1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
// Copyright 2015-2016 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
//! Base TlsStream
use std::io;
use std::net::SocketAddr;
use std::pin::Pin;
use std::{future::Future, marker::PhantomData};
use futures_util::TryFutureExt;
use native_tls::Protocol::Tlsv12;
use native_tls::{Certificate, Identity, TlsConnector};
use tokio_native_tls::{TlsConnector as TokioTlsConnector, TlsStream as TokioTlsStream};
use crate::iocompat::{AsyncIoStdAsTokio, AsyncIoTokioAsStd};
use crate::tcp::TcpStream;
use crate::tcp::{Connect, DnsTcpStream};
use crate::xfer::{BufDnsStreamHandle, StreamReceiver};
/// A TlsStream counterpart to the TcpStream which embeds a secure TlsStream
pub type TlsStream<S> = TcpStream<AsyncIoTokioAsStd<TokioTlsStream<AsyncIoStdAsTokio<S>>>>;
fn tls_new(certs: Vec<Certificate>, pkcs12: Option<Identity>) -> io::Result<TlsConnector> {
let mut builder = TlsConnector::builder();
builder.min_protocol_version(Some(Tlsv12));
for cert in certs {
builder.add_root_certificate(cert);
}
if let Some(pkcs12) = pkcs12 {
builder.identity(pkcs12);
}
builder
.build()
.map_err(|e| io::Error::new(io::ErrorKind::ConnectionRefused, format!("tls error: {e}")))
}
/// Initializes a TlsStream with an existing tokio_tls::TlsStream.
///
/// This is intended for use with a TlsListener and Incoming connections
pub fn tls_from_stream<S: DnsTcpStream>(
stream: TokioTlsStream<AsyncIoStdAsTokio<S>>,
peer_addr: SocketAddr,
) -> (TlsStream<S>, BufDnsStreamHandle) {
let (message_sender, outbound_messages) = BufDnsStreamHandle::new(peer_addr);
let stream = TcpStream::from_stream_with_receiver(
AsyncIoTokioAsStd(stream),
peer_addr,
outbound_messages,
);
(stream, message_sender)
}
/// A builder for the TlsStream
#[derive(Default)]
pub struct TlsStreamBuilder<S> {
ca_chain: Vec<Certificate>,
identity: Option<Identity>,
bind_addr: Option<SocketAddr>,
marker: PhantomData<S>,
}
impl<S: DnsTcpStream> TlsStreamBuilder<S> {
/// Constructs a new TlsStreamBuilder
pub fn new() -> Self {
Self {
ca_chain: vec![],
identity: None,
bind_addr: None,
marker: PhantomData,
}
}
/// Add a custom trusted peer certificate or certificate authority.
///
/// If this is the 'client' then the 'server' must have it associated as it's `identity`, or have had the `identity` signed by this certificate.
pub fn add_ca(&mut self, ca: Certificate) {
self.ca_chain.push(ca);
}
/// Client side identity for client auth in TLS (aka mutual TLS auth)
#[cfg(feature = "mtls")]
pub fn identity(&mut self, identity: Identity) {
self.identity = Some(identity);
}
/// Sets the address to connect from.
pub fn bind_addr(&mut self, bind_addr: SocketAddr) {
self.bind_addr = Some(bind_addr);
}
/// Similar to `build`, but with customized stream future.
///
/// # Arguments
///
/// * `name_server` - IP and Port for the remote DNS resolver
/// * `dns_name` - The DNS name, Public Key Info (SPKI) name, as associated to a certificate
#[allow(clippy::type_complexity)]
pub fn build_with_future<F>(
self,
future: F,
name_server: SocketAddr,
dns_name: String,
) -> (
// TODO: change to impl?
Pin<Box<dyn Future<Output = Result<TlsStream<S>, io::Error>> + Send>>,
BufDnsStreamHandle,
)
where
S: DnsTcpStream,
F: Future<Output = std::io::Result<S>> + Send + Unpin + 'static,
{
let (message_sender, outbound_messages) = BufDnsStreamHandle::new(name_server);
let stream = self.inner_build(future, name_server, dns_name, outbound_messages);
(Box::pin(stream), message_sender)
}
async fn inner_build<F>(
self,
future: F,
name_server: SocketAddr,
dns_name: String,
outbound_messages: StreamReceiver,
) -> Result<TlsStream<S>, io::Error>
where
F: Future<Output = std::io::Result<S>> + Send + Unpin + 'static,
{
use crate::native_tls::tls_stream;
let tcp_stream = future.await;
let ca_chain = self.ca_chain.clone();
let identity = self.identity;
// TODO: for some reason the above wouldn't accept a ?
let tcp_stream = match tcp_stream {
Ok(tcp_stream) => AsyncIoStdAsTokio(tcp_stream),
Err(err) => return Err(err),
};
// This set of futures collapses the next tcp socket into a stream which can be used for
// sending and receiving tcp packets.
let tls_connector = tls_stream::tls_new(ca_chain, identity)
.map(TokioTlsConnector::from)
.map_err(|e| {
io::Error::new(io::ErrorKind::ConnectionRefused, format!("tls error: {e}"))
})?;
let tls_connected = tls_connector
.connect(&dns_name, tcp_stream)
.map_err(|e| {
io::Error::new(io::ErrorKind::ConnectionRefused, format!("tls error: {e}"))
})
.await?;
Ok(TcpStream::from_stream_with_receiver(
AsyncIoTokioAsStd(tls_connected),
name_server,
outbound_messages,
))
}
}
impl<S: Connect> TlsStreamBuilder<S> {
/// Creates a new TlsStream to the specified name_server
///
/// [RFC 7858](https://tools.ietf.org/html/rfc7858), DNS over TLS, May 2016
///
/// ```text
/// 3.2. TLS Handshake and Authentication
///
/// Once the DNS client succeeds in connecting via TCP on the well-known
/// port for DNS over TLS, it proceeds with the TLS handshake [RFC5246],
/// following the best practices specified in [BCP195].
///
/// The client will then authenticate the server, if required. This
/// document does not propose new ideas for authentication. Depending on
/// the privacy profile in use (Section 4), the DNS client may choose not
/// to require authentication of the server, or it may make use of a
/// trusted Subject Public Key Info (SPKI) Fingerprint pin set.
///
/// After TLS negotiation completes, the connection will be encrypted and
/// is now protected from eavesdropping.
/// ```
///
/// # Arguments
///
/// * `name_server` - IP and Port for the remote DNS resolver
/// * `dns_name` - The DNS name, Public Key Info (SPKI) name, as associated to a certificate
#[allow(clippy::type_complexity)]
pub fn build(
self,
name_server: SocketAddr,
dns_name: String,
) -> (
// TODO: change to impl?
Pin<Box<dyn Future<Output = Result<TlsStream<S>, io::Error>> + Send>>,
BufDnsStreamHandle,
) {
let (message_sender, outbound_messages) = BufDnsStreamHandle::new(name_server);
let conn = S::connect_with_bind(name_server, self.bind_addr);
let stream = self.inner_build(conn, name_server, dns_name, outbound_messages);
(Box::pin(stream), message_sender)
}
}