triton_isa/
parser.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::collections::HashSet;
use std::error::Error;
use std::fmt::Display;
use std::fmt::Formatter;
use std::fmt::Result as FmtResult;

use nom::branch::alt;
use nom::bytes::complete::tag;
use nom::bytes::complete::take_while;
use nom::bytes::complete::take_while1;
use nom::character::complete::digit1;
use nom::combinator::cut;
use nom::combinator::eof;
use nom::combinator::fail;
use nom::combinator::opt;
use nom::error::ErrorKind;
use nom::error::VerboseError;
use nom::error::VerboseErrorKind;
use nom::multi::many0;
use nom::multi::many1;
use nom::Finish;
use nom::IResult;
use twenty_first::bfe;
use twenty_first::prelude::BFieldElement;

use crate::instruction::AnInstruction;
use crate::instruction::AssertionContext;
use crate::instruction::Instruction;
use crate::instruction::LabelledInstruction;
use crate::instruction::TypeHint;
use crate::instruction::ALL_INSTRUCTION_NAMES;
use crate::op_stack::NumberOfWords;
use crate::op_stack::OpStackElement;

const KEYWORDS: [&str; 3] = [
    "hint",
    "error_id",
    "error_message", // reserved for future use
];

#[derive(Debug, PartialEq)]
pub struct ParseError<'a> {
    pub input: &'a str,
    pub errors: VerboseError<&'a str>,
}

/// An intermediate object for the parsing / compilation pipeline. You probably want
/// [`LabelledInstruction`].
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
pub enum InstructionToken<'a> {
    Instruction(AnInstruction<String>, &'a str),
    Label(String, &'a str),
    Breakpoint(&'a str),
    TypeHint(TypeHint, &'a str),
    AssertionContext(AssertionContext, &'a str),
}

impl<'a> Display for ParseError<'a> {
    fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
        let mut errors = self.errors.clone();
        if matches!(
            errors.errors.first(),
            Some((_, VerboseErrorKind::Nom(ErrorKind::Fail | ErrorKind::Eof)))
        ) {
            errors.errors.remove(0);
        }

        write!(f, "{}", nom::error::convert_error(self.input, errors))
    }
}

impl<'a> Error for ParseError<'a> {}

impl<'a> InstructionToken<'a> {
    pub fn token_str(&self) -> &'a str {
        match self {
            Self::Instruction(_, token_str) => token_str,
            Self::Label(_, token_str) => token_str,
            Self::Breakpoint(token_str) => token_str,
            Self::TypeHint(_, token_str) => token_str,
            Self::AssertionContext(_, token_str) => token_str,
        }
    }

    pub fn to_labelled_instruction(&self) -> LabelledInstruction {
        match self {
            Self::Instruction(instr, _) => LabelledInstruction::Instruction(instr.to_owned()),
            Self::Label(label, _) => LabelledInstruction::Label(label.to_owned()),
            Self::Breakpoint(_) => LabelledInstruction::Breakpoint,
            Self::TypeHint(type_hint, _) => LabelledInstruction::TypeHint(type_hint.to_owned()),
            Self::AssertionContext(ctx, _) => LabelledInstruction::AssertionContext(ctx.to_owned()),
        }
    }
}

pub fn to_labelled_instructions(instructions: &[InstructionToken]) -> Vec<LabelledInstruction> {
    instructions
        .iter()
        .map(|instruction| instruction.to_labelled_instruction())
        .collect()
}

/// Parse a program
pub(crate) fn parse(input: &str) -> Result<Vec<InstructionToken>, ParseError> {
    let (_, instructions) = tokenize(input)
        .finish()
        .map_err(|errors| ParseError { input, errors })?;

    ensure_no_missing_or_duplicate_labels(input, &instructions)?;
    ensure_assertion_context_is_matched_with_assertion(input, &instructions)?;

    Ok(instructions)
}

fn ensure_no_missing_or_duplicate_labels<'a>(
    input: &'a str,
    instructions: &[InstructionToken<'a>],
) -> Result<(), ParseError<'a>> {
    // identify all and duplicate labels
    let mut seen_labels = HashMap::<_, InstructionToken>::default();
    let mut duplicate_labels = HashSet::default();
    for instruction in instructions {
        if let InstructionToken::Label(label, _) = instruction {
            if let Some(first_occurrence) = seen_labels.get(label.as_str()) {
                duplicate_labels.insert(first_occurrence.to_owned());
                duplicate_labels.insert(instruction.to_owned());
            } else {
                seen_labels.insert(label.as_str(), instruction.to_owned());
            }
        }
    }

    let missing_labels = identify_missing_labels(instructions, seen_labels);

    if duplicate_labels.is_empty() && missing_labels.is_empty() {
        return Ok(());
    }

    let errors = errors_for_duplicate_and_missing_labels(duplicate_labels, missing_labels);
    Err(ParseError { input, errors })
}

fn identify_missing_labels<'a>(
    instructions: &[InstructionToken<'a>],
    seen_labels: HashMap<&str, InstructionToken>,
) -> HashSet<InstructionToken<'a>> {
    let mut missing_labels = HashSet::default();
    for instruction in instructions {
        if let InstructionToken::Instruction(AnInstruction::Call(label), _) = instruction {
            if !seen_labels.contains_key(label.as_str()) {
                missing_labels.insert(instruction.to_owned());
            }
        }
    }
    missing_labels
}

fn errors_for_duplicate_and_missing_labels<'a>(
    duplicate_labels: HashSet<InstructionToken<'a>>,
    missing_labels: HashSet<InstructionToken<'a>>,
) -> VerboseError<&'a str> {
    let duplicate_label_error_context = VerboseErrorKind::Context("duplicate label");
    let missing_label_error_context = VerboseErrorKind::Context("missing label");

    let duplicate_label_errors =
        errors_for_labels_with_context(duplicate_labels, duplicate_label_error_context);
    let missing_label_errors =
        errors_for_labels_with_context(missing_labels, missing_label_error_context);

    let errors = [duplicate_label_errors, missing_label_errors].concat();
    VerboseError { errors }
}

fn errors_for_labels_with_context(
    labels: HashSet<InstructionToken>,
    context: VerboseErrorKind,
) -> Vec<(&str, VerboseErrorKind)> {
    labels
        .into_iter()
        .map(|label| (label.token_str(), context.clone()))
        .collect()
}

fn ensure_assertion_context_is_matched_with_assertion<'a>(
    input: &'a str,
    instructions: &[InstructionToken<'a>],
) -> Result<(), ParseError<'a>> {
    type IT<'a> = InstructionToken<'a>;

    let mut accept_id = false;
    let mut incorrectly_placed_contexts = HashSet::new();

    for instruction in instructions {
        match instruction {
            IT::Instruction(AnInstruction::Assert | AnInstruction::AssertVector, _) => {
                accept_id = true;
            }
            IT::AssertionContext(AssertionContext::ID(_), _) => {
                if !accept_id {
                    incorrectly_placed_contexts.insert(instruction.clone());
                }
                accept_id = false;
            }

            // any assertion context must immediately follow an `assert` or `assert_vector`
            _ => accept_id = false,
        }
    }

    let parser_context = VerboseErrorKind::Context("incorrectly placed assertion context");
    let errors = errors_for_labels_with_context(incorrectly_placed_contexts, parser_context);

    if errors.is_empty() {
        Ok(())
    } else {
        let errors = VerboseError { errors };
        Err(ParseError { input, errors })
    }
}

/// Auxiliary type alias: `IResult` defaults to `nom::error::Error` as concrete
/// error type, but we want `nom::error::VerboseError` as it allows `context()`.
type ParseResult<'input, Out> = IResult<&'input str, Out, VerboseError<&'input str>>;

pub fn tokenize(s: &str) -> ParseResult<Vec<InstructionToken>> {
    let (s, _) = comment_or_whitespace0(s)?;
    let (s, instructions) = many0(alt((
        label,
        labelled_instruction,
        breakpoint,
        type_hint,
        assertion_context,
    )))(s)?;
    let (s, _) = nom::error::context("expecting label, instruction or eof", eof)(s)?;

    Ok((s, instructions))
}

fn label(label_s: &str) -> ParseResult<InstructionToken> {
    let (s, addr) = label_addr(label_s)?;
    let (s, _) = whitespace0(s)?; // whitespace between label and ':' is allowed
    let (s, _) = token0(":")(s)?; // don't require space after ':'

    // Checking if `<label>:` is an instruction must happen after parsing `:`, since
    // otherwise `cut` will reject the alternative parsers of `label`, like
    // `labelled_instruction`, where valid instructions names *are* allowed.
    if is_illegal_label(&addr) {
        let failure_reason = "label must be neither instruction nor keyword";
        return cut(nom::error::context(failure_reason, fail))(label_s);
    }

    Ok((s, InstructionToken::Label(addr, label_s)))
}

fn breakpoint(breakpoint_s: &str) -> ParseResult<InstructionToken> {
    let (s, _) = token1("break")(breakpoint_s)?;
    Ok((s, InstructionToken::Breakpoint(breakpoint_s)))
}

fn labelled_instruction(s_instr: &str) -> ParseResult<InstructionToken> {
    let (s, instr) = an_instruction(s_instr)?;
    Ok((s, InstructionToken::Instruction(instr, s_instr)))
}

fn an_instruction(s: &str) -> ParseResult<AnInstruction<String>> {
    // OpStack manipulation
    let pop = pop_instruction();
    let push = push_instruction();
    let divine = divine_instruction();
    let pick = pick_instruction();
    let place = place_instruction();
    let dup = dup_instruction();
    let swap = swap_instruction();

    let opstack_manipulation = alt((pop, push, divine, pick, place, dup, swap));

    // Control flow
    let halt = instruction("halt", AnInstruction::Halt);
    let nop = instruction("nop", AnInstruction::Nop);
    let skiz = instruction("skiz", AnInstruction::Skiz);
    let call = call_instruction();
    let return_ = instruction("return", AnInstruction::Return);
    let recurse = instruction("recurse", AnInstruction::Recurse);
    let recurse_or_return = instruction("recurse_or_return", AnInstruction::RecurseOrReturn);
    let assert = instruction("assert", AnInstruction::Assert);

    let control_flow = alt((nop, skiz, call, return_, halt));

    // Memory access
    let read_mem = read_mem_instruction();
    let write_mem = write_mem_instruction();

    let memory_access = alt((read_mem, write_mem));

    // Hashing-related instructions
    let hash = instruction("hash", AnInstruction::Hash);
    let assert_vector = instruction("assert_vector", AnInstruction::AssertVector);
    let sponge_init = instruction("sponge_init", AnInstruction::SpongeInit);
    let sponge_absorb = instruction("sponge_absorb", AnInstruction::SpongeAbsorb);
    let sponge_absorb_mem = instruction("sponge_absorb_mem", AnInstruction::SpongeAbsorbMem);
    let sponge_squeeze = instruction("sponge_squeeze", AnInstruction::SpongeSqueeze);

    let hashing_related = alt((hash, sponge_init, sponge_squeeze));

    // Arithmetic on stack instructions
    let add = instruction("add", AnInstruction::Add);
    let addi = addi_instruction();
    let mul = instruction("mul", AnInstruction::Mul);
    let invert = instruction("invert", AnInstruction::Invert);
    let eq = instruction("eq", AnInstruction::Eq);
    let split = instruction("split", AnInstruction::Split);
    let lt = instruction("lt", AnInstruction::Lt);
    let and = instruction("and", AnInstruction::And);
    let xor = instruction("xor", AnInstruction::Xor);
    let log_2_floor = instruction("log_2_floor", AnInstruction::Log2Floor);
    let pow = instruction("pow", AnInstruction::Pow);
    let div_mod = instruction("div_mod", AnInstruction::DivMod);
    let pop_count = instruction("pop_count", AnInstruction::PopCount);
    let xx_add = instruction("xx_add", AnInstruction::XxAdd);
    let xx_mul = instruction("xx_mul", AnInstruction::XxMul);
    let x_invert = instruction("x_invert", AnInstruction::XInvert);
    let xb_mul = instruction("xb_mul", AnInstruction::XbMul);

    let base_field_arithmetic_on_stack = alt((mul, invert, eq));
    let bitwise_arithmetic_on_stack =
        alt((split, lt, and, xor, log_2_floor, pow, div_mod, pop_count));
    let extension_field_arithmetic_on_stack = alt((xx_add, xx_mul, x_invert, xb_mul));
    let arithmetic_on_stack = alt((
        base_field_arithmetic_on_stack,
        bitwise_arithmetic_on_stack,
        extension_field_arithmetic_on_stack,
    ));

    // Read/write
    let read_io = read_io_instruction();
    let write_io = write_io_instruction();

    let read_write = alt((read_io, write_io));

    // Many-in-One
    let merkle_step = instruction("merkle_step", AnInstruction::MerkleStep);
    let merkle_step_mem = instruction("merkle_step_mem", AnInstruction::MerkleStepMem);
    let xx_dot_step = instruction("xx_dot_step", AnInstruction::XxDotStep);
    let xb_dot_step = instruction("xb_dot_step", AnInstruction::XbDotStep);

    let many_to_one = alt((xx_dot_step, xb_dot_step));

    // Because of common prefixes, the following parsers are sensitive to order.
    // Successfully parsing "assert" before trying "assert_vector" can lead to
    // picking the wrong one. By trying them in the order of longest first, less
    // backtracking is necessary.
    let syntax_ambiguous = alt((
        recurse_or_return,
        recurse,
        assert_vector,
        assert,
        sponge_absorb_mem,
        sponge_absorb,
        addi,
        add,
        merkle_step_mem,
        merkle_step,
    ));

    alt((
        opstack_manipulation,
        control_flow,
        memory_access,
        hashing_related,
        arithmetic_on_stack,
        read_write,
        many_to_one,
        syntax_ambiguous,
    ))(s)
}

fn is_illegal_label(s: &str) -> bool {
    ALL_INSTRUCTION_NAMES.contains(&s) || KEYWORDS.contains(&s)
}

fn instruction<'a>(
    name: &'a str,
    instruction: AnInstruction<String>,
) -> impl Fn(&'a str) -> ParseResult<AnInstruction<String>> {
    move |s: &'a str| {
        let (s, _) = token1(name)(s)?;
        Ok((s, instruction.clone()))
    }
}

fn pop_instruction() -> impl Fn(&str) -> ParseResult<AnInstruction<String>> {
    move |s: &str| {
        let (s, _) = token1("pop")(s)?;
        let (s, arg) = number_of_words(s)?;
        Ok((s, AnInstruction::Pop(arg)))
    }
}

fn push_instruction() -> impl Fn(&str) -> ParseResult<AnInstruction<String>> {
    move |s: &str| {
        let (s, _) = token1("push")(s)?;
        let (s, elem) = field_element(s)?;
        Ok((s, AnInstruction::Push(elem)))
    }
}

fn addi_instruction() -> impl Fn(&str) -> ParseResult<AnInstruction<String>> {
    move |s: &str| {
        let (s, _) = token1("addi")(s)?;
        let (s, elem) = field_element(s)?;
        Ok((s, AnInstruction::AddI(elem)))
    }
}

fn divine_instruction() -> impl Fn(&str) -> ParseResult<AnInstruction<String>> {
    move |s: &str| {
        let (s, _) = token1("divine")(s)?;
        let (s, arg) = number_of_words(s)?;
        Ok((s, AnInstruction::Divine(arg)))
    }
}

fn pick_instruction() -> impl Fn(&str) -> ParseResult<AnInstruction<String>> {
    move |s: &str| {
        let (s, _) = token1("pick")(s)?;
        let (s, arg) = stack_register(s)?;
        Ok((s, AnInstruction::Pick(arg)))
    }
}

fn place_instruction() -> impl Fn(&str) -> ParseResult<AnInstruction<String>> {
    move |s: &str| {
        let (s, _) = token1("place")(s)?;
        let (s, arg) = stack_register(s)?;
        Ok((s, AnInstruction::Place(arg)))
    }
}

fn dup_instruction() -> impl Fn(&str) -> ParseResult<AnInstruction<String>> {
    move |s: &str| {
        let (s, _) = token1("dup")(s)?; // require space before argument
        let (s, stack_register) = stack_register(s)?;
        Ok((s, AnInstruction::Dup(stack_register)))
    }
}

fn swap_instruction() -> impl Fn(&str) -> ParseResult<AnInstruction<String>> {
    move |s: &str| {
        let (s, _) = token1("swap")(s)?;
        let (s, stack_register) = stack_register(s)?;
        Ok((s, AnInstruction::Swap(stack_register)))
    }
}

fn call_instruction<'a>() -> impl Fn(&'a str) -> ParseResult<AnInstruction<String>> {
    let call_syntax = move |s: &'a str| {
        let (s_label, _) = token1("call")(s)?; // require space before called label
        let (s, addr) = label_addr(s_label)?;
        let (s, _) = comment_or_whitespace1(s)?; // require space after called label

        Ok((s, addr))
    };

    let bracket_syntax = move |s: &'a str| {
        let (s, _) = tag("[")(s)?;
        let (s, addr) = label_addr(s)?;
        let (s, _) = token0("]")(s)?;

        Ok((s, addr))
    };

    move |s: &'a str| {
        let (s, label) = alt((call_syntax, bracket_syntax))(s)?;

        // This check cannot be moved into `label_addr`, since `label_addr` is shared
        // between the scenarios `<label>:` and `call <label>`; the former requires
        // parsing the `:` before rejecting a possible instruction name in the label.
        if is_illegal_label(&label) {
            let failure_reason = "label must be neither instruction nor keyword";
            return cut(nom::error::context(failure_reason, fail))(s);
        }

        Ok((s, AnInstruction::Call(label)))
    }
}

fn read_mem_instruction() -> impl Fn(&str) -> ParseResult<AnInstruction<String>> {
    move |s: &str| {
        let (s, _) = token1("read_mem")(s)?;
        let (s, arg) = number_of_words(s)?;
        Ok((s, AnInstruction::ReadMem(arg)))
    }
}

fn write_mem_instruction() -> impl Fn(&str) -> ParseResult<AnInstruction<String>> {
    move |s: &str| {
        let (s, _) = token1("write_mem")(s)?;
        let (s, arg) = number_of_words(s)?;
        Ok((s, AnInstruction::WriteMem(arg)))
    }
}

fn read_io_instruction() -> impl Fn(&str) -> ParseResult<AnInstruction<String>> {
    move |s: &str| {
        let (s, _) = token1("read_io")(s)?;
        let (s, arg) = number_of_words(s)?;
        Ok((s, AnInstruction::ReadIo(arg)))
    }
}

fn write_io_instruction() -> impl Fn(&str) -> ParseResult<AnInstruction<String>> {
    move |s: &str| {
        let (s, _) = token1("write_io")(s)?;
        let (s, arg) = number_of_words(s)?;
        Ok((s, AnInstruction::WriteIo(arg)))
    }
}

fn field_element(s_orig: &str) -> ParseResult<BFieldElement> {
    let (s, negative) = opt(token0("-"))(s_orig)?;
    let (s, n) = digit1(s)?;
    let (s, _) = comment_or_whitespace1(s)?;

    let Ok(mut n): Result<i128, _> = n.parse() else {
        return nom::error::context("out-of-bounds constant", fail)(s);
    };

    let quotient = i128::from(BFieldElement::P);
    if n >= quotient {
        return nom::error::context("out-of-bounds constant", fail)(s_orig);
    }

    if negative.is_some() {
        n *= -1;
        n += quotient;
    }

    Ok((s, BFieldElement::new(n as u64)))
}

fn stack_register(s: &str) -> ParseResult<OpStackElement> {
    let (s, n) = digit1(s)?;
    let stack_register = match n {
        "0" => OpStackElement::ST0,
        "1" => OpStackElement::ST1,
        "2" => OpStackElement::ST2,
        "3" => OpStackElement::ST3,
        "4" => OpStackElement::ST4,
        "5" => OpStackElement::ST5,
        "6" => OpStackElement::ST6,
        "7" => OpStackElement::ST7,
        "8" => OpStackElement::ST8,
        "9" => OpStackElement::ST9,
        "10" => OpStackElement::ST10,
        "11" => OpStackElement::ST11,
        "12" => OpStackElement::ST12,
        "13" => OpStackElement::ST13,
        "14" => OpStackElement::ST14,
        "15" => OpStackElement::ST15,
        _ => {
            let failure_reason = "using an out-of-bounds stack register (0-15 exist)";
            return nom::error::context(failure_reason, fail)(s);
        }
    };
    let (s, _) = comment_or_whitespace1(s)?;

    Ok((s, stack_register))
}

fn number_of_words(s: &str) -> ParseResult<NumberOfWords> {
    let (s, n) = digit1(s)?;
    let arg = match n {
        "1" => NumberOfWords::N1,
        "2" => NumberOfWords::N2,
        "3" => NumberOfWords::N3,
        "4" => NumberOfWords::N4,
        "5" => NumberOfWords::N5,
        _ => return nom::error::context("using an out-of-bounds argument (1-5 allowed)", fail)(s),
    };
    let (s, _) = comment_or_whitespace1(s)?; // require space after element

    Ok((s, arg))
}

/// Parse a label address. This is used in "`<label>:`" and in "`call <label>`".
fn label_addr(s_orig: &str) -> ParseResult<String> {
    let (s, addr_part_0) = take_while1(is_label_start_char)(s_orig)?;
    if addr_part_0.is_empty() {
        // todo: this error is never shown to the user, since the `label` parser is wrapped in an
        //  `alt`. With a custom error type, it is possible to have alt return the error of the
        //  parser that went the farthest in the input data.
        let failure_reason = "label must start with an alphabetic character or underscore";
        return nom::error::context(failure_reason, fail)(s_orig);
    }
    let (s, addr_part_1) = take_while(is_label_char)(s)?;

    Ok((s, format!("{addr_part_0}{addr_part_1}")))
}

fn is_label_start_char(c: char) -> bool {
    c.is_alphabetic() || c == '_'
}

fn is_label_char(c: char) -> bool {
    is_label_start_char(c) || c.is_numeric() || c == '-'
}

/// Parse 0 or more comments and/or whitespace.
///
/// This is used after places where whitespace is optional (e.g. after ':').
fn comment_or_whitespace0(s: &str) -> ParseResult<&str> {
    let (s, _) = many0(alt((comment1, whitespace1)))(s)?;
    Ok((s, ""))
}

/// Parse at least one comment and/or whitespace, or eof.
///
/// This is used after places where whitespace is mandatory (e.g. after tokens).
fn comment_or_whitespace1<'a>(s: &'a str) -> ParseResult<&'a str> {
    let cws1 = |s: &'a str| -> ParseResult<&str> {
        let (s, _) = many1(alt((comment1, whitespace1)))(s)?;
        Ok((s, ""))
    };
    alt((eof, cws1))(s)
}

/// Parse one comment (not including the linebreak)
fn comment1(s: &str) -> ParseResult<()> {
    let (s, _) = tag("//")(s)?;
    let (s, _) = take_while(|c| !is_linebreak(c))(s)?;
    Ok((s, ()))
}

/// Parse whitespace characters (can be none)
fn whitespace0(s: &str) -> ParseResult<()> {
    let (s, _) = take_while(|c: char| c.is_whitespace())(s)?;
    Ok((s, ()))
}

/// Parse at least one whitespace character
fn whitespace1(s: &str) -> ParseResult<()> {
    let (s, _) = take_while1(|c: char| c.is_whitespace())(s)?;
    Ok((s, ()))
}

fn is_linebreak(c: char) -> bool {
    c == '\r' || c == '\n'
}

/// `token0(tok)` will parse the string `tok` and munch 0 or more comment or whitespace.
fn token0<'a>(token: &'a str) -> impl Fn(&'a str) -> ParseResult<()> {
    move |s: &'a str| {
        let (s, _) = tag(token)(s)?;
        let (s, _) = comment_or_whitespace0(s)?;
        Ok((s, ()))
    }
}

/// `token1(tok)` will parse the string `tok` and munch at least one comment and/or whitespace,
/// or eof.
fn token1<'a>(token: &'a str) -> impl Fn(&'a str) -> ParseResult<()> {
    move |s: &'a str| {
        let (s, _) = tag(token)(s)?;
        let (s, _) = comment_or_whitespace1(s)?;
        Ok((s, ()))
    }
}

/// Parse one type hint.
///
/// Type hints look like this:
///
/// ```text
/// hint <variable_name>[: <type_name>] = stack\[<range_start>[..<range_end>]\]
/// ```
fn type_hint(s_type_hint: &str) -> ParseResult<InstructionToken> {
    let (s, _) = token1("hint")(s_type_hint)?;
    let (s, variable_name) = type_hint_variable_name(s)?;
    let (s, type_name) = type_hint_type_name(s)?;
    let (s, range_start) = type_hint_starting_index(s)?;
    let (s, maybe_range_end) = type_hint_ending_index(s)?;
    let (s, _) = whitespace0(s)?;
    let (s, _) = token0("]")(s)?;

    let length = match maybe_range_end {
        Some(range_end) if range_end <= range_start => {
            let failure_reason = "range end must be greater than range start";
            return cut(nom::error::context(failure_reason, fail))(s);
        }
        Some(range_end) => range_end - range_start,
        None => 1,
    };

    let type_hint = TypeHint {
        starting_index: range_start,
        length,
        type_name,
        variable_name,
    };

    Ok((s, InstructionToken::TypeHint(type_hint, s_type_hint)))
}

fn type_hint_variable_name(s: &str) -> ParseResult<String> {
    let (s, variable_name_start) = take_while1(is_type_hint_variable_name_start_character)(s)?;
    let (s, variable_name_end) = take_while(is_type_hint_variable_name_character)(s)?;
    let (s, _) = whitespace0(s)?;
    let variable_name = format!("{variable_name_start}{variable_name_end}");
    Ok((s, variable_name))
}

fn type_hint_type_name(s: &str) -> ParseResult<Option<String>> {
    let Ok((s, _)) = token0(":")(s) else {
        return Ok((s, None));
    };

    let (s, type_name_start) = take_while1(is_type_hint_type_name_start_character)(s)?;
    let (s, type_name_end) = take_while(is_type_hint_type_name_character)(s)?;
    let (s, _) = whitespace0(s)?;
    let type_name = format!("{type_name_start}{type_name_end}");

    Ok((s, Some(type_name)))
}

fn type_hint_ending_index(s: &str) -> ParseResult<Option<usize>> {
    let Ok((s, _)) = token0("..")(s) else {
        return Ok((s, None));
    };

    let (s, range_end) = take_while(|c: char| c.is_numeric())(s)?;
    let (_, range_end) = parse_str_to_usize(range_end)?;

    Ok((s, Some(range_end)))
}

fn type_hint_starting_index(s: &str) -> ParseResult<usize> {
    let (s, _) = token0("=")(s)?;
    let (s, _) = token0("stack[")(s)?;
    let (s, range_start) = take_while(|c: char| c.is_numeric())(s)?;
    let (_, range_start) = parse_str_to_usize(range_start)?;
    let (s, _) = whitespace0(s)?;
    Ok((s, range_start))
}

fn is_type_hint_variable_name_start_character(c: char) -> bool {
    (c.is_alphabetic() && c.is_lowercase()) || c == '_'
}

fn is_type_hint_variable_name_character(c: char) -> bool {
    is_type_hint_variable_name_start_character(c) || c.is_numeric()
}

fn is_type_hint_type_name_start_character(c: char) -> bool {
    c.is_alphabetic()
}

fn is_type_hint_type_name_character(c: char) -> bool {
    is_type_hint_type_name_start_character(c) || c.is_numeric() || c == '_'
}

fn parse_str_to_usize(s: &str) -> ParseResult<usize> {
    match s.parse::<usize>() {
        Ok(u) => Ok((s, u)),
        Err(_) => cut(nom::error::context("integer conversion failure", fail))(s),
    }
}

fn assertion_context(s_ctx: &str) -> ParseResult<InstructionToken> {
    let (s, assertion_context) = assertion_context_id(s_ctx)?;
    let assertion_context = InstructionToken::AssertionContext(assertion_context, s_ctx);

    Ok((s, assertion_context))
}

fn assertion_context_id(s_ctx: &str) -> ParseResult<AssertionContext> {
    let (s, _) = token1("error_id")(s_ctx)?;
    let (s, id) = nom::character::complete::i128(s)?;
    let (s, _) = comment_or_whitespace1(s)?;

    let assertion_context = AssertionContext::ID(id);
    Ok((s, assertion_context))
}

pub(crate) fn build_label_to_address_map(program: &[LabelledInstruction]) -> HashMap<String, u64> {
    let mut label_map = HashMap::new();
    let mut instruction_pointer = 0;

    for labelled_instruction in program {
        if let LabelledInstruction::Instruction(instruction) = labelled_instruction {
            instruction_pointer += instruction.size() as u64;
            continue;
        }

        let LabelledInstruction::Label(label) = labelled_instruction else {
            continue;
        };
        let Entry::Vacant(new_label_map_entry) = label_map.entry(label.clone()) else {
            panic!("Duplicate label: {label}");
        };
        new_label_map_entry.insert(instruction_pointer);
    }

    label_map
}

pub(crate) fn turn_labels_into_addresses(
    labelled_instructions: &[LabelledInstruction],
    label_to_address: &HashMap<String, u64>,
) -> Vec<Instruction> {
    fn turn_label_to_address_for_instruction(
        labelled_instruction: &LabelledInstruction,
        label_map: &HashMap<String, u64>,
    ) -> Option<Instruction> {
        let LabelledInstruction::Instruction(instruction) = labelled_instruction else {
            return None;
        };

        let instruction_with_absolute_address =
            instruction.map_call_address(|label| address_for_label(label, label_map));
        Some(instruction_with_absolute_address)
    }

    fn address_for_label(label: &str, label_map: &HashMap<String, u64>) -> BFieldElement {
        let maybe_address = label_map.get(label).map(|&a| bfe!(a));
        maybe_address.unwrap_or_else(|| panic!("Label not found: {label}"))
    }

    labelled_instructions
        .iter()
        .filter_map(|inst| turn_label_to_address_for_instruction(inst, label_to_address))
        .flat_map(|inst| vec![inst; inst.size()])
        .collect()
}

#[cfg(test)]
pub(crate) mod tests {
    use assert2::assert;
    use assert2::let_assert;
    use itertools::Itertools;
    use proptest::prelude::*;
    use proptest_arbitrary_interop::arb;
    use rand::prelude::*;
    use rand::Rng;
    use strum::EnumCount;
    use test_strategy::proptest;
    use test_strategy::Arbitrary;
    use twenty_first::bfe;
    use twenty_first::prelude::Digest;

    use crate::triton_asm;
    use crate::triton_instr;
    use crate::triton_program;

    use super::*;

    #[must_use]
    struct TestCase<'a> {
        input: &'a str,
        expected: Vec<Instruction>,
        message: &'static str,
    }

    #[must_use]
    struct NegativeTestCase<'a> {
        input: &'a str,
        expected_error: &'static str,
        expected_error_count: usize,
        message: &'static str,
    }

    impl<'a> TestCase<'a> {
        fn run(&self) {
            let message = self.message;
            let parse_result = parse(self.input).map_err(|err| format!("{message}:\n{err}"));
            let_assert!(Ok(actual) = parse_result);

            let labelled_instructions = to_labelled_instructions(&actual);
            let label_to_address = build_label_to_address_map(&labelled_instructions);
            let instructions =
                turn_labels_into_addresses(&labelled_instructions, &label_to_address);
            assert!(self.expected == instructions, "{message}");
        }
    }

    impl<'a> NegativeTestCase<'a> {
        fn run(self) {
            let Self {
                input,
                expected_error,
                expected_error_count,
                message,
            } = self;

            let parse_result = parse(input);
            if let Ok(instructions) = parse_result {
                eprintln!("parser input: {input}");
                eprintln!("parser output: {instructions:?}");
                panic!("parser should fail, but didn't: {message}");
            }

            let actual_error = parse_result.map_err(|e| e.to_string()).unwrap_err();
            let actual_error_count = actual_error.match_indices(expected_error).count();
            if expected_error_count != actual_error_count {
                eprintln!("Expected error message ({expected_error_count} times):");
                eprintln!("{expected_error}");
                eprintln!("Actual error message (found {actual_error_count} times):");
                eprintln!("{actual_error}");
                panic!("Additional context: {message}");
            }
        }
    }

    #[test]
    fn parse_program_empty() {
        TestCase {
            input: "",
            expected: vec![],
            message: "empty string should parse as empty program",
        }
        .run();

        TestCase {
            input: "   ",
            expected: vec![],
            message: "spaces should parse as empty program",
        }
        .run();

        TestCase {
            input: "\n",
            expected: vec![],
            message: "linebreaks should parse as empty program (1)",
        }
        .run();

        TestCase {
            input: "   \n ",
            expected: vec![],
            message: "linebreaks should parse as empty program (2)",
        }
        .run();

        TestCase {
            input: "   \n \n",
            expected: vec![],
            message: "linebreaks should parse as empty program (3)",
        }
        .run();

        TestCase {
            input: "// empty program",
            expected: vec![],
            message: "single comment should parse as empty program",
        }
        .run();

        TestCase {
            input: "// empty program\n",
            expected: vec![],
            message: "single comment with linebreak should parse as empty program",
        }
        .run();

        TestCase {
            input: "// multi-line\n// comment",
            expected: vec![],
            message: "multiple comments should parse as empty program",
        }
        .run();

        TestCase {
            input: "// multi-line\n// comment\n ",
            expected: vec![],
            message: "multiple comments with trailing whitespace should parse as empty program",
        }
        .run();
    }

    #[proptest]
    fn arbitrary_whitespace_and_comment_sequence_is_empty_program(whitespace: Vec<Whitespace>) {
        let whitespace = whitespace.into_iter().join("");
        TestCase {
            input: &whitespace,
            expected: vec![],
            message: "arbitrary whitespace should parse as empty program",
        }
        .run();
    }

    #[derive(Debug, Copy, Clone, Eq, PartialEq, Hash, EnumCount, Arbitrary)]
    enum Whitespace {
        Space,
        Tab,
        CarriageReturn,
        LineFeed,
        CarriageReturnLineFeed,
        Comment,
    }

    impl Display for Whitespace {
        fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
            match self {
                Self::Space => write!(f, " "),
                Self::Tab => write!(f, "\t"),
                Self::CarriageReturn => write!(f, "\r"),
                Self::LineFeed => writeln!(f),
                Self::CarriageReturnLineFeed => writeln!(f, "\r"),
                Self::Comment => writeln!(f, " // comment"),
            }
        }
    }

    #[test]
    fn parse_program_whitespace() {
        NegativeTestCase {
            input: "poppop",
            expected_error: "n/a",
            expected_error_count: 0,
            message: "whitespace required between instructions (pop)",
        }
        .run();

        NegativeTestCase {
            input: "dup 0dup 0",
            expected_error: "n/a",
            expected_error_count: 0,
            message: "whitespace required between instructions (dup 0)",
        }
        .run();

        NegativeTestCase {
            input: "swap 10swap 10",
            expected_error: "n/a",
            expected_error_count: 0,
            message: "whitespace required between instructions (swap 10)",
        }
        .run();

        NegativeTestCase {
            input: "push10",
            expected_error: "n/a",
            expected_error_count: 0,
            message: "push requires whitespace before its constant",
        }
        .run();

        NegativeTestCase {
            input: "push 10pop",
            expected_error: "n/a",
            expected_error_count: 0,
            message: "push requires whitespace after its constant",
        }
        .run();

        NegativeTestCase {
            input: "hello: callhello",
            expected_error: "n/a",
            expected_error_count: 0,
            message: "call requires whitespace before its label",
        }
        .run();

        NegativeTestCase {
            input: "hello: popcall hello",
            expected_error: "n/a",
            expected_error_count: 0,
            message: "required space between pop and call",
        }
        .run();
    }

    #[test]
    fn parse_program_label() {
        TestCase {
            input: "foo: call foo",
            expected: vec![Instruction::Call(bfe!(0)), Instruction::Call(bfe!(0))],
            message: "parse labels and calls to labels",
        }
        .run();

        TestCase {
            input: "foo:call foo",
            expected: vec![Instruction::Call(bfe!(0)), Instruction::Call(bfe!(0))],
            message: "whitespace is not required after 'label:'",
        }
        .run();

        // FIXME: Increase coverage of negative tests for duplicate labels.
        NegativeTestCase {
            input: "foo: pop 1 foo: pop 1 call foo",
            expected_error: "duplicate label",
            expected_error_count: 2,
            message: "labels cannot occur twice",
        }
        .run();

        // FIXME: Increase coverage of negative tests for missing labels.
        NegativeTestCase {
            input: "foo: pop 1 call herp call derp",
            expected_error: "missing label",
            expected_error_count: 2,
            message: "non-existent labels cannot be called",
        }
        .run();

        // FIXME: Increase coverage of negative tests for label/keyword overlap.
        NegativeTestCase {
            input: "pop: call pop",
            expected_error: "label must be neither instruction nor keyword",
            expected_error_count: 1,
            message: "label names may not overlap with instruction names",
        }
        .run();

        TestCase {
            input: "pops: call pops",
            expected: vec![Instruction::Call(bfe!(0)), Instruction::Call(bfe!(0))],
            message: "labels that share a common prefix with instruction are labels",
        }
        .run();

        TestCase {
            input: "_call: call _call",
            expected: vec![Instruction::Call(bfe!(0)), Instruction::Call(bfe!(0))],
            message: "labels that share a common suffix with instruction are labels",
        }
        .run();
    }

    #[test]
    fn parse_program_nonexistent_instructions() {
        NegativeTestCase {
            input: "pop 0",
            expected_error: "expecting label, instruction or eof",
            expected_error_count: 1,
            message: "instruction `pop` cannot take argument `0`",
        }
        .run();

        NegativeTestCase {
            input: "swap 16",
            expected_error: "expecting label, instruction or eof",
            expected_error_count: 1,
            message: "there is no swap 16 instruction",
        }
        .run();

        NegativeTestCase {
            input: "dup 16",
            expected_error: "expecting label, instruction or eof",
            expected_error_count: 1,
            message: "there is no dup 16 instruction",
        }
        .run();
    }

    #[test]
    fn parse_program_bracket_syntax() {
        TestCase {
            input: "foo: [foo]",
            expected: vec![Instruction::Call(bfe!(0)), Instruction::Call(bfe!(0))],
            message: "Handle brackets as call syntax sugar",
        }
        .run();

        NegativeTestCase {
            input: "foo: [bar]",
            expected_error: "missing label",
            expected_error_count: 1,
            message: "Handle missing labels with bracket syntax",
        }
        .run();
    }

    #[test]
    fn parse_program_label_must_start_with_alphabetic_character_or_underscore() {
        NegativeTestCase {
            input: "1foo: call 1foo",
            expected_error: "expecting label, instruction or eof",
            expected_error_count: 1,
            message: "labels cannot start with a digit",
        }
        .run();

        NegativeTestCase {
            input: "-foo: call -foo",
            expected_error: "expecting label, instruction or eof",
            expected_error_count: 1,
            message: "labels cannot start with a dash",
        }
        .run();

        TestCase {
            input: "_foo: call _foo",
            expected: vec![Instruction::Call(bfe!(0)), Instruction::Call(bfe!(0))],
            message: "labels can start with an underscore",
        }
        .run();
    }

    #[test]
    fn parse_type_hint_with_zero_length_range() {
        NegativeTestCase {
            input: "hint foo: Type = stack[0..0]",
            expected_error: "range end must be greater than range start",
            expected_error_count: 1,
            message: "parse type hint with zero-length range",
        }
        .run();
    }

    #[test]
    fn parse_type_hint_with_range_and_offset_and_missing_closing_bracket() {
        NegativeTestCase {
            input: "hint foo: Type = stack[2..5",
            expected_error: "expecting label, instruction or eof",
            expected_error_count: 1,
            message: "parse type hint with range and offset and missing closing bracket",
        }
        .run();
    }

    #[test]
    fn parse_type_hint_with_range_and_offset_and_missing_opening_bracket() {
        NegativeTestCase {
            input: "hint foo: Type = stack2..5]",
            expected_error: "expecting label, instruction or eof",
            expected_error_count: 1,
            message: "parse type hint with range and offset and missing opening bracket",
        }
        .run();
    }

    #[test]
    fn parse_type_hint_with_range_and_offset_and_missing_equals_sign() {
        NegativeTestCase {
            input: "hint foo: Type stack[2..5];",
            expected_error: "expecting label, instruction or eof",
            expected_error_count: 1,
            message: "parse type hint with range and offset and missing equals sign",
        }
        .run();
    }

    #[test]
    fn parse_type_hint_with_range_and_offset_and_missing_type_name() {
        NegativeTestCase {
            input: "hint foo: = stack[2..5]",
            expected_error: "expecting label, instruction or eof",
            expected_error_count: 1,
            message: "parse type hint with range and offset and missing type name",
        }
        .run();
    }

    #[test]
    fn parse_type_hint_with_range_and_offset_and_missing_variable_name() {
        NegativeTestCase {
            input: "hint : Type = stack[2..5]",
            expected_error: "label must be neither instruction nor keyword",
            expected_error_count: 1,
            message: "parse type hint with range and offset and missing variable name",
        }
        .run();
    }

    #[test]
    fn parse_type_hint_with_range_and_offset_and_missing_colon() {
        NegativeTestCase {
            input: "hint foo Type = stack[2..5]",
            expected_error: "expecting label, instruction or eof",
            expected_error_count: 1,
            message: "parse type hint with range and offset and missing colon",
        }
        .run();
    }

    #[test]
    fn parse_type_hint_with_range_and_offset_and_missing_hint() {
        NegativeTestCase {
            input: "foo: Type = stack[2..5];",
            expected_error: "expecting label, instruction or eof",
            expected_error_count: 1,
            message: "parse type hint with range and offset and missing hint",
        }
        .run();
    }

    #[test]
    fn parse_simple_assertion_contexts() {
        TestCase {
            input: "assert",
            expected: vec![Instruction::Assert],
            message: "naked assert",
        }
        .run();
        TestCase {
            input: "assert_vector",
            expected: vec![Instruction::AssertVector],
            message: "naked assert_vector",
        }
        .run();

        TestCase {
            input: "assert error_id 42",
            expected: vec![Instruction::Assert],
            message: "assert, then id",
        }
        .run();
        TestCase {
            input: "assert_vector error_id 42",
            expected: vec![Instruction::AssertVector],
            message: "assert_vector, then id",
        }
        .run();

        TestCase {
            input: "assert error_id -42",
            expected: vec![Instruction::Assert],
            message: "assert, then negative id",
        }
        .run();
        TestCase {
            input: "assert_vector error_id -42",
            expected: vec![Instruction::AssertVector],
            message: "assert_vector, then negative id",
        }
        .run();

        TestCase {
            input: "assert error_id 42 nop",
            expected: vec![Instruction::Assert, Instruction::Nop],
            message: "assert, then id, then nop",
        }
        .run();
        TestCase {
            input: "assert_vector error_id 42 nop",
            expected: vec![Instruction::AssertVector, Instruction::Nop],
            message: "assert_vector, then id, then nop",
        }
        .run();
    }

    #[test]
    fn assertion_context_error_id_can_handle_edge_case_ids() {
        let instructions = [
            ("assert", Instruction::Assert),
            ("assert_vector", Instruction::AssertVector),
        ];
        let ids = [i128::MIN, -1, 0, 1, i128::MAX];

        for ((instruction_str, instruction), id) in instructions.into_iter().cartesian_product(ids)
        {
            TestCase {
                input: &format!("{instruction_str} error_id {id}"),
                expected: vec![instruction],
                message: "assert, then edge case id",
            }
            .run();
        }
    }

    #[test]
    fn assertion_context_error_id_fails_on_too_large_error_ids() {
        NegativeTestCase {
            input: "assert error_id -170141183460469231731687303715884105729",
            expected_error: "expecting label, instruction or eof",
            expected_error_count: 1,
            message: "error id smaller than i128::MIN",
        }
        .run();
        NegativeTestCase {
            input: "assert error_id 170141183460469231731687303715884105728",
            expected_error: "expecting label, instruction or eof",
            expected_error_count: 1,
            message: "error id larger than i128::MAX",
        }
        .run();
    }

    #[proptest]
    fn assertion_context_error_id_can_handle_any_valid_id(id: i128) {
        TestCase {
            input: &format!("assert error_id {id}"),
            expected: vec![Instruction::Assert],
            message: "assert, then random id",
        }
        .run();
    }

    #[test]
    fn parse_erroneous_assertion_contexts_for_assert() {
        NegativeTestCase {
            input: "assert error_id",
            expected_error: "expecting label, instruction or eof",
            expected_error_count: 1,
            message: "missing id after keyword `error_id`",
        }
        .run();
        NegativeTestCase {
            input: "assert error id 42",
            expected_error: "expecting label, instruction or eof",
            expected_error_count: 1,
            message: "incorrect keyword `error id`",
        }
        .run();
        NegativeTestCase {
            input: "error_id 42",
            expected_error: "incorrectly placed assertion context",
            expected_error_count: 1,
            message: "standalone assertion context",
        }
        .run();
        NegativeTestCase {
            input: "error_id 42 error_id 42",
            expected_error: "incorrectly placed assertion context",
            expected_error_count: 2,
            message: "multiple standalone assertion contexts",
        }
        .run();
        NegativeTestCase {
            input: "nop error_id 42",
            expected_error: "incorrectly placed assertion context",
            expected_error_count: 1,
            message: "error id without assertion",
        }
        .run();
        NegativeTestCase {
            input: "assert error_id 42 error_id 1337",
            expected_error: "incorrectly placed assertion context",
            expected_error_count: 1,
            message: "multiple error ids for the same assertion",
        }
        .run();
        NegativeTestCase {
            input: "assert_vector error_id 42 error_id 1337",
            expected_error: "incorrectly placed assertion context",
            expected_error_count: 1,
            message: "multiple error ids for the same vector assertion",
        }
        .run();
        NegativeTestCase {
            input: "error_id 42 assert",
            expected_error: "incorrectly placed assertion context",
            expected_error_count: 1,
            message: "error id precedes assertion",
        }
        .run();
        NegativeTestCase {
            input: "error_id 42 assert error_id 1337",
            expected_error: "incorrectly placed assertion context",
            expected_error_count: 1,
            message: "first error id precedes assertion",
        }
        .run();
    }

    #[proptest]
    fn assertion_context_error_id_fails_for_invalid_id(
        #[strategy(proptest::strategy::Union::new(["assert", "assert_vector"]))]
        instruction: String,
        #[filter(#id.parse::<i128>().is_err())] id: String,
    ) {
        // not using `NegativeTest`: different `id`s trigger different errors
        let input = format!("{instruction} error_id {id}");
        prop_assert!(parse(&input).is_err());
    }

    #[proptest]
    fn type_hint_to_string_to_type_hint_is_identity(#[strategy(arb())] type_hint: TypeHint) {
        let type_hint_string = type_hint.to_string();
        let instruction_tokens =
            parse(&type_hint_string).map_err(|err| TestCaseError::Fail(format!("{err}").into()))?;
        let labelled_instructions = to_labelled_instructions(&instruction_tokens);
        prop_assert_eq!(1, labelled_instructions.len());
        let first_labelled_instruction = labelled_instructions[0].clone();
        let_assert!(LabelledInstruction::TypeHint(parsed_type_hint) = first_labelled_instruction);
        prop_assert_eq!(type_hint, parsed_type_hint);
    }

    #[proptest]
    fn assertion_context_to_string_to_assertion_context_is_identity(
        #[strategy(arb())] context: AssertionContext,
    ) {
        let assert_with_context = format!("assert {context}");
        let instruction_tokens = parse(&assert_with_context)
            .map_err(|err| TestCaseError::Fail(format!("{err}").into()))?;
        let labelled_instructions = to_labelled_instructions(&instruction_tokens);
        prop_assert_eq!(2, labelled_instructions.len());
        let_assert!(LabelledInstruction::AssertionContext(parsed) = &labelled_instructions[1]);
        prop_assert_eq!(&context, parsed);
    }

    #[test]
    fn triton_asm_macro() {
        let instructions = triton_asm!(write_io 3 push 17 call huh lt swap 3);
        assert_eq!(
            LabelledInstruction::Instruction(AnInstruction::WriteIo(NumberOfWords::N3)),
            instructions[0]
        );
        assert_eq!(
            LabelledInstruction::Instruction(AnInstruction::Push(bfe!(17))),
            instructions[1]
        );
        assert_eq!(
            LabelledInstruction::Instruction(AnInstruction::Call("huh".to_string())),
            instructions[2]
        );
        assert_eq!(
            LabelledInstruction::Instruction(AnInstruction::Lt),
            instructions[3]
        );
        assert_eq!(
            LabelledInstruction::Instruction(AnInstruction::Swap(OpStackElement::ST3)),
            instructions[4]
        );
    }

    #[test]
    fn triton_asm_macro_with_a_single_return() {
        let instructions = triton_asm!(return);
        assert_eq!(
            LabelledInstruction::Instruction(AnInstruction::Return),
            instructions[0]
        );
    }

    #[test]
    fn triton_asm_macro_with_a_single_assert() {
        let instructions = triton_asm!(assert);
        assert_eq!(
            LabelledInstruction::Instruction(AnInstruction::Assert),
            instructions[0]
        );
    }

    #[test]
    fn triton_asm_macro_with_only_assert_and_return() {
        let instructions = triton_asm!(assert return);
        assert_eq!(
            LabelledInstruction::Instruction(AnInstruction::Assert),
            instructions[0]
        );
        assert_eq!(
            LabelledInstruction::Instruction(AnInstruction::Return),
            instructions[1]
        );
    }

    #[test]
    fn triton_program_macro() {
        let program = triton_program!(
            // main entry point
            call routine_1
            call routine_2 // inline comment
            halt

            // single line content regarding subroutine 1
            routine_1:
                /*
                 * multi-line comment
                 */
                call routine_3
                return

            // subroutine 2 starts here
            routine_2:
                push 18 push 7 add
                push 25 eq assert
                return

            routine_3:
            alternative_label:
                nop nop
                return
        );
        println!("{program}");
    }

    #[test]
    fn triton_program_macro_interpolates_various_types() {
        let push_arg = thread_rng().gen_range(0_u64..BFieldElement::P);
        let instruction_push =
            LabelledInstruction::Instruction(AnInstruction::Push(push_arg.into()));
        let swap_argument = "1";
        triton_program!({instruction_push} push {push_arg} swap {swap_argument} eq assert halt);
    }

    #[test]
    fn triton_instruction_macro_parses_simple_instructions() {
        assert_eq!(
            LabelledInstruction::Instruction(AnInstruction::Halt),
            triton_instr!(halt)
        );
        assert_eq!(
            LabelledInstruction::Instruction(AnInstruction::Add),
            triton_instr!(add)
        );
        assert_eq!(
            LabelledInstruction::Instruction(AnInstruction::Pop(NumberOfWords::N3)),
            triton_instr!(pop 3)
        );
    }

    #[test]
    #[should_panic(expected = "not_an_instruction")]
    fn triton_instruction_macro_fails_when_encountering_unknown_instruction() {
        triton_instr!(not_an_instruction);
    }

    #[test]
    fn triton_instruction_macro_parses_instructions_with_argument() {
        assert_eq!(
            LabelledInstruction::Instruction(AnInstruction::Push(bfe!(7))),
            triton_instr!(push 7)
        );
        assert_eq!(
            LabelledInstruction::Instruction(AnInstruction::Dup(OpStackElement::ST3)),
            triton_instr!(dup 3)
        );
        assert_eq!(
            LabelledInstruction::Instruction(AnInstruction::Swap(OpStackElement::ST5)),
            triton_instr!(swap 5)
        );
        assert_eq!(
            LabelledInstruction::Instruction(AnInstruction::Call("my_label".to_string())),
            triton_instr!(call my_label)
        );
    }

    #[test]
    fn triton_asm_macro_can_repeat_instructions() {
        let instructions = triton_asm![push 42; 3];
        let expected_instructions =
            vec![LabelledInstruction::Instruction(AnInstruction::Push(bfe!(42))); 3];
        assert_eq!(expected_instructions, instructions);

        let instructions = triton_asm![read_io 2; 15];
        let expected_instructions =
            vec![LabelledInstruction::Instruction(AnInstruction::ReadIo(NumberOfWords::N2)); 15];
        assert_eq!(expected_instructions, instructions);

        let instructions = triton_asm![divine 3; Digest::LEN];
        let expected_instructions =
            vec![
                LabelledInstruction::Instruction(AnInstruction::Divine(NumberOfWords::N3));
                Digest::LEN
            ];
        assert_eq!(expected_instructions, instructions);
    }

    #[test]
    fn break_gets_turned_into_labelled_instruction() {
        let instructions = triton_asm![break];
        let expected_instructions = vec![LabelledInstruction::Breakpoint];
        assert_eq!(expected_instructions, instructions);
    }

    #[test]
    fn break_does_not_propagate_to_full_program() {
        let program = triton_program! { break halt break };
        assert_eq!(1, program.len_bwords());
    }
}