1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/*
* Copyright (C) 2015 Benjamin Fry <benjaminfry@me.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
use byteorder::{ByteOrder, NetworkEndian};
use error::{ProtoError, ProtoErrorKind, ProtoResult};
use serialize::binary::Restrict;
/// This is non-destructive to the inner buffer, b/c for pointer types we need to perform a reverse
/// seek to lookup names
///
/// A note on serialization, there was a thought to have this implement the Serde deserializer,
/// but given that this is such a small subset of all the serialization which that performs
/// this is a simpler implementation without the cruft, at least for serializing to/from the
/// binary DNS protocols.
pub struct BinDecoder<'a> {
buffer: &'a [u8],
index: usize,
}
impl<'a> BinDecoder<'a> {
/// Creates a new BinDecoder
///
/// # Arguments
///
/// * `buffer` - buffer from which all data will be read
pub fn new(buffer: &'a [u8]) -> Self {
BinDecoder {
buffer: buffer,
index: 0,
}
}
/// Pop one byte from the buffer
pub fn pop(&mut self) -> ProtoResult<Restrict<u8>> {
if self.index < self.buffer.len() {
let byte = self.buffer[self.index];
self.index += 1;
Ok(Restrict::new(byte))
} else {
Err("unexpected end of input reached".into())
}
}
/// Returns the number of bytes in the buffer
///
/// ```
/// use trust_dns_proto::serialize::binary::BinDecoder;
///
/// let deadbeef = b"deadbeef";
/// let mut decoder = BinDecoder::new(deadbeef);
/// assert_eq!(decoder.len(), 8);
/// decoder.read_slice(7).unwrap();
/// assert_eq!(decoder.len(), 1);
/// ```
pub fn len(&self) -> usize {
self.buffer.len().saturating_sub(self.index)
}
/// Returns `true` if the buffer is empty
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Peed one byte forward, without moving the current index forward
pub fn peek(&self) -> Option<Restrict<u8>> {
if self.index < self.buffer.len() {
Some(Restrict::new(self.buffer[self.index]))
} else {
None
}
}
/// Returns the current index in the buffer
pub fn index(&self) -> usize {
self.index
}
/// This is a pretty efficient clone, as the buffer is never cloned, and only the index is set
/// to the value passed in
pub fn clone(&self, index_at: u16) -> BinDecoder<'a> {
BinDecoder {
buffer: self.buffer,
index: index_at as usize,
}
}
/// Reads a String from the buffer
///
/// ```text
/// <character-string> is a single
/// length octet followed by that number of characters. <character-string>
/// is treated as binary information, and can be up to 256 characters in
/// length (including the length octet).
/// ```
///
/// # Returns
///
/// A String version of the character data
pub fn read_character_data(&mut self) -> ProtoResult<Restrict<&[u8]>> {
self.read_character_data_max(None)
}
/// Reads to a maximum length of data, returns an error if this is exceeded
pub fn read_character_data_max(
&mut self,
max_len: Option<usize>,
) -> ProtoResult<Restrict<&[u8]>> {
let length = self.pop()?.map(|u| u as usize).verify_unwrap(|length| {
if let Some(max_len) = max_len {
*length <= max_len
} else {
true
}
}).map_err(|length| ProtoError::from(ProtoErrorKind::CharacterDataTooLong {
max: max_len.unwrap_or_default(),
len: length,
}))?;
self.read_slice(length)
}
/// Reads a Vec out of the buffer
///
/// # Arguments
///
/// * `len` - number of bytes to read from the buffer
///
/// # Returns
///
/// The Vec of the specified length, otherwise an error
pub fn read_vec(&mut self, len: usize) -> ProtoResult<Restrict<Vec<u8>>> {
self.read_slice(len).map(|s| s.map(|s| s.to_owned()))
}
/// Reads a slice out of the buffer, without allocating
///
/// # Arguments
///
/// * `len` - number of bytes to read from the buffer
///
/// # Returns
///
/// The slice of the specified length, otherwise an error
pub fn read_slice(&mut self, len: usize) -> ProtoResult<Restrict<&'a [u8]>> {
let end = self
.index
.checked_add(len)
.ok_or_else(|| ProtoError::from("invalid length for slice"))?;
if end > self.buffer.len() {
return Err("buffer exhausted".into());
}
let slice: &'a [u8] = &self.buffer[self.index..end];
self.index += len;
Ok(Restrict::new(slice))
}
/// Reads a slice from a previous index to the current
pub fn slice_from(&self, index: usize) -> ProtoResult<&'a [u8]> {
if index > self.index {
return Err("index antecedes upper bound".into());
}
Ok(&self.buffer[index..self.index])
}
/// Reads a byte from the buffer, equivalent to `Self::pop()`
pub fn read_u8(&mut self) -> ProtoResult<Restrict<u8>> {
self.pop()
}
/// Reads the next 2 bytes into u16
///
/// This performs a byte-by-byte manipulation, there
/// which means endianness is implicitly handled (i.e. no network to little endian (intel), issues)
///
/// # Return
///
/// Return the u16 from the buffer
pub fn read_u16(&mut self) -> ProtoResult<Restrict<u16>> {
Ok(self.read_slice(2)?.map(|s| NetworkEndian::read_u16(s)))
}
/// Reads the next four bytes into i32.
///
/// This performs a byte-by-byte manipulation, there
/// which means endianness is implicitly handled (i.e. no network to little endian (intel), issues)
///
/// # Return
///
/// Return the i32 from the buffer
pub fn read_i32(&mut self) -> ProtoResult<Restrict<i32>> {
Ok(self.read_slice(4)?.map(|s| NetworkEndian::read_i32(s)))
}
/// Reads the next four bytes into u32.
///
/// This performs a byte-by-byte manipulation, there
/// which means endianness is implicitly handled (i.e. no network to little endian (intel), issues)
///
/// # Return
///
/// Return the u32 from the buffer
pub fn read_u32(&mut self) -> ProtoResult<Restrict<u32>> {
Ok(self.read_slice(4)?.map(|s| NetworkEndian::read_u32(s)))
}
}
#[cfg(tests)]
mod tests {
use super::*;
#[test]
fn test_read_slice() {
let deadbeef = b"deadbeef";
let mut decoder = BinDecoder::new(deadbeef);
let read = decoder.read_slice(4).expect("failed to read dead");
assert_eq!(read, "dead");
let read = decoder.read_slice(2).expect("failed to read be");
assert_eq!(read, "be");
let read = decoder.read_slice(0).expect("failed to read nothing");
assert_eq!(read, "");
// this should fail
assert!(decoder.read_slice(3).is_err());
}
#[test]
fn test_read_slice_from() {
let deadbeef = b"deadbeef";
let mut decoder = BinDecoder::new(deadbeef);
decoder.read_slice_from(4).expect("failed to read dead");
let read = decoder.slice_from(0).expect("failed to get slice");
assert_eq!(read, "dead");
decoder.read_slice(2).expect("failed to read be");
let read = decoder.slice_from(4).expect("failed to get slice");
assert_eq!(read, "be");
decoder.read_slice(0).expect("failed to read nothing");
let read = decoder.slice_from(4).expect("failed to get slice");
assert_eq!(read, "be");
// this should fail
assert!(decoder.slice_from(6).is_err());
assert!(decoder.slice_from(10).is_err());
}
}