: Subscriber + for<'lookup> LookupSpan<'lookup>,
        {
            fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) {
                let span = ctx.span(id).unwrap();
                let scope = span.scope().map(|span| span.name()).collect::<Vec<_>>();
                *self.last_entered_scope.lock().unwrap() = scope;
            }
        }

        let _guard = tracing::subscriber::set_default(crate::registry().with(PrintingLayer {
            last_entered_scope: last_entered_scope.clone(),
        }));

        let _root = tracing::info_span!("root").entered();
        assert_eq!(&*last_entered_scope.lock().unwrap(), &["root"]);
        let _child = tracing::info_span!("child").entered();
        assert_eq!(&*last_entered_scope.lock().unwrap(), &["child", "root"]);
        let _leaf = tracing::info_span!("leaf").entered();
        assert_eq!(
            &*last_entered_scope.lock().unwrap(),
            &["leaf", "child", "root"]
        );
    }

    #[test]
    fn spanref_scope_fromroot_iteration_order() {
        let last_entered_scope = Arc::new(Mutex::new(Vec::new()));

        #[derive(Default)]
        struct PrintingLayer {
            last_entered_scope: Arc<Mutex<Vec<&'static str>>>,
        }

        impl<S> Layer<S> for PrintingLayer
        where
            S: Subscriber + for<'lookup> LookupSpan<'lookup>,
        {
            fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) {
                let span = ctx.span(id).unwrap();
                let scope = span
                    .scope()
                    .from_root()
                    .map(|span| span.name())
                    .collect::<Vec<_>>();
                *self.last_entered_scope.lock().unwrap() = scope;
            }
        }

        let _guard = tracing::subscriber::set_default(crate::registry().with(PrintingLayer {
            last_entered_scope: last_entered_scope.clone(),
        }));

        let _root = tracing::info_span!("root").entered();
        assert_eq!(&*last_entered_scope.lock().unwrap(), &["root"]);
        let _child = tracing::info_span!("child").entered();
        assert_eq!(&*last_entered_scope.lock().unwrap(), &["root", "child",]);
        let _leaf = tracing::info_span!("leaf").entered();
        assert_eq!(
            &*last_entered_scope.lock().unwrap(),
            &["root", "child", "leaf"]
        );
    }
}