1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
// Copyright 2015-2018 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use std;
use std::io;
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr, SocketAddr};
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};

use futures_util::stream::{Stream, StreamExt};
use futures_util::{future, future::Future, ready, FutureExt, TryFutureExt};
use lazy_static::lazy_static;
use rand;
use rand::distributions::{uniform::Uniform, Distribution};
use socket2::{self, Socket};
use tokio::net::UdpSocket;
use tracing::{debug, trace};

use crate::multicast::MdnsQueryType;
use crate::udp::UdpStream;
use crate::xfer::SerialMessage;
use crate::BufDnsStreamHandle;

pub(crate) const MDNS_PORT: u16 = 5353;
lazy_static! {
    /// mDNS ipv4 address https://www.iana.org/assignments/multicast-addresses/multicast-addresses.xhtml
    pub static ref MDNS_IPV4: SocketAddr = SocketAddr::new(Ipv4Addr::new(224,0,0,251).into(), MDNS_PORT);
    /// link-local mDNS ipv6 address https://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml
    pub static ref MDNS_IPV6: SocketAddr = SocketAddr::new(Ipv6Addr::new(0xFF02, 0, 0, 0, 0, 0, 0, 0x00FB).into(), MDNS_PORT);
}

/// A UDP stream of DNS binary packets
#[must_use = "futures do nothing unless polled"]
pub struct MdnsStream {
    /// Multicast address used for mDNS queries
    multicast_addr: SocketAddr,
    /// This is used for sending and (directly) receiving messages
    datagram: Option<UdpStream<UdpSocket>>,
    // FIXME: like UdpStream, this Arc is unnecessary, only needed for temp async/await capture below
    /// In one-shot multicast, this will not join the multicast group
    multicast: Option<Arc<UdpSocket>>,
    /// Receiving portion of the MdnsStream
    rcving_mcast: Option<Pin<Box<dyn Future<Output = io::Result<SerialMessage>> + Send>>>,
}

impl MdnsStream {
    /// associates the socket to the well-known ipv4 multicast address
    pub fn new_ipv4(
        mdns_query_type: MdnsQueryType,
        packet_ttl: Option<u32>,
        ipv4_if: Option<Ipv4Addr>,
    ) -> (
        Box<dyn Future<Output = Result<Self, io::Error>> + Send + Unpin>,
        BufDnsStreamHandle,
    ) {
        Self::new(*MDNS_IPV4, mdns_query_type, packet_ttl, ipv4_if, None)
    }

    /// associates the socket to the well-known ipv6 multicast address
    pub fn new_ipv6(
        mdns_query_type: MdnsQueryType,
        packet_ttl: Option<u32>,
        ipv6_if: Option<u32>,
    ) -> (
        Box<dyn Future<Output = Result<Self, io::Error>> + Send + Unpin>,
        BufDnsStreamHandle,
    ) {
        Self::new(*MDNS_IPV6, mdns_query_type, packet_ttl, None, ipv6_if)
    }

    /// Returns the address of the multicast network in use
    pub fn multicast_addr(&self) -> SocketAddr {
        self.multicast_addr
    }

    /// This method is available for specifying a custom Multicast address to use.
    ///
    /// In general this operates nearly identically to UDP, except that it automatically joins
    ///  the default multicast DNS addresses. See <https://tools.ietf.org/html/rfc6762#section-5>
    ///  for details.
    ///
    /// When sending ipv6 multicast packets, the interface being used is required,
    ///  this will panic if the interface is not specified for all MdnsQueryType except Passive
    ///  (which does not allow sending data)
    ///
    /// # Arguments
    ///
    /// * `multicast_addr` - address to use for multicast requests
    /// * `mdns_query_type` - true if the querier using this socket will only perform standard DNS queries over multicast.
    /// * `ipv4_if` - Address to bind to for sending multicast packets, defaults to `0.0.0.0` if not specified (not relevant for ipv6)
    /// * `ipv6_if` - Interface index for the interface to be used when sending ipv6 packets.
    ///
    /// # Return
    ///
    /// a tuple of a Future Stream which will handle sending and receiving messages, and a
    ///  handle which can be used to send messages into the stream.
    pub fn new(
        multicast_addr: SocketAddr,
        mdns_query_type: MdnsQueryType,
        packet_ttl: Option<u32>,
        ipv4_if: Option<Ipv4Addr>,
        ipv6_if: Option<u32>,
    ) -> (
        Box<dyn Future<Output = Result<Self, io::Error>> + Send + Unpin>,
        BufDnsStreamHandle,
    ) {
        let (message_sender, outbound_messages) = BufDnsStreamHandle::new(multicast_addr);
        let multicast_socket = match Self::join_multicast(&multicast_addr, mdns_query_type) {
            Ok(socket) => socket,
            Err(err) => return (Box::new(future::err(err)), message_sender),
        };

        // TODO: allow the bind address to be specified...
        // constructs a future for getting the next randomly bound port to a UdpSocket
        let next_socket = Self::next_bound_local_address(
            &multicast_addr,
            mdns_query_type,
            packet_ttl,
            ipv4_if,
            ipv6_if,
        );

        // while 0 is meant to keep the packet on localhost, linux regards this as an error,
        //   while macOS (BSD?) and Windows allow it.
        if let Some(ttl) = packet_ttl {
            assert!(ttl > 0, "TTL must be greater than 0");
        }

        // This set of futures collapses the next udp socket into a stream which can be used for
        //  sending and receiving udp packets.
        let stream = {
            Box::new(
                next_socket
                    .map(move |socket| match socket {
                        Ok(Some(socket)) => Ok(Some(UdpSocket::from_std(socket)?)),
                        Ok(None) => Ok(None),
                        Err(err) => Err(err),
                    })
                    .map_ok(move |socket: Option<_>| {
                        let datagram: Option<_> =
                            socket.map(|socket| UdpStream::from_parts(socket, outbound_messages));
                        let multicast: Option<_> = multicast_socket.map(|multicast_socket| {
                            Arc::new(UdpSocket::from_std(multicast_socket).expect("bad handle?"))
                        });

                        Self {
                            multicast_addr,
                            datagram,
                            multicast,
                            rcving_mcast: None,
                        }
                    }),
            )
        };

        (stream, message_sender)
    }

    /// On Windows, unlike all Unix variants, it is improper to bind to the multicast address
    ///
    /// see https://msdn.microsoft.com/en-us/library/windows/desktop/ms737550(v=vs.85).aspx
    #[cfg(windows)]
    #[cfg_attr(docsrs, doc(cfg(windows)))]
    fn bind_multicast(socket: &Socket, multicast_addr: &SocketAddr) -> io::Result<()> {
        let multicast_addr = match *multicast_addr {
            SocketAddr::V4(addr) => SocketAddr::new(Ipv4Addr::new(0, 0, 0, 0).into(), addr.port()),
            SocketAddr::V6(addr) => {
                SocketAddr::new(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).into(), addr.port())
            }
        };
        socket.bind(&socket2::SockAddr::from(multicast_addr))
    }

    /// On unixes we bind to the multicast address, which causes multicast packets to be filtered
    #[cfg(unix)]
    #[cfg_attr(docsrs, doc(cfg(unix)))]
    fn bind_multicast(socket: &Socket, multicast_addr: &SocketAddr) -> io::Result<()> {
        socket.bind(&socket2::SockAddr::from(*multicast_addr))
    }

    /// Returns a socket joined to the multicast address
    fn join_multicast(
        multicast_addr: &SocketAddr,
        mdns_query_type: MdnsQueryType,
    ) -> Result<Option<std::net::UdpSocket>, io::Error> {
        if !mdns_query_type.join_multicast() {
            return Ok(None);
        }

        let ip_addr = multicast_addr.ip();
        // it's an error to not use a proper mDNS address
        if !ip_addr.is_multicast() {
            return Err(io::Error::new(
                io::ErrorKind::Other,
                format!("expected multicast address for binding: {}", ip_addr),
            ));
        }

        // binding the UdpSocket to the multicast address tells the OS to filter all packets on this socket to just this
        //   multicast address
        // TODO: allow the binding interface to be specified
        let socket = match ip_addr {
            IpAddr::V4(ref mdns_v4) => {
                let socket = Socket::new(
                    socket2::Domain::IPV4,
                    socket2::Type::DGRAM,
                    Some(socket2::Protocol::UDP),
                )?;
                socket.join_multicast_v4(mdns_v4, &Ipv4Addr::new(0, 0, 0, 0))?;
                socket
            }
            IpAddr::V6(ref mdns_v6) => {
                let socket = Socket::new(
                    socket2::Domain::IPV6,
                    socket2::Type::DGRAM,
                    Some(socket2::Protocol::UDP),
                )?;

                socket.set_only_v6(true)?;
                socket.join_multicast_v6(mdns_v6, 0)?;
                socket
            }
        };

        socket.set_nonblocking(true)?;
        socket.set_reuse_address(true)?;
        #[cfg(unix)] // this is currently restricted to Unix's in socket2
        socket.set_reuse_port(true)?;
        Self::bind_multicast(&socket, multicast_addr)?;

        debug!("joined {}", multicast_addr);
        Ok(Some(std::net::UdpSocket::from(socket)))
    }

    /// Creates a future for randomly binding to a local socket address for client connections.
    fn next_bound_local_address(
        multicast_addr: &SocketAddr,
        mdns_query_type: MdnsQueryType,
        packet_ttl: Option<u32>,
        ipv4_if: Option<Ipv4Addr>,
        ipv6_if: Option<u32>,
    ) -> NextRandomUdpSocket {
        let bind_address: IpAddr = match *multicast_addr {
            SocketAddr::V4(..) => IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)),
            SocketAddr::V6(..) => IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)),
        };

        NextRandomUdpSocket {
            bind_address,
            mdns_query_type,
            packet_ttl,
            ipv4_if,
            ipv6_if,
        }
    }
}

impl Stream for MdnsStream {
    type Item = io::Result<SerialMessage>;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        assert!(self.datagram.is_some() || self.multicast.is_some());

        // we poll the datagram socket first, if available, since it's a direct response or direct request
        if let Some(ref mut datagram) = self.as_mut().datagram {
            match datagram.poll_next_unpin(cx) {
                Poll::Ready(ready) => return Poll::Ready(ready),
                Poll::Pending => (), // drop through
            }
        }

        loop {
            let msg = if let Some(ref mut receiving) = self.rcving_mcast {
                // TODO: should we drop this packet if it's not from the same src as dest?
                let msg = ready!(receiving.as_mut().poll_unpin(cx))?;

                Some(Poll::Ready(Some(Ok(msg))))
            } else {
                None
            };

            self.rcving_mcast = None;

            if let Some(msg) = msg {
                return msg;
            }

            // let socket = Arc::clone(socket);
            if let Some(ref socket) = self.multicast {
                let socket = Arc::clone(socket);
                let receive_future = async {
                    let socket = socket;
                    let mut buf = [0u8; 2048];
                    let (len, src) = socket.recv_from(&mut buf).await?;

                    Ok(SerialMessage::new(
                        buf.iter().take(len).cloned().collect(),
                        src,
                    ))
                };

                self.rcving_mcast = Some(Box::pin(receive_future.boxed()));
            }
        }
    }
}

#[must_use = "futures do nothing unless polled"]
struct NextRandomUdpSocket {
    bind_address: IpAddr,
    mdns_query_type: MdnsQueryType,
    packet_ttl: Option<u32>,
    ipv4_if: Option<Ipv4Addr>,
    ipv6_if: Option<u32>,
}

impl NextRandomUdpSocket {
    fn prepare_sender(&self, socket: std::net::UdpSocket) -> io::Result<std::net::UdpSocket> {
        let addr = socket.local_addr()?;
        debug!("preparing sender on: {}", addr);

        let socket = Socket::from(socket);

        // TODO: TTL doesn't work on ipv6
        match addr {
            SocketAddr::V4(..) => {
                socket.set_multicast_loop_v4(true)?;
                socket.set_multicast_if_v4(
                    &self.ipv4_if.unwrap_or_else(|| Ipv4Addr::new(0, 0, 0, 0)),
                )?;
                if let Some(ttl) = self.packet_ttl {
                    socket.set_ttl(ttl)?;
                    socket.set_multicast_ttl_v4(ttl)?;
                }
            }
            SocketAddr::V6(..) => {
                let ipv6_if = self.ipv6_if.unwrap_or_else(|| {
                    panic!("for ipv6 multicasting the interface must be specified")
                });

                socket.set_multicast_loop_v6(true)?;
                socket.set_multicast_if_v6(ipv6_if)?;
                if let Some(ttl) = self.packet_ttl {
                    socket.set_unicast_hops_v6(ttl)?;
                    socket.set_multicast_hops_v6(ttl)?;
                }
            }
        }

        Ok(std::net::UdpSocket::from(socket))
    }
}

impl Future for NextRandomUdpSocket {
    // TODO: clean this up, the RandomUdpSocket shouldnt' care about the query type
    type Output = io::Result<Option<std::net::UdpSocket>>;

    /// polls until there is an available next random UDP port.
    ///
    /// if there is no port available after 10 attempts, returns NotReady
    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        // non-one-shot, i.e. continuous, always use one of the well-known mdns ports and bind to the multicast addr
        if !self.mdns_query_type.sender() {
            debug!("skipping sending stream");
            Poll::Ready(Ok(None))
        } else if self.mdns_query_type.bind_on_5353() {
            let addr = SocketAddr::new(self.bind_address, MDNS_PORT);
            debug!("binding sending stream to {}", addr);
            let socket = std::net::UdpSocket::bind(&addr)?;
            let socket = self.prepare_sender(socket)?;

            Poll::Ready(Ok(Some(socket)))
        } else {
            // TODO: this is basically identical to UdpStream from here... share some code? (except for the port restriction)
            // one-shot queries look very similar to UDP socket, but can't listen on 5353

            // Per RFC 6056 Section 2.1:
            //
            //    The dynamic port range defined by IANA consists of the 49152-65535
            //    range, and is meant for the selection of ephemeral ports.
            let rand_port_range = Uniform::new_inclusive(49152_u16, u16::max_value());
            let mut rand = rand::thread_rng();

            for attempt in 0..10 {
                let port = rand_port_range.sample(&mut rand);

                // see one_shot usage info: https://tools.ietf.org/html/rfc6762#section-5
                //  the MDNS_PORT is used to signal to remote processes that this is capable of receiving multicast packets
                //  i.e. is joined to the multicast address.
                if port == MDNS_PORT {
                    trace!("unlucky, got MDNS_PORT");
                    continue;
                }

                let addr = SocketAddr::new(self.bind_address, port);
                debug!("binding sending stream to {}", addr);

                match std::net::UdpSocket::bind(&addr) {
                    Ok(socket) => {
                        let socket = self.prepare_sender(socket)?;
                        return Poll::Ready(Ok(Some(socket)));
                    }
                    Err(err) => debug!("unable to bind port, attempt: {}: {}", attempt, err),
                }
            }

            debug!("could not get next random port, delaying");

            // TODO: this replaced a task::current().notify, is it correct?
            cx.waker().wake_by_ref();
            Poll::Pending
        }
    }
}

#[cfg(test)]
pub(crate) mod tests {
    #![allow(clippy::dbg_macro, clippy::print_stdout)]

    use super::*;
    use crate::xfer::dns_handle::DnsStreamHandle;
    use futures_util::future::Either;
    use tokio::runtime;

    // TODO: is there a better way?
    const BASE_TEST_PORT: u16 = 5379;

    lazy_static! {
        /// 250 appears to be unused/unregistered
        static ref TEST_MDNS_IPV4: IpAddr = Ipv4Addr::new(224,0,0,250).into();
        /// FA appears to be unused/unregistered
        static ref TEST_MDNS_IPV6: IpAddr = Ipv6Addr::new(0xFF02, 0, 0, 0, 0, 0, 0, 0x00FA).into();
    }

    // one_shot tests are basically clones from the udp tests
    #[test]
    fn test_next_random_socket() {
        // use env_logger;
        // env_logger::init();

        let io_loop = runtime::Runtime::new().unwrap();
        let (stream, _) = MdnsStream::new(
            SocketAddr::new(*TEST_MDNS_IPV4, BASE_TEST_PORT),
            MdnsQueryType::OneShot,
            Some(1),
            None,
            None,
        );
        let result = io_loop.block_on(stream);

        if let Err(error) = result {
            println!("Random address error: {:#?}", error);
            panic!("failed to get next random address");
        }
    }

    // FIXME: reenable after breakage in async/await
    #[ignore]
    #[test]
    fn test_one_shot_mdns_ipv4() {
        one_shot_mdns_test(SocketAddr::new(*TEST_MDNS_IPV4, BASE_TEST_PORT + 1));
    }

    #[test]
    #[ignore]
    fn test_one_shot_mdns_ipv6() {
        one_shot_mdns_test(SocketAddr::new(*TEST_MDNS_IPV6, BASE_TEST_PORT + 2));
    }

    //   as there are probably unexpected responses coming on the standard addresses
    fn one_shot_mdns_test(mdns_addr: SocketAddr) {
        use std::time::Duration;

        let client_done = std::sync::Arc::new(std::sync::atomic::AtomicBool::new(false));

        let test_bytes: &'static [u8; 8] = b"DEADBEEF";
        let send_recv_times = 10;
        let client_done_clone = client_done.clone();

        // an in and out server
        let server_handle = std::thread::Builder::new()
            .name("test_one_shot_mdns:server".to_string())
            .spawn(move || {
                let server_loop = runtime::Runtime::new().unwrap();
                let mut timeout = future::lazy(|_| tokio::time::sleep(Duration::from_millis(100)))
                    .flatten()
                    .boxed();

                // TTLs are 0 so that multicast test packets never leave the test host...
                // FIXME: this is hardcoded to index 5 for ipv6, which isn't going to be correct in most cases...
                let (server_stream_future, mut server_sender) = MdnsStream::new(
                    mdns_addr,
                    MdnsQueryType::OneShotJoin,
                    Some(1),
                    None,
                    Some(5),
                );

                // For one-shot responses we are competing with a system mDNS responder, we will respond from a different port...
                let mut server_stream = server_loop
                    .block_on(server_stream_future)
                    .expect("could not create mDNS listener")
                    .into_future();

                for _ in 0..=send_recv_times {
                    if client_done_clone.load(std::sync::atomic::Ordering::Relaxed) {
                        return;
                    }
                    // wait for some bytes...
                    match server_loop.block_on(
                        future::lazy(|_| future::select(server_stream, timeout)).flatten(),
                    ) {
                        Either::Left((buffer_and_addr_stream_tmp, timeout_tmp)) => {
                            let (buffer_and_addr, stream_tmp): (
                                Option<Result<SerialMessage, io::Error>>,
                                MdnsStream,
                            ) = buffer_and_addr_stream_tmp;

                            server_stream = stream_tmp.into_future();
                            timeout = timeout_tmp;
                            let (buffer, addr) = buffer_and_addr
                                .expect("no msg received")
                                .expect("error receiving msg")
                                .into_parts();

                            assert_eq!(&buffer, test_bytes);
                            //println!("server got data! {}", addr);

                            // bounce them right back...
                            server_sender
                                .send(SerialMessage::new(test_bytes.to_vec(), addr))
                                .expect("could not send to client");
                        }
                        Either::Right(((), buffer_and_addr_stream_tmp)) => {
                            server_stream = buffer_and_addr_stream_tmp;
                            timeout =
                                future::lazy(|_| tokio::time::sleep(Duration::from_millis(100)))
                                    .flatten()
                                    .boxed();
                        }
                    }

                    // let the server turn for a bit... send the message
                    server_loop.block_on(tokio::time::sleep(Duration::from_millis(100)));
                }
            })
            .unwrap();

        // setup the client, which is going to run on the testing thread...
        let io_loop = runtime::Runtime::new().unwrap();

        // FIXME: this is hardcoded to index 5 for ipv6, which isn't going to be correct in most cases...
        let (stream, mut sender) =
            MdnsStream::new(mdns_addr, MdnsQueryType::OneShot, Some(1), None, Some(5));
        let mut stream = io_loop.block_on(stream).ok().unwrap().into_future();
        let mut timeout = future::lazy(|_| tokio::time::sleep(Duration::from_millis(100)))
            .flatten()
            .boxed();
        let mut successes = 0;

        for _ in 0..send_recv_times {
            // test once
            sender
                .send(SerialMessage::new(test_bytes.to_vec(), mdns_addr))
                .unwrap();

            println!("client sending data!");

            // TODO: this lazy isn't needed is it?
            match io_loop.block_on(future::lazy(|_| future::select(stream, timeout)).flatten()) {
                Either::Left((buffer_and_addr_stream_tmp, timeout_tmp)) => {
                    let (buffer_and_addr, stream_tmp) = buffer_and_addr_stream_tmp;
                    stream = stream_tmp.into_future();
                    timeout = timeout_tmp;

                    let (buffer, _addr) = buffer_and_addr
                        .expect("no msg received")
                        .expect("error receiving msg")
                        .into_parts();
                    println!("client got data!");

                    assert_eq!(&buffer, test_bytes);
                    successes += 1;
                }
                Either::Right(((), buffer_and_addr_stream_tmp)) => {
                    stream = buffer_and_addr_stream_tmp;
                    timeout = future::lazy(|_| tokio::time::sleep(Duration::from_millis(100)))
                        .flatten()
                        .boxed();
                }
            }
        }

        client_done.store(true, std::sync::atomic::Ordering::Relaxed);
        println!("successes: {}", successes);
        assert!(successes >= 1);
        server_handle.join().expect("server thread failed");
    }

    // FIXME: reenable after breakage in async/await
    #[ignore]
    #[test]
    fn test_passive_mdns() {
        passive_mdns_test(
            MdnsQueryType::Passive,
            SocketAddr::new(*TEST_MDNS_IPV4, BASE_TEST_PORT + 3),
        )
    }

    // FIXME: reenable after breakage in async/await
    #[ignore]
    #[test]
    fn test_oneshot_join_mdns() {
        passive_mdns_test(
            MdnsQueryType::OneShotJoin,
            SocketAddr::new(*TEST_MDNS_IPV4, BASE_TEST_PORT + 4),
        )
    }

    //   as there are probably unexpected responses coming on the standard addresses
    fn passive_mdns_test(mdns_query_type: MdnsQueryType, mdns_addr: SocketAddr) {
        use std::time::Duration;

        let server_got_packet = std::sync::Arc::new(std::sync::atomic::AtomicBool::new(false));

        let test_bytes: &'static [u8; 8] = b"DEADBEEF";
        let send_recv_times = 10;
        let server_got_packet_clone = server_got_packet.clone();

        // an in and out server
        let _server_handle = std::thread::Builder::new()
            .name("test_one_shot_mdns:server".to_string())
            .spawn(move || {
                let io_loop = runtime::Runtime::new().unwrap();
                let mut timeout = future::lazy(|_| tokio::time::sleep(Duration::from_millis(100)))
                    .flatten()
                    .boxed();

                // TTLs are 0 so that multicast test packets never leave the test host...
                // FIXME: this is hardcoded to index 5 for ipv6, which isn't going to be correct in most cases...
                let (server_stream_future, _server_sender) =
                    MdnsStream::new(mdns_addr, mdns_query_type, Some(1), None, Some(5));

                // For one-shot responses we are competing with a system mDNS responder, we will respond from a different port...
                let mut server_stream = io_loop
                    .block_on(server_stream_future)
                    .expect("could not create mDNS listener")
                    .into_future();

                for _ in 0..=send_recv_times {
                    // wait for some bytes...
                    match io_loop.block_on(
                        future::lazy(|_| future::select(server_stream, timeout)).flatten(),
                    ) {
                        Either::Left((_buffer_and_addr_stream_tmp, _timeout_tmp)) => {
                            // let (buffer_and_addr, stream_tmp) = buffer_and_addr_stream_tmp;

                            // server_stream = stream_tmp.into_future();
                            // timeout = timeout_tmp;
                            // let (buffer, addr) = buffer_and_addr.expect("no buffer received");

                            // assert_eq!(&buffer, test_bytes);
                            // println!("server got data! {}", addr);

                            server_got_packet_clone
                                .store(true, std::sync::atomic::Ordering::Relaxed);
                            return;
                        }
                        Either::Right(((), buffer_and_addr_stream_tmp)) => {
                            server_stream = buffer_and_addr_stream_tmp;
                            timeout =
                                future::lazy(|_| tokio::time::sleep(Duration::from_millis(100)))
                                    .flatten()
                                    .boxed();
                        }
                    }

                    // let the server turn for a bit... send the message
                    io_loop.block_on(tokio::time::sleep(Duration::from_millis(100)));
                }
            })
            .unwrap();

        // setup the client, which is going to run on the testing thread...
        let io_loop = runtime::Runtime::new().unwrap();
        // FIXME: this is hardcoded to index 5 for ipv6, which isn't going to be correct in most cases...
        let (stream, mut sender) =
            MdnsStream::new(mdns_addr, MdnsQueryType::OneShot, Some(1), None, Some(5));
        let mut stream = io_loop.block_on(stream).ok().unwrap().into_future();
        let mut timeout = future::lazy(|_| tokio::time::sleep(Duration::from_millis(100)))
            .flatten()
            .boxed();

        for _ in 0..send_recv_times {
            // test once
            sender
                .send(SerialMessage::new(test_bytes.to_vec(), mdns_addr))
                .unwrap();

            println!("client sending data!");

            // TODO: this lazy is probably unnecessary?
            let run_result =
                io_loop.block_on(future::lazy(|_| future::select(stream, timeout)).flatten());

            if server_got_packet.load(std::sync::atomic::Ordering::Relaxed) {
                return;
            }

            match run_result {
                Either::Left((buffer_and_addr_stream_tmp, timeout_tmp)) => {
                    let (_buffer_and_addr, stream_tmp) = buffer_and_addr_stream_tmp;
                    stream = stream_tmp.into_future();
                    timeout = timeout_tmp;
                }
                Either::Right(((), buffer_and_addr_stream_tmp)) => {
                    stream = buffer_and_addr_stream_tmp;
                    timeout = future::lazy(|_| tokio::time::sleep(Duration::from_millis(100)))
                        .flatten()
                        .boxed();
                }
            }
        }

        panic!("server never got packet.");
    }
}