1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*
 * Copyright (C) 2015 Benjamin Fry <benjaminfry@me.com>
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//! NSEC record types
use std::fmt;

#[cfg(feature = "serde-config")]
use serde::{Deserialize, Serialize};

use crate::error::*;
use crate::rr::type_bit_map::{decode_type_bit_maps, encode_type_bit_maps};
use crate::rr::{Name, RecordType};
use crate::serialize::binary::*;

/// [RFC 4034](https://tools.ietf.org/html/rfc4034#section-4), DNSSEC Resource Records, March 2005
///
/// ```text
/// 4.1.  NSEC RDATA Wire Format
///
///    The RDATA of the NSEC RR is as shown below:
///
///                         1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
///     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
///    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///    /                      Next Domain Name                         /
///    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///    /                       Type Bit Maps                           /
///    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///
/// 4.1.3.  Inclusion of Wildcard Names in NSEC RDATA
///
///    If a wildcard owner name appears in a zone, the wildcard label ("*")
///    is treated as a literal symbol and is treated the same as any other
///    owner name for the purposes of generating NSEC RRs.  Wildcard owner
///    names appear in the Next Domain Name field without any wildcard
///    expansion.  [RFC4035] describes the impact of wildcards on
///    authenticated denial of existence.
/// ```
#[cfg_attr(feature = "serde-config", derive(Deserialize, Serialize))]
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub struct NSEC {
    next_domain_name: Name,
    type_bit_maps: Vec<RecordType>,
}

impl NSEC {
    /// Constructs a new NSEC RData, warning this won't guarantee that the NSEC covers itself
    ///  which it should at it's own name.
    ///
    /// # Arguments
    ///
    /// * `next_domain_name` - the name labels of the next ordered name in the zone
    /// * `type_bit_maps` - a bit map of the types that exist at this name
    ///
    /// # Returns
    ///
    /// An NSEC RData for use in a Resource Record
    pub fn new(next_domain_name: Name, type_bit_maps: Vec<RecordType>) -> Self {
        Self {
            next_domain_name,
            type_bit_maps,
        }
    }

    /// Constructs a new NSEC RData, this will add the NSEC itself as covered, generally
    ///   correct for NSEC records generated at their own name
    ///
    /// # Arguments
    ///
    /// * `next_domain_name` - the name labels of the next ordered name in the zone
    /// * `type_bit_maps` - a bit map of the types that exist at this name
    ///
    /// # Returns
    ///
    /// An NSEC RData for use in a Resource Record
    pub fn new_cover_self(next_domain_name: Name, mut type_bit_maps: Vec<RecordType>) -> Self {
        type_bit_maps.push(RecordType::NSEC);

        Self::new(next_domain_name, type_bit_maps)
    }

    /// [RFC 4034](https://tools.ietf.org/html/rfc4034#section-4.1.1), DNSSEC Resource Records, March 2005
    ///
    /// ```text
    /// 4.1.1.  The Next Domain Name Field
    ///
    ///    The Next Domain field contains the next owner name (in the canonical
    ///    ordering of the zone) that has authoritative data or contains a
    ///    delegation point NS RRset; see Section 6.1 for an explanation of
    ///    canonical ordering.  The value of the Next Domain Name field in the
    ///    last NSEC record in the zone is the name of the zone apex (the owner
    ///    name of the zone's SOA RR).  This indicates that the owner name of
    ///    the NSEC RR is the last name in the canonical ordering of the zone.
    ///
    ///    A sender MUST NOT use DNS name compression on the Next Domain Name
    ///    field when transmitting an NSEC RR.
    ///
    ///    Owner names of RRsets for which the given zone is not authoritative
    ///    (such as glue records) MUST NOT be listed in the Next Domain Name
    ///    unless at least one authoritative RRset exists at the same owner
    ///    name.
    /// ```
    pub fn next_domain_name(&self) -> &Name {
        &self.next_domain_name
    }

    /// [RFC 4034, DNSSEC Resource Records, March 2005](https://tools.ietf.org/html/rfc4034#section-4.1.2)
    ///
    /// ```text
    /// 4.1.2.  The Type Bit Maps Field
    ///
    ///    The Type Bit Maps field identifies the RRset types that exist at the
    ///    NSEC RR's owner name.
    ///
    ///    A zone MUST NOT include an NSEC RR for any domain name that only
    ///    holds glue records.
    /// ```
    pub fn type_bit_maps(&self) -> &[RecordType] {
        &self.type_bit_maps
    }
}

/// Read the RData from the given Decoder
pub fn read(decoder: &mut BinDecoder<'_>, rdata_length: Restrict<u16>) -> ProtoResult<NSEC> {
    let start_idx = decoder.index();

    let next_domain_name = Name::read(decoder)?;

    let bit_map_len = rdata_length
        .map(|u| u as usize)
        .checked_sub(decoder.index() - start_idx)
        .map_err(|_| ProtoError::from("invalid rdata length in NSEC"))?;
    let record_types = decode_type_bit_maps(decoder, bit_map_len)?;

    Ok(NSEC::new(next_domain_name, record_types))
}

/// [RFC 6840](https://tools.ietf.org/html/rfc6840#section-6)
///
/// ```text
/// 5.1.  Errors in Canonical Form Type Code List
///
///   When canonicalizing DNS names (for both ordering and signing), DNS
///   names in the RDATA section of NSEC resource records are not converted
///   to lowercase.  DNS names in the RDATA section of RRSIG resource
///   records are converted to lowercase.
/// ```
pub fn emit(encoder: &mut BinEncoder<'_>, rdata: &NSEC) -> ProtoResult<()> {
    encoder.with_canonical_names(|encoder| {
        rdata.next_domain_name().emit(encoder)?;
        encode_type_bit_maps(encoder, rdata.type_bit_maps())
    })
}

/// [RFC 4034](https://tools.ietf.org/html/rfc4034#section-4.2), DNSSEC Resource Records, March 2005
///
/// ```text
/// 4.2.  The NSEC RR Presentation Format
///
///    The presentation format of the RDATA portion is as follows:
///
///    The Next Domain Name field is represented as a domain name.
///
///    The Type Bit Maps field is represented as a sequence of RR type
///    mnemonics.  When the mnemonic is not known, the TYPE representation
///    described in [RFC3597], Section 5, MUST be used.
///
/// 4.3.  NSEC RR Example
///
///    The following NSEC RR identifies the RRsets associated with
///    alfa.example.com. and identifies the next authoritative name after
///    alfa.example.com.
///
///    alfa.example.com. 86400 IN NSEC host.example.com. (
///                                    A MX RRSIG NSEC TYPE1234 )
///
///    The first four text fields specify the name, TTL, Class, and RR type
///    (NSEC).  The entry host.example.com. is the next authoritative name
///    after alfa.example.com. in canonical order.  The A, MX, RRSIG, NSEC,
///    and TYPE1234 mnemonics indicate that there are A, MX, RRSIG, NSEC,
///    and TYPE1234 RRsets associated with the name alfa.example.com.
///
///    Assuming that the validator can authenticate this NSEC record, it
///    could be used to prove that beta.example.com does not exist, or to
///    prove that there is no AAAA record associated with alfa.example.com.
///    Authenticated denial of existence is discussed in [RFC4035].
/// ```
impl fmt::Display for NSEC {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        write!(f, "{}", self.next_domain_name)?;

        for ty in &self.type_bit_maps {
            write!(f, " {}", ty)?;
        }

        Ok(())
    }
}

#[cfg(test)]
mod tests {
    #![allow(clippy::dbg_macro, clippy::print_stdout)]

    use super::*;

    #[test]
    fn test() {
        use crate::rr::RecordType;
        use std::str::FromStr;

        let rdata = NSEC::new(
            Name::from_str("www.example.com").unwrap(),
            vec![
                RecordType::A,
                RecordType::AAAA,
                RecordType::DS,
                RecordType::RRSIG,
            ],
        );

        let mut bytes = Vec::new();
        let mut encoder: BinEncoder<'_> = BinEncoder::new(&mut bytes);
        assert!(emit(&mut encoder, &rdata).is_ok());
        let bytes = encoder.into_bytes();

        println!("bytes: {:?}", bytes);

        let mut decoder: BinDecoder<'_> = BinDecoder::new(bytes);
        let restrict = Restrict::new(bytes.len() as u16);
        let read_rdata = read(&mut decoder, restrict).expect("Decoding error");
        assert_eq!(rdata, read_rdata);
    }
}