1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
use crate::{node::NodeKey, rstd::cmp};
pub use self::leftnibbleslice::LeftNibbleSlice;
mod leftnibbleslice;
mod nibbleslice;
mod nibblevec;
pub mod nibble_ops {
use super::*;
pub const BIT_PER_NIBBLE: usize = 4;
pub const NIBBLE_PER_BYTE: usize = 2;
pub const NIBBLE_LENGTH: usize = 16;
pub const PADDING_BITMASK: u8 = 0x0F;
pub const CONTENT_HEADER_SIZE: u8 = 1;
#[inline(always)]
pub fn pad_left(b: u8) -> u8 {
b & !PADDING_BITMASK
}
#[inline(always)]
pub fn pad_right(b: u8) -> u8 {
b & PADDING_BITMASK
}
#[inline(always)]
pub fn at_left(ix: u8, b: u8) -> u8 {
if ix == 1 {
b & PADDING_BITMASK
} else {
b >> BIT_PER_NIBBLE
}
}
#[inline(always)]
pub fn left_nibble_at(v1: &[u8], ix: usize) -> u8 {
at_left((ix % NIBBLE_PER_BYTE) as u8, v1[ix / NIBBLE_PER_BYTE])
}
#[inline(always)]
pub fn at(s: &NibbleSlice, i: usize) -> u8 {
let ix = (s.offset + i) / NIBBLE_PER_BYTE;
let pad = (s.offset + i) % NIBBLE_PER_BYTE;
at_left(pad as u8, s.data[ix])
}
#[inline(always)]
pub fn push_at_left(ix: u8, v: u8, into: u8) -> u8 {
into | if ix == 1 { v } else { v << BIT_PER_NIBBLE }
}
#[inline]
pub fn number_padding(i: usize) -> usize {
i % NIBBLE_PER_BYTE
}
pub const SPLIT_SHIFTS: (usize, usize) = (4, 4);
pub fn biggest_depth(v1: &[u8], v2: &[u8]) -> usize {
let upper_bound = cmp::min(v1.len(), v2.len());
for a in 0..upper_bound {
if v1[a] != v2[a] {
return a * NIBBLE_PER_BYTE + left_common(v1[a], v2[a])
}
}
upper_bound * NIBBLE_PER_BYTE
}
#[inline(always)]
pub fn left_common(a: u8, b: u8) -> usize {
if a == b {
2
} else if pad_left(a) == pad_left(b) {
1
} else {
0
}
}
pub fn shift_key(key: &mut NodeKey, offset: usize) -> bool {
let old_offset = key.0;
key.0 = offset;
if old_offset > offset {
let (s1, s2) = nibble_ops::SPLIT_SHIFTS;
let kl = key.1.len();
(0..kl - 1).for_each(|i| key.1[i] = key.1[i] << s2 | key.1[i + 1] >> s1);
key.1[kl - 1] = key.1[kl - 1] << s2;
true
} else if old_offset < offset {
let (s1, s2) = nibble_ops::SPLIT_SHIFTS;
key.1.push(0);
(1..key.1.len())
.rev()
.for_each(|i| key.1[i] = key.1[i - 1] << s1 | key.1[i] >> s2);
key.1[0] = key.1[0] >> s2;
true
} else {
false
}
}
}
pub(crate) type BackingByteVec = smallvec::SmallVec<[u8; 40]>;
#[cfg_attr(feature = "std", derive(Debug))]
#[derive(Clone, PartialEq, Eq)]
pub struct NibbleVec {
inner: BackingByteVec,
len: usize,
}
#[derive(Copy, Clone)]
pub struct NibbleSlice<'a> {
data: &'a [u8],
offset: usize,
}
pub struct NibbleSliceIterator<'a> {
p: &'a NibbleSlice<'a>,
i: usize,
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn nibble_vec_size() {
assert_eq!(std::mem::size_of::<NibbleVec>(), 56);
}
}