1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
/*
* Copyright (C) 2015 Benjamin Fry <benjaminfry@me.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//! hashed negative cache proof for non-existence
use std::collections::BTreeMap;
use std::fmt;
#[cfg(feature = "serde-config")]
use serde::{Deserialize, Serialize};
use crate::error::*;
use crate::rr::dnssec::Nsec3HashAlgorithm;
use crate::rr::RecordType;
use crate::serialize::binary::*;
/// [RFC 5155](https://tools.ietf.org/html/rfc5155#section-3), NSEC3, March 2008
///
/// ```text
/// 3. The NSEC3 Resource Record
///
/// The NSEC3 Resource Record (RR) provides authenticated denial of
/// existence for DNS Resource Record Sets.
///
/// The NSEC3 RR lists RR types present at the original owner name of the
/// NSEC3 RR. It includes the next hashed owner name in the hash order
/// of the zone. The complete set of NSEC3 RRs in a zone indicates which
/// RRSets exist for the original owner name of the RR and form a chain
/// of hashed owner names in the zone. This information is used to
/// provide authenticated denial of existence for DNS data. To provide
/// protection against zone enumeration, the owner names used in the
/// NSEC3 RR are cryptographic hashes of the original owner name
/// prepended as a single label to the name of the zone. The NSEC3 RR
/// indicates which hash function is used to construct the hash, which
/// salt is used, and how many iterations of the hash function are
/// performed over the original owner name. The hashing technique is
/// described fully in Section 5.
///
/// Hashed owner names of unsigned delegations may be excluded from the
/// chain. An NSEC3 RR whose span covers the hash of an owner name or
/// "next closer" name of an unsigned delegation is referred to as an
/// Opt-Out NSEC3 RR and is indicated by the presence of a flag.
///
/// The owner name for the NSEC3 RR is the base32 encoding of the hashed
/// owner name prepended as a single label to the name of the zone.
///
/// The type value for the NSEC3 RR is 50.
///
/// The NSEC3 RR RDATA format is class independent and is described
/// below.
///
/// The class MUST be the same as the class of the original owner name.
///
/// The NSEC3 RR SHOULD have the same TTL value as the SOA minimum TTL
/// field. This is in the spirit of negative caching [RFC2308].
///
/// 3.2. NSEC3 RDATA Wire Format
///
/// The RDATA of the NSEC3 RR is as shown below:
///
/// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Hash Alg. | Flags | Iterations |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Salt Length | Salt /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Hash Length | Next Hashed Owner Name /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// / Type Bit Maps /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///
/// Hash Algorithm is a single octet.
///
/// Flags field is a single octet, the Opt-Out flag is the least
/// significant bit, as shown below:
///
/// 0 1 2 3 4 5 6 7
/// +-+-+-+-+-+-+-+-+
/// | |O|
/// +-+-+-+-+-+-+-+-+
///
/// Iterations is represented as a 16-bit unsigned integer, with the most
/// significant bit first.
///
/// Salt Length is represented as an unsigned octet. Salt Length
/// represents the length of the Salt field in octets. If the value is
/// zero, the following Salt field is omitted.
///
/// Salt, if present, is encoded as a sequence of binary octets. The
/// length of this field is determined by the preceding Salt Length
/// field.
///
/// Hash Length is represented as an unsigned octet. Hash Length
/// represents the length of the Next Hashed Owner Name field in octets.
///
/// The next hashed owner name is not base32 encoded, unlike the owner
/// name of the NSEC3 RR. It is the unmodified binary hash value. It
/// does not include the name of the containing zone. The length of this
/// field is determined by the preceding Hash Length field.
/// ```
#[cfg_attr(feature = "serde-config", derive(Deserialize, Serialize))]
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub struct NSEC3 {
hash_algorithm: Nsec3HashAlgorithm,
opt_out: bool,
iterations: u16,
salt: Vec<u8>,
next_hashed_owner_name: Vec<u8>,
type_bit_maps: Vec<RecordType>,
}
impl NSEC3 {
/// Constructs a new NSEC3 record
pub fn new(
hash_algorithm: Nsec3HashAlgorithm,
opt_out: bool,
iterations: u16,
salt: Vec<u8>,
next_hashed_owner_name: Vec<u8>,
type_bit_maps: Vec<RecordType>,
) -> NSEC3 {
NSEC3 {
hash_algorithm,
opt_out,
iterations,
salt,
next_hashed_owner_name,
type_bit_maps,
}
}
/// [RFC 5155](https://tools.ietf.org/html/rfc5155#section-3.1.1), NSEC3, March 2008
///
/// ```text
/// 3.1.1. Hash Algorithm
///
/// The Hash Algorithm field identifies the cryptographic hash algorithm
/// used to construct the hash-value.
///
/// The values for this field are defined in the NSEC3 hash algorithm
/// registry defined in Section 11.
/// ```
pub fn hash_algorithm(&self) -> Nsec3HashAlgorithm {
self.hash_algorithm
}
/// [RFC 5155](https://tools.ietf.org/html/rfc5155#section-3.1.2), NSEC3, March 2008
///
/// ```text
/// 3.1.2. Flags
///
/// The Flags field contains 8 one-bit flags that can be used to indicate
/// different processing. All undefined flags must be zero. The only
/// flag defined by this specification is the Opt-Out flag.
///
/// 3.1.2.1. Opt-Out Flag
///
/// If the Opt-Out flag is set, the NSEC3 record covers zero or more
/// unsigned delegations.
///
/// If the Opt-Out flag is clear, the NSEC3 record covers zero unsigned
/// delegations.
///
/// The Opt-Out Flag indicates whether this NSEC3 RR may cover unsigned
/// delegations. It is the least significant bit in the Flags field.
/// See Section 6 for details about the use of this flag.
/// ```
pub fn opt_out(&self) -> bool {
self.opt_out
}
/// [RFC 5155](https://tools.ietf.org/html/rfc5155#section-3.1.3), NSEC3, March 2008
///
/// ```text
/// 3.1.3. Iterations
///
/// The Iterations field defines the number of additional times the hash
/// function has been performed. More iterations result in greater
/// resiliency of the hash value against dictionary attacks, but at a
/// higher computational cost for both the server and resolver. See
/// Section 5 for details of the use of this field, and Section 10.3 for
/// limitations on the value.
/// ```
pub fn iterations(&self) -> u16 {
self.iterations
}
/// [RFC 5155](https://tools.ietf.org/html/rfc5155#section-3.1.5), NSEC3, March 2008
///
/// ```text
/// 3.1.5. Salt
///
/// The Salt field is appended to the original owner name before hashing
/// in order to defend against pre-calculated dictionary attacks. See
/// Section 5 for details on how the salt is used.
/// ```
pub fn salt(&self) -> &[u8] {
&self.salt
}
/// [RFC 5155](https://tools.ietf.org/html/rfc5155#section-3.1.7), NSEC3, March 2008
///
/// ```text
/// 3.1.7. Next Hashed Owner Name
///
/// The Next Hashed Owner Name field contains the next hashed owner name
/// in hash order. This value is in binary format. Given the ordered
/// set of all hashed owner names, the Next Hashed Owner Name field
/// contains the hash of an owner name that immediately follows the owner
/// name of the given NSEC3 RR. The value of the Next Hashed Owner Name
/// field in the last NSEC3 RR in the zone is the same as the hashed
/// owner name of the first NSEC3 RR in the zone in hash order. Note
/// that, unlike the owner name of the NSEC3 RR, the value of this field
/// does not contain the appended zone name.
/// ```
pub fn next_hashed_owner_name(&self) -> &[u8] {
&self.next_hashed_owner_name
}
/// [RFC 5155](https://tools.ietf.org/html/rfc5155#section-3.1.8), NSEC3, March 2008
///
/// ```text
/// 3.1.8. Type Bit Maps
///
/// The Type Bit Maps field identifies the RRSet types that exist at the
/// original owner name of the NSEC3 RR.
/// ```
pub fn type_bit_maps(&self) -> &[RecordType] {
&self.type_bit_maps
}
/// Flags for encoding
pub fn flags(&self) -> u8 {
let mut flags: u8 = 0;
if self.opt_out {
flags |= 0b0000_0001
};
flags
}
}
/// Read the RData from the given Decoder
pub fn read(decoder: &mut BinDecoder<'_>, rdata_length: Restrict<u16>) -> ProtoResult<NSEC3> {
let start_idx = decoder.index();
let hash_algorithm =
Nsec3HashAlgorithm::from_u8(decoder.read_u8()?.unverified(/*Algorithm verified as safe*/))?;
let flags: u8 = decoder
.read_u8()?
.verify_unwrap(|flags| flags & 0b1111_1110 == 0)
.map_err(|flags| ProtoError::from(ProtoErrorKind::UnrecognizedNsec3Flags(flags)))?;
let opt_out: bool = flags & 0b0000_0001 == 0b0000_0001;
let iterations: u16 = decoder.read_u16()?.unverified(/*valid as any u16*/);
// read the salt
let salt_len = decoder.read_u8()?.map(|u| u as usize);
let salt_len_max = rdata_length
.map(|u| u as usize)
.checked_sub(decoder.index() - start_idx)
.map_err(|_| "invalid rdata for salt_len_max")?;
let salt_len = salt_len
.verify_unwrap(|salt_len| {
*salt_len <= salt_len_max.unverified(/*safe in comparison usage*/)
})
.map_err(|_| ProtoError::from("salt_len exceeds buffer length"))?;
let salt: Vec<u8> =
decoder.read_vec(salt_len)?.unverified(/*salt is any valid array of bytes*/);
// read the hashed_owner_name
let hash_len = decoder.read_u8()?.map(|u| u as usize);
let hash_len_max = rdata_length
.map(|u| u as usize)
.checked_sub(decoder.index() - start_idx)
.map_err(|_| "invalid rdata for hash_len_max")?;
let hash_len = hash_len
.verify_unwrap(|hash_len| {
*hash_len <= hash_len_max.unverified(/*safe in comparison usage*/)
})
.map_err(|_| ProtoError::from("hash_len exceeds buffer length"))?;
let next_hashed_owner_name: Vec<u8> =
decoder.read_vec(hash_len)?.unverified(/*will fail in usage if invalid*/);
// read the bitmap
let bit_map_len = rdata_length
.map(|u| u as usize)
.checked_sub(decoder.index() - start_idx)
.map_err(|_| "invalid rdata length in NSEC3")?;
let record_types = decode_type_bit_maps(decoder, bit_map_len)?;
Ok(NSEC3::new(
hash_algorithm,
opt_out,
iterations,
salt,
next_hashed_owner_name,
record_types,
))
}
/// Decodes the array of RecordTypes covered by this NSEC record
///
/// # Arguments
///
/// * `decoder` - decoder to read from
/// * `bit_map_len` - the number bytes in the bit map
///
/// # Returns
///
/// The Array of covered types
pub(crate) fn decode_type_bit_maps(
decoder: &mut BinDecoder<'_>,
bit_map_len: Restrict<usize>,
) -> ProtoResult<Vec<RecordType>> {
// 3.2.1. Type Bit Maps Encoding
//
// The encoding of the Type Bit Maps field is the same as that used by
// the NSEC RR, described in [RFC4034]. It is explained and clarified
// here for clarity.
//
// The RR type space is split into 256 window blocks, each representing
// the low-order 8 bits of the 16-bit RR type space. Each block that
// has at least one active RR type is encoded using a single octet
// window number (from 0 to 255), a single octet bitmap length (from 1
// to 32) indicating the number of octets used for the bitmap of the
// window block, and up to 32 octets (256 bits) of bitmap.
//
// Blocks are present in the NSEC3 RR RDATA in increasing numerical
// order.
//
// Type Bit Maps Field = ( Window Block # | Bitmap Length | Bitmap )+
//
// where "|" denotes concatenation.
//
// Each bitmap encodes the low-order 8 bits of RR types within the
// window block, in network bit order. The first bit is bit 0. For
// window block 0, bit 1 corresponds to RR type 1 (A), bit 2 corresponds
// to RR type 2 (NS), and so forth. For window block 1, bit 1
// corresponds to RR type 257, bit 2 to RR type 258. If a bit is set to
// 1, it indicates that an RRSet of that type is present for the
// original owner name of the NSEC3 RR. If a bit is set to 0, it
// indicates that no RRSet of that type is present for the original
// owner name of the NSEC3 RR.
//
// Since bit 0 in window block 0 refers to the non-existing RR type 0,
// it MUST be set to 0. After verification, the validator MUST ignore
// the value of bit 0 in window block 0.
//
// Bits representing Meta-TYPEs or QTYPEs as specified in Section 3.1 of
// [RFC2929] or within the range reserved for assignment only to QTYPEs
// and Meta-TYPEs MUST be set to 0, since they do not appear in zone
// data. If encountered, they must be ignored upon reading.
//
// Blocks with no types present MUST NOT be included. Trailing zero
// octets in the bitmap MUST be omitted. The length of the bitmap of
// each block is determined by the type code with the largest numerical
// value, within that block, among the set of RR types present at the
// original owner name of the NSEC3 RR. Trailing octets not specified
// MUST be interpreted as zero octets.
let mut record_types: Vec<RecordType> = Vec::new();
let mut state: BitMapReadState = BitMapReadState::Window;
// loop through all the bytes in the bitmap
for _ in 0..bit_map_len.unverified(/*bounded over any length of u16*/) {
let current_byte = decoder.read_u8()?;
state = match state {
BitMapReadState::Window => BitMapReadState::Len {
window: current_byte.unverified(/*window is any valid u8,*/),
},
BitMapReadState::Len { window } => BitMapReadState::RecordType {
window,
len: current_byte,
left: current_byte,
},
BitMapReadState::RecordType { window, len, left } => {
// window is the Window Block # from above
// len is the Bitmap Length
// current_byte is the Bitmap
let mut bit_map = current_byte.unverified(/*validated and restricted in usage in following usage*/);
// for all the bits in the current_byte
for i in 0..8 {
// if the current_bytes most significant bit is set
if bit_map & 0b1000_0000 == 0b1000_0000 {
// len - left is the block in the bitmap, times 8 for the bits, + the bit in the current_byte
let low_byte: u8 = len
.checked_sub(left.unverified(/*will fail as param in this call if invalid*/))
.checked_mul(8)
.checked_add(i)
.map_err(|_| "block len or left out of bounds in NSEC(3)")?
.unverified(/*any u8 is valid at this point*/);
let rr_type: u16 = (u16::from(window) << 8) | u16::from(low_byte);
record_types.push(RecordType::from(rr_type));
}
// shift left and look at the next bit
bit_map <<= 1;
}
// move to the next section of the bit_map
let left = left
.checked_sub(1)
.map_err(|_| ProtoError::from("block left out of bounds in NSEC(3)"))?;
if left.unverified(/*comparison is safe*/) == 0 {
// we've exhausted this Window, move to the next
BitMapReadState::Window
} else {
// continue reading this Window
BitMapReadState::RecordType { window, len, left }
}
}
};
}
Ok(record_types)
}
enum BitMapReadState {
Window,
Len {
window: u8,
},
RecordType {
window: u8,
len: Restrict<u8>,
left: Restrict<u8>,
},
}
/// Write the RData from the given Decoder
pub fn emit(encoder: &mut BinEncoder<'_>, rdata: &NSEC3) -> ProtoResult<()> {
encoder.emit(rdata.hash_algorithm().into())?;
encoder.emit(rdata.flags())?;
encoder.emit_u16(rdata.iterations())?;
encoder.emit(rdata.salt().len() as u8)?;
encoder.emit_vec(rdata.salt())?;
encoder.emit(rdata.next_hashed_owner_name().len() as u8)?;
encoder.emit_vec(rdata.next_hashed_owner_name())?;
encode_bit_maps(encoder, rdata.type_bit_maps())?;
Ok(())
}
/// Encode the bit map
///
/// # Arguments
///
/// * `encoder` - the encoder to write to
/// * `type_bit_maps` - types to encode into the bitmap
pub(crate) fn encode_bit_maps(
encoder: &mut BinEncoder<'_>,
type_bit_maps: &[RecordType],
) -> ProtoResult<()> {
let mut hash: BTreeMap<u8, Vec<u8>> = BTreeMap::new();
let mut type_bit_maps = type_bit_maps.to_vec();
type_bit_maps.sort();
// collect the bitmaps
for rr_type in type_bit_maps {
let code: u16 = (rr_type).into();
let window: u8 = (code >> 8) as u8;
let low: u8 = (code & 0x00FF) as u8;
let bit_map: &mut Vec<u8> = hash.entry(window).or_insert_with(Vec::new);
// len + left is the block in the bitmap, divided by 8 for the bits, + the bit in the current_byte
let index: u8 = low / 8;
let bit: u8 = 0b1000_0000 >> (low % 8);
// adding necessary space to the vector
if bit_map.len() < (index as usize + 1) {
bit_map.resize(index as usize + 1, 0_u8);
}
bit_map[index as usize] |= bit;
}
// output bitmaps
for (window, bitmap) in hash {
encoder.emit(window)?;
// the hashset should never be larger that 255 based on above logic.
encoder.emit(bitmap.len() as u8)?;
for bits in bitmap {
encoder.emit(bits)?;
}
}
Ok(())
}
/// [RFC 5155](https://tools.ietf.org/html/rfc5155#section-3.3), NSEC3, March 2008
///
/// ```text
/// 3.3. Presentation Format
///
/// The presentation format of the RDATA portion is as follows:
///
/// o The Hash Algorithm field is represented as an unsigned decimal
/// integer. The value has a maximum of 255.
///
/// o The Flags field is represented as an unsigned decimal integer.
/// The value has a maximum of 255.
///
/// o The Iterations field is represented as an unsigned decimal
/// integer. The value is between 0 and 65535, inclusive.
///
/// o The Salt Length field is not represented.
///
/// o The Salt field is represented as a sequence of case-insensitive
/// hexadecimal digits. Whitespace is not allowed within the
/// sequence. The Salt field is represented as "-" (without the
/// quotes) when the Salt Length field has a value of 0.
///
/// o The Hash Length field is not represented.
///
/// o The Next Hashed Owner Name field is represented as an unpadded
/// sequence of case-insensitive base32 digits, without whitespace.
///
/// o The Type Bit Maps field is represented as a sequence of RR type
/// mnemonics. When the mnemonic is not known, the TYPE
/// representation as described in Section 5 of [RFC3597] MUST be
/// used.
/// ```
impl fmt::Display for NSEC3 {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
let salt = if self.salt.is_empty() {
"-".to_string()
} else {
data_encoding::HEXUPPER_PERMISSIVE.encode(&self.salt)
};
write!(
f,
"{alg} {flags} {iterations} {salt} {owner}",
alg = u8::from(self.hash_algorithm),
flags = self.flags(),
iterations = self.iterations,
salt = salt,
owner = data_encoding::BASE32_NOPAD.encode(&self.next_hashed_owner_name)
)?;
for ty in &self.type_bit_maps {
write!(f, " {}", ty)?;
}
Ok(())
}
}
#[cfg(test)]
mod tests {
#![allow(clippy::dbg_macro, clippy::print_stdout)]
use super::*;
#[test]
fn test() {
use crate::rr::dnssec::rdata::RecordType;
let rdata = NSEC3::new(
Nsec3HashAlgorithm::SHA1,
true,
2,
vec![1, 2, 3, 4, 5],
vec![6, 7, 8, 9, 0],
vec![
RecordType::A,
RecordType::AAAA,
RecordType::DS,
RecordType::RRSIG,
],
);
let mut bytes = Vec::new();
let mut encoder: BinEncoder<'_> = BinEncoder::new(&mut bytes);
assert!(emit(&mut encoder, &rdata).is_ok());
let bytes = encoder.into_bytes();
println!("bytes: {:?}", bytes);
let mut decoder: BinDecoder<'_> = BinDecoder::new(bytes);
let restrict = Restrict::new(bytes.len() as u16);
let read_rdata = read(&mut decoder, restrict).expect("Decoding error");
assert_eq!(rdata, read_rdata);
}
#[test]
fn test_dups() {
use crate::rr::dnssec::rdata::RecordType;
let rdata_with_dups = NSEC3::new(
Nsec3HashAlgorithm::SHA1,
true,
2,
vec![1, 2, 3, 4, 5],
vec![6, 7, 8, 9, 0],
vec![
RecordType::A,
RecordType::AAAA,
RecordType::DS,
RecordType::AAAA,
RecordType::RRSIG,
],
);
let rdata_wo = NSEC3::new(
Nsec3HashAlgorithm::SHA1,
true,
2,
vec![1, 2, 3, 4, 5],
vec![6, 7, 8, 9, 0],
vec![
RecordType::A,
RecordType::AAAA,
RecordType::DS,
RecordType::RRSIG,
],
);
let mut bytes = Vec::new();
let mut encoder: BinEncoder<'_> = BinEncoder::new(&mut bytes);
assert!(emit(&mut encoder, &rdata_with_dups).is_ok());
let bytes = encoder.into_bytes();
println!("bytes: {:?}", bytes);
let mut decoder: BinDecoder<'_> = BinDecoder::new(bytes);
let restrict = Restrict::new(bytes.len() as u16);
let read_rdata = read(&mut decoder, restrict).expect("Decoding error");
assert_eq!(rdata_wo, read_rdata);
}
}