1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
/*
 * Copyright (C) 2015-2019 Benjamin Fry <benjaminfry@me.com>
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//! record data enum variants

use std::cmp::Ordering;
#[cfg(test)]
use std::convert::From;
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};

use super::domain::Name;
use super::rdata;
use super::rdata::{CAA, MX, NAPTR, NULL, OPENPGPKEY, OPT, SOA, SRV, SSHFP, TLSA, TXT};
use super::record_type::RecordType;
use crate::error::*;
use crate::serialize::binary::*;

#[cfg(feature = "dnssec")]
use super::dnssec::rdata::DNSSECRData;

/// Record data enum variants
///
/// [RFC 1035](https://tools.ietf.org/html/rfc1035), DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION, November 1987
///
/// ```text
/// 3.3. Standard RRs
///
/// The following RR definitions are expected to occur, at least
/// potentially, in all classes.  In particular, NS, SOA, CNAME, and PTR
/// will be used in all classes, and have the same format in all classes.
/// Because their RDATA format is known, all domain names in the RDATA
/// section of these RRs may be compressed.
///
/// <domain-name> is a domain name represented as a series of labels, and
/// terminated by a label with zero length.  <character-string> is a single
/// length octet followed by that number of characters.  <character-string>
/// is treated as binary information, and can be up to 256 characters in
/// length (including the length octet).
/// ```
#[derive(Debug, EnumAsInner, PartialEq, Clone, Eq)]
pub enum RData {
    /// ```text
    /// -- RFC 1035 -- Domain Implementation and Specification    November 1987
    ///
    /// 3.4. Internet specific RRs
    ///
    /// 3.4.1. A RDATA format
    ///
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///     |                    ADDRESS                    |
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///
    /// where:
    ///
    /// ADDRESS         A 32 bit Internet address.
    ///
    /// Hosts that have multiple Internet addresses will have multiple A
    /// records.
    ///
    /// A records cause no additional section processing.  The RDATA section of
    /// an A line in a master file is an Internet address expressed as four
    /// decimal numbers separated by dots without any imbedded spaces (e.g.,
    /// "10.2.0.52" or "192.0.5.6").
    /// ```
    A(Ipv4Addr),

    /// ```text
    /// -- RFC 1886 -- IPv6 DNS Extensions              December 1995
    ///
    /// 2.2 AAAA data format
    ///
    ///    A 128 bit IPv6 address is encoded in the data portion of an AAAA
    ///    resource record in network byte order (high-order byte first).
    /// ```
    AAAA(Ipv6Addr),

    /// ```text
    /// 2.  The ANAME resource record
    ///
    ///   This document defines the "ANAME" DNS resource record type, with RR
    ///   TYPE value [TBD].
    ///
    /// 2.1.  Presentation and wire format
    ///
    ///   The ANAME presentation format is identical to that of CNAME
    ///   [RFC1033]:
    ///
    ///       owner ttl class ANAME target
    /// ```
    ANAME(Name),

    /// ```text
    /// -- RFC 6844          Certification Authority Authorization     January 2013
    ///
    /// 5.1.  Syntax
    ///
    /// A CAA RR contains a single property entry consisting of a tag-value
    /// pair.  Each tag represents a property of the CAA record.  The value
    /// of a CAA property is that specified in the corresponding value field.
    ///
    /// A domain name MAY have multiple CAA RRs associated with it and a
    /// given property MAY be specified more than once.
    ///
    /// The CAA data field contains one property entry.  A property entry
    /// consists of the following data fields:
    ///
    /// +0-1-2-3-4-5-6-7-|0-1-2-3-4-5-6-7-|
    /// | Flags          | Tag Length = n |
    /// +----------------+----------------+...+---------------+
    /// | Tag char 0     | Tag char 1     |...| Tag char n-1  |
    /// +----------------+----------------+...+---------------+
    /// +----------------+----------------+.....+----------------+
    /// | Value byte 0   | Value byte 1   |.....| Value byte m-1 |
    /// +----------------+----------------+.....+----------------+

    /// Where n is the length specified in the Tag length field and m is the
    /// remaining octets in the Value field (m = d - n - 2) where d is the
    /// length of the RDATA section.
    /// ```
    CAA(CAA),

    /// ```text
    ///   3.3. Standard RRs
    ///
    /// The following RR definitions are expected to occur, at least
    /// potentially, in all classes.  In particular, NS, SOA, CNAME, and PTR
    /// will be used in all classes, and have the same format in all classes.
    /// Because their RDATA format is known, all domain names in the RDATA
    /// section of these RRs may be compressed.
    ///
    /// <domain-name> is a domain name represented as a series of labels, and
    /// terminated by a label with zero length.  <character-string> is a single
    /// length octet followed by that number of characters.  <character-string>
    /// is treated as binary information, and can be up to 256 characters in
    /// length (including the length octet).
    ///
    /// 3.3.1. CNAME RDATA format
    ///
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///     /                     CNAME                     /
    ///     /                                               /
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///
    /// where:
    ///
    /// CNAME           A <domain-name> which specifies the canonical or primary
    ///                 name for the owner.  The owner name is an alias.
    ///
    /// CNAME RRs cause no additional section processing, but name servers may
    /// choose to restart the query at the canonical name in certain cases.  See
    /// the description of name server logic in [RFC-1034] for details.
    /// ```
    CNAME(Name),

    /// ```text
    /// 3.3.9. MX RDATA format
    ///
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///     |                  PREFERENCE                   |
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///     /                   EXCHANGE                    /
    ///     /                                               /
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///
    /// where:
    ///
    /// PREFERENCE      A 16 bit integer which specifies the preference given to
    ///                 this RR among others at the same owner.  Lower values
    ///                 are preferred.
    ///
    /// EXCHANGE        A <domain-name> which specifies a host willing to act as
    ///                 a mail exchange for the owner name.
    ///
    /// MX records cause type A additional section processing for the host
    /// specified by EXCHANGE.  The use of MX RRs is explained in detail in
    /// [RFC-974].
    /// ```
    MX(MX),

    /// [RFC 3403 DDDS DNS Database, October 2002](https://tools.ietf.org/html/rfc3403#section-4)
    ///
    /// ```text
    /// 4.1 Packet Format
    ///
    ///   The packet format of the NAPTR RR is given below.  The DNS type code
    ///   for NAPTR is 35.
    ///
    ///      The packet format for the NAPTR record is as follows
    ///                                       1  1  1  1  1  1
    ///         0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
    ///       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///       |                     ORDER                     |
    ///       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///       |                   PREFERENCE                  |
    ///       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///       /                     FLAGS                     /
    ///       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///       /                   SERVICES                    /
    ///       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///       /                    REGEXP                     /
    ///       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///       /                  REPLACEMENT                  /
    ///       /                                               /
    ///       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///
    ///   <character-string> and <domain-name> as used here are defined in RFC
    ///   1035 [7].
    ///
    ///   ORDER
    ///      A 16-bit unsigned integer specifying the order in which the NAPTR
    ///      records MUST be processed in order to accurately represent the
    ///      ordered list of Rules.  The ordering is from lowest to highest.
    ///      If two records have the same order value then they are considered
    ///      to be the same rule and should be selected based on the
    ///      combination of the Preference values and Services offered.
    ///
    ///   PREFERENCE
    ///      Although it is called "preference" in deference to DNS
    ///      terminology, this field is equivalent to the Priority value in the
    ///      DDDS Algorithm.  It is a 16-bit unsigned integer that specifies
    ///      the order in which NAPTR records with equal Order values SHOULD be
    ///      processed, low numbers being processed before high numbers.  This
    ///      is similar to the preference field in an MX record, and is used so
    ///      domain administrators can direct clients towards more capable
    ///      hosts or lighter weight protocols.  A client MAY look at records
    ///      with higher preference values if it has a good reason to do so
    ///      such as not supporting some protocol or service very well.
    ///
    ///      The important difference between Order and Preference is that once
    ///      a match is found the client MUST NOT consider records with a
    ///      different Order but they MAY process records with the same Order
    ///      but different Preferences.  The only exception to this is noted in
    ///      the second important Note in the DDDS algorithm specification
    ///      concerning allowing clients to use more complex Service
    ///      determination between steps 3 and 4 in the algorithm.  Preference
    ///      is used to give communicate a higher quality of service to rules
    ///      that are considered the same from an authority standpoint but not
    ///      from a simple load balancing standpoint.
    ///
    ///      It is important to note that DNS contains several load balancing
    ///      mechanisms and if load balancing among otherwise equal services
    ///      should be needed then methods such as SRV records or multiple A
    ///      records should be utilized to accomplish load balancing.
    ///
    ///   FLAGS
    ///      A <character-string> containing flags to control aspects of the
    ///      rewriting and interpretation of the fields in the record.  Flags
    ///      are single characters from the set A-Z and 0-9.  The case of the
    ///      alphabetic characters is not significant.  The field can be empty.
    ///
    ///      It is up to the Application specifying how it is using this
    ///      Database to define the Flags in this field.  It must define which
    ///      ones are terminal and which ones are not.
    ///
    ///   SERVICES
    ///      A <character-string> that specifies the Service Parameters
    ///      applicable to this this delegation path.  It is up to the
    ///      Application Specification to specify the values found in this
    ///      field.
    ///
    ///   REGEXP
    ///      A <character-string> containing a substitution expression that is
    ///      applied to the original string held by the client in order to
    ///      construct the next domain name to lookup.  See the DDDS Algorithm
    ///      specification for the syntax of this field.
    ///
    ///      As stated in the DDDS algorithm, The regular expressions MUST NOT
    ///      be used in a cumulative fashion, that is, they should only be
    ///      applied to the original string held by the client, never to the
    ///      domain name p  roduced by a previous NAPTR rewrite.  The latter is
    ///      tempting in some applications but experience has shown such use to
    ///      be extremely fault sensitive, very error prone, and extremely
    ///      difficult to debug.
    ///
    ///   REPLACEMENT
    ///      A <domain-name> which is the next domain-name to query for
    ///      depending on the potential values found in the flags field.  This
    ///      field is used when the regular expression is a simple replacement
    ///      operation.  Any value in this field MUST be a fully qualified
    ///      domain-name.  Name compression is not to be used for this field.
    ///
    ///      This field and the REGEXP field together make up the Substitution
    ///      Expression in the DDDS Algorithm.  It is simply a historical
    ///      optimization specifically for DNS compression that this field
    ///      exists.  The fields are also mutually exclusive.  If a record is
    ///      returned that has values for both fields then it is considered to
    ///      be in error and SHOULD be either ignored or an error returned.
    /// ```
    NAPTR(NAPTR),

    /// ```text
    /// 3.3.10. NULL RDATA format (EXPERIMENTAL)
    ///
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///     /                  <anything>                   /
    ///     /                                               /
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///
    /// Anything at all may be in the RDATA field so long as it is 65535 octets
    /// or less.
    ///
    /// NULL records cause no additional section processing.  NULL RRs are not
    /// allowed in master files.  NULLs are used as placeholders in some
    /// experimental extensions of the DNS.
    /// ```
    NULL(NULL),

    /// ```text
    /// 3.3.11. NS RDATA format
    ///
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///     /                   NSDNAME                     /
    ///     /                                               /
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///
    /// where:
    ///
    /// NSDNAME         A <domain-name> which specifies a host which should be
    ///                 authoritative for the specified class and domain.
    ///
    /// NS records cause both the usual additional section processing to locate
    /// a type A record, and, when used in a referral, a special search of the
    /// zone in which they reside for glue information.
    ///
    /// The NS RR states that the named host should be expected to have a zone
    /// starting at owner name of the specified class.  Note that the class may
    /// not indicate the protocol family which should be used to communicate
    /// with the host, although it is typically a strong hint.  For example,
    /// hosts which are name servers for either Internet (IN) or Hesiod (HS)
    /// class information are normally queried using IN class protocols.
    /// ```
    NS(Name),

    /// [RFC 7929](https://tools.ietf.org/html/rfc7929#section-2.1)
    ///
    /// ```text
    /// The RDATA portion of an OPENPGPKEY resource record contains a single
    /// value consisting of a Transferable Public Key formatted as specified
    /// in [RFC4880].
    /// ```
    OPENPGPKEY(OPENPGPKEY),

    /// ```text
    /// RFC 6891                   EDNS(0) Extensions                 April 2013
    /// 6.1.2.  Wire Format
    ///
    ///        +------------+--------------+------------------------------+
    ///        | Field Name | Field Type   | Description                  |
    ///        +------------+--------------+------------------------------+
    ///        | NAME       | domain name  | MUST be 0 (root domain)      |
    ///        | TYPE       | u_int16_t    | OPT (41)                     |
    ///        | CLASS      | u_int16_t    | requestor's UDP payload size |
    ///        | TTL        | u_int32_t    | extended RCODE and flags     |
    ///        | RDLEN      | u_int16_t    | length of all RDATA          |
    ///        | RDATA      | octet stream | {attribute,value} pairs      |
    ///        +------------+--------------+------------------------------+
    ///
    /// The variable part of an OPT RR may contain zero or more options in
    ///    the RDATA.  Each option MUST be treated as a bit field.  Each option
    ///    is encoded as:
    ///
    ///                   +0 (MSB)                            +1 (LSB)
    ///        +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
    ///     0: |                          OPTION-CODE                          |
    ///        +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
    ///     2: |                         OPTION-LENGTH                         |
    ///        +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
    ///     4: |                                                               |
    ///        /                          OPTION-DATA                          /
    ///        /                                                               /
    ///        +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
    /// ```
    OPT(OPT),

    /// ```text
    /// 3.3.12. PTR RDATA format
    ///
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///     /                   PTRDNAME                    /
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///
    /// where:
    ///
    /// PTRDNAME        A <domain-name> which points to some location in the
    ///                 domain name space.
    ///
    /// PTR records cause no additional section processing.  These RRs are used
    /// in special domains to point to some other location in the domain space.
    /// These records are simple data, and don't imply any special processing
    /// similar to that performed by CNAME, which identifies aliases.  See the
    /// description of the IN-ADDR.ARPA domain for an example.
    /// ```
    PTR(Name),

    /// ```text
    /// 3.3.13. SOA RDATA format
    ///
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///     /                     MNAME                     /
    ///     /                                               /
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///     /                     RNAME                     /
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///     |                    SERIAL                     |
    ///     |                                               |
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///     |                    REFRESH                    |
    ///     |                                               |
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///     |                     RETRY                     |
    ///     |                                               |
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///     |                    EXPIRE                     |
    ///     |                                               |
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///     |                    MINIMUM                    |
    ///     |                                               |
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///
    /// where:
    ///
    /// MNAME           The <domain-name> of the name server that was the
    ///                 original or primary source of data for this zone.
    ///
    /// RNAME           A <domain-name> which specifies the mailbox of the
    ///                 person responsible for this zone.
    ///
    /// SERIAL          The unsigned 32 bit version number of the original copy
    ///                 of the zone.  Zone transfers preserve this value.  This
    ///                 value wraps and should be compared using sequence space
    ///                 arithmetic.
    ///
    /// REFRESH         A 32 bit time interval before the zone should be
    ///                 refreshed.
    ///
    /// RETRY           A 32 bit time interval that should elapse before a
    ///                 failed refresh should be retried.
    ///
    /// EXPIRE          A 32 bit time value that specifies the upper limit on
    ///                 the time interval that can elapse before the zone is no
    ///                 longer authoritative.
    ///
    /// MINIMUM         The unsigned 32 bit minimum TTL field that should be
    ///                 exported with any RR from this zone.
    ///
    /// SOA records cause no additional section processing.
    ///
    /// All times are in units of seconds.
    ///
    /// Most of these fields are pertinent only for name server maintenance
    /// operations.  However, MINIMUM is used in all query operations that
    /// retrieve RRs from a zone.  Whenever a RR is sent in a response to a
    /// query, the TTL field is set to the maximum of the TTL field from the RR
    /// and the MINIMUM field in the appropriate SOA.  Thus MINIMUM is a lower
    /// bound on the TTL field for all RRs in a zone.  Note that this use of
    /// MINIMUM should occur when the RRs are copied into the response and not
    /// when the zone is loaded from a master file or via a zone transfer.  The
    /// reason for this provison is to allow future dynamic update facilities to
    /// change the SOA RR with known semantics.
    /// ```
    SOA(SOA),

    /// ```text
    /// RFC 2782                       DNS SRV RR                  February 2000
    ///
    /// The format of the SRV RR
    ///
    ///  _Service._Proto.Name TTL Class SRV Priority Weight Port Target
    /// ```
    SRV(SRV),

    /// [RFC 4255](https://tools.ietf.org/html/rfc4255#section-3.1)
    ///
    /// ```text
    /// 3.1.  The SSHFP RDATA Format
    ///
    ///    The RDATA for a SSHFP RR consists of an algorithm number, fingerprint
    ///    type and the fingerprint of the public host key.
    ///
    ///        1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    ///        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    ///        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///        |   algorithm   |    fp type    |                               /
    ///        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               /
    ///        /                                                               /
    ///        /                          fingerprint                          /
    ///        /                                                               /
    ///        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///
    /// 3.1.1.  Algorithm Number Specification
    ///
    ///    This algorithm number octet describes the algorithm of the public
    ///    key.  The following values are assigned:
    ///
    ///           Value    Algorithm name
    ///           -----    --------------
    ///           0        reserved
    ///           1        RSA
    ///           2        DSS
    ///
    ///    Reserving other types requires IETF consensus [4].
    ///
    /// 3.1.2.  Fingerprint Type Specification
    ///
    ///    The fingerprint type octet describes the message-digest algorithm
    ///    used to calculate the fingerprint of the public key.  The following
    ///    values are assigned:
    ///
    ///           Value    Fingerprint type
    ///           -----    ----------------
    ///           0        reserved
    ///           1        SHA-1
    ///
    ///    Reserving other types requires IETF consensus [4].
    ///
    ///    For interoperability reasons, as few fingerprint types as possible
    ///    should be reserved.  The only reason to reserve additional types is
    ///    to increase security.
    ///
    /// 3.1.3.  Fingerprint
    ///
    ///    The fingerprint is calculated over the public key blob as described
    ///    in [7].
    ///
    ///    The message-digest algorithm is presumed to produce an opaque octet
    ///    string output, which is placed as-is in the RDATA fingerprint field.
    /// ```
    ///
    /// The algorithm and fingerprint type values have been updated in
    /// [RFC 6594](https://tools.ietf.org/html/rfc6594) and
    /// [RFC 7479](https://tools.ietf.org/html/rfc7479).
    SSHFP(SSHFP),

    /// [RFC 6698, DNS-Based Authentication for TLS](https://tools.ietf.org/html/rfc6698#section-2.1)
    ///
    /// ```text
    ///                         1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    ///     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    ///    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ///    |  Cert. Usage  |   Selector    | Matching Type |               /
    ///    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               /
    ///    /                                                               /
    ///    /                 Certificate Association Data                  /
    ///    /                                                               /
    ///    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    /// ```
    TLSA(TLSA),

    /// ```text
    /// 3.3.14. TXT RDATA format
    ///
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///     /                   TXT-DATA                    /
    ///     +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
    ///
    /// where:
    ///
    /// TXT-DATA        One or more <character-string>s.
    ///
    /// TXT RRs are used to hold descriptive text.  The semantics of the text
    /// depends on the domain where it is found.
    /// ```
    TXT(TXT),

    /// A DNSSEC- or SIG(0)- specific record. See `DNSSECRData` for details.
    ///
    /// These types are in `DNSSECRData` to make them easy to disable when
    /// crypto functionality isn't needed.
    #[cfg(feature = "dnssec")]
    DNSSEC(DNSSECRData),

    /// Unknown RecordData is for record types not supported by Trust-DNS
    Unknown {
        /// RecordType code
        code: u16,
        /// RData associated to the record
        rdata: NULL,
    },

    /// This corresponds to a record type of 0, unspecified
    ZERO,
}

impl RData {
    fn to_bytes(&self) -> Vec<u8> {
        let mut buf: Vec<u8> = Vec::new();
        {
            let mut encoder: BinEncoder = BinEncoder::new(&mut buf);
            self.emit(&mut encoder).unwrap_or_else(|_| {
                warn!("could not encode RDATA: {:?}", self);
            });
        }
        buf
    }

    /// Read the RData from the given Decoder
    pub fn read(
        decoder: &mut BinDecoder,
        record_type: RecordType,
        rdata_length: Restrict<u16>,
    ) -> ProtoResult<Self> {
        let start_idx = decoder.index();

        let result = match record_type {
            RecordType::A => {
                debug!("reading A");
                rdata::a::read(decoder).map(RData::A)
            }
            RecordType::AAAA => {
                debug!("reading AAAA");
                rdata::aaaa::read(decoder).map(RData::AAAA)
            }
            RecordType::ANAME => {
                debug!("reading ANAME");
                rdata::name::read(decoder).map(RData::ANAME)
            }
            rt @ RecordType::ANY | rt @ RecordType::AXFR | rt @ RecordType::IXFR => {
                return Err(ProtoErrorKind::UnknownRecordTypeValue(rt.into()).into());
            }
            RecordType::CAA => {
                debug!("reading CAA");
                rdata::caa::read(decoder, rdata_length).map(RData::CAA)
            }
            RecordType::CNAME => {
                debug!("reading CNAME");
                rdata::name::read(decoder).map(RData::CNAME)
            }
            RecordType::ZERO => {
                debug!("reading EMPTY");
                return Ok(RData::ZERO);
            }
            RecordType::MX => {
                debug!("reading MX");
                rdata::mx::read(decoder).map(RData::MX)
            }
            RecordType::NAPTR => {
                debug!("reading NAPTR");
                rdata::naptr::read(decoder).map(RData::NAPTR)
            }
            RecordType::NULL => {
                debug!("reading NULL");
                rdata::null::read(decoder, rdata_length).map(RData::NULL)
            }
            RecordType::NS => {
                debug!("reading NS");
                rdata::name::read(decoder).map(RData::NS)
            }
            RecordType::OPENPGPKEY => {
                debug!("reading OPENPGPKEY");
                rdata::openpgpkey::read(decoder, rdata_length).map(RData::OPENPGPKEY)
            }
            RecordType::OPT => {
                debug!("reading OPT");
                rdata::opt::read(decoder, rdata_length).map(RData::OPT)
            }
            RecordType::PTR => {
                debug!("reading PTR");
                rdata::name::read(decoder).map(RData::PTR)
            }
            RecordType::SOA => {
                debug!("reading SOA");
                rdata::soa::read(decoder).map(RData::SOA)
            }
            RecordType::SRV => {
                debug!("reading SRV");
                rdata::srv::read(decoder).map(RData::SRV)
            }
            RecordType::SSHFP => {
                debug!("reading SSHFP");
                rdata::sshfp::read(decoder, rdata_length).map(RData::SSHFP)
            }
            RecordType::TLSA => {
                debug!("reading TLSA");
                rdata::tlsa::read(decoder, rdata_length).map(RData::TLSA)
            }
            RecordType::TXT => {
                debug!("reading TXT");
                rdata::txt::read(decoder, rdata_length).map(RData::TXT)
            }
            #[cfg(feature = "dnssec")]
            RecordType::DNSSEC(record_type) => {
                DNSSECRData::read(decoder, record_type, rdata_length).map(RData::DNSSEC)
            }
            RecordType::Unknown(code) => {
                debug!("reading Unknown");
                rdata::null::read(decoder, rdata_length).map(|rdata| RData::Unknown { code, rdata })
            }
        };

        // we should have read rdata_length, but we did not
        let read = decoder.index() - start_idx;
        rdata_length
            .map(|u| u as usize)
            .verify_unwrap(|rdata_length| read == *rdata_length)
            .map_err(|rdata_length| {
                ProtoError::from(ProtoErrorKind::IncorrectRDataLengthRead {
                    read,
                    len: rdata_length,
                })
            })?;

        result
    }

    /// [RFC 4034](https://tools.ietf.org/html/rfc4034#section-6), DNSSEC Resource Records, March 2005
    ///
    /// ```text
    /// 6.2.  Canonical RR Form
    ///
    ///    For the purposes of DNS security, the canonical form of an RR is the
    ///    wire format of the RR where:
    ///
    ///    ...
    ///
    ///    3.  if the type of the RR is NS, MD, MF, CNAME, SOA, MB, MG, MR, PTR,
    ///        HINFO, MINFO, MX, HINFO, RP, AFSDB, RT, SIG, PX, NXT, NAPTR, KX,
    ///        SRV, DNAME, A6, RRSIG, or (rfc6840 removes NSEC), all uppercase
    ///        US-ASCII letters in the DNS names contained within the RDATA are replaced
    ///        by the corresponding lowercase US-ASCII letters;
    /// ```
    ///
    /// Canonical name form for all non-1035 records:
    ///   [RFC 3579](https://tools.ietf.org/html/rfc3597)
    /// ```text
    ///  4.  Domain Name Compression
    ///
    ///   RRs containing compression pointers in the RDATA part cannot be
    ///   treated transparently, as the compression pointers are only
    ///   meaningful within the context of a DNS message.  Transparently
    ///   copying the RDATA into a new DNS message would cause the compression
    ///   pointers to point at the corresponding location in the new message,
    ///   which now contains unrelated data.  This would cause the compressed
    ///   name to be corrupted.
    ///
    ///   To avoid such corruption, servers MUST NOT compress domain names
    ///   embedded in the RDATA of types that are class-specific or not well-
    ///   known.  This requirement was stated in [RFC1123] without defining the
    ///   term "well-known"; it is hereby specified that only the RR types
    ///   defined in [RFC1035] are to be considered "well-known".
    ///
    ///   The specifications of a few existing RR types have explicitly allowed
    ///   compression contrary to this specification: [RFC2163] specified that
    ///   compression applies to the PX RR, and [RFC2535] allowed compression
    ///   in SIG RRs and NXT RRs records.  Since this specification disallows
    ///   compression in these cases, it is an update to [RFC2163] (section 4)
    ///   and [RFC2535] (sections 4.1.7 and 5.2).
    ///
    ///   Receiving servers MUST decompress domain names in RRs of well-known
    ///   type, and SHOULD also decompress RRs of type RP, AFSDB, RT, SIG, PX,
    ///   NXT, NAPTR, and SRV (although the current specification of the SRV RR
    ///   in [RFC2782] prohibits compression, [RFC2052] mandated it, and some
    ///   servers following that earlier specification are still in use).
    ///
    ///   Future specifications for new RR types that contain domain names
    ///   within their RDATA MUST NOT allow the use of name compression for
    ///   those names, and SHOULD explicitly state that the embedded domain
    ///   names MUST NOT be compressed.
    ///
    ///   As noted in [RFC1123], the owner name of an RR is always eligible for
    ///   compression.
    ///
    ///   ...
    ///   As a courtesy to implementors, it is hereby noted that the complete
    ///    set of such previously published RR types that contain embedded
    ///    domain names, and whose DNSSEC canonical form therefore involves
    ///   downcasing according to the DNS rules for character comparisons,
    ///   consists of the RR types NS, MD, MF, CNAME, SOA, MB, MG, MR, PTR,
    ///   HINFO, MINFO, MX, HINFO, RP, AFSDB, RT, SIG, PX, NXT, NAPTR, KX, SRV,
    ///   DNAME, and A6.
    ///   ...
    /// ```
    pub fn emit(&self, encoder: &mut BinEncoder) -> ProtoResult<()> {
        match *self {
            RData::A(address) => rdata::a::emit(encoder, address),
            RData::AAAA(ref address) => rdata::aaaa::emit(encoder, address),
            RData::ANAME(ref name) => {
                encoder.with_canonical_names(|encoder| rdata::name::emit(encoder, name))
            }
            RData::CAA(ref caa) => {
                encoder.with_canonical_names(|encoder| rdata::caa::emit(encoder, caa))
            }
            // to_lowercase for rfc4034 and rfc6840
            RData::CNAME(ref name) | RData::NS(ref name) | RData::PTR(ref name) => {
                rdata::name::emit(encoder, name)
            }
            RData::ZERO => Ok(()),
            // to_lowercase for rfc4034 and rfc6840
            RData::MX(ref mx) => rdata::mx::emit(encoder, mx),
            RData::NAPTR(ref naptr) => {
                encoder.with_canonical_names(|encoder| rdata::naptr::emit(encoder, naptr))
            }
            RData::NULL(ref null) => rdata::null::emit(encoder, null),
            RData::OPENPGPKEY(ref openpgpkey) => {
                encoder.with_canonical_names(|encoder| rdata::openpgpkey::emit(encoder, openpgpkey))
            }
            RData::OPT(ref opt) => rdata::opt::emit(encoder, opt),
            // to_lowercase for rfc4034 and rfc6840
            RData::SOA(ref soa) => rdata::soa::emit(encoder, soa),
            // to_lowercase for rfc4034 and rfc6840
            RData::SRV(ref srv) => {
                encoder.with_canonical_names(|encoder| rdata::srv::emit(encoder, srv))
            }
            RData::SSHFP(ref sshfp) => {
                encoder.with_canonical_names(|encoder| rdata::sshfp::emit(encoder, sshfp))
            }
            RData::TLSA(ref tlsa) => {
                encoder.with_canonical_names(|encoder| rdata::tlsa::emit(encoder, tlsa))
            }
            RData::TXT(ref txt) => rdata::txt::emit(encoder, txt),
            #[cfg(feature = "dnssec")]
            RData::DNSSEC(ref rdata) => encoder.with_canonical_names(|encoder| rdata.emit(encoder)),
            RData::Unknown { ref rdata, .. } => rdata::null::emit(encoder, rdata),
        }
    }

    /// Converts this to a Recordtype
    pub fn to_record_type(&self) -> RecordType {
        match *self {
            RData::A(..) => RecordType::A,
            RData::AAAA(..) => RecordType::AAAA,
            RData::ANAME(..) => RecordType::ANAME,
            RData::CAA(..) => RecordType::CAA,
            RData::CNAME(..) => RecordType::CNAME,
            RData::MX(..) => RecordType::MX,
            RData::NAPTR(..) => RecordType::NAPTR,
            RData::NS(..) => RecordType::NS,
            RData::NULL(..) => RecordType::NULL,
            RData::OPENPGPKEY(..) => RecordType::OPENPGPKEY,
            RData::OPT(..) => RecordType::OPT,
            RData::PTR(..) => RecordType::PTR,
            RData::SOA(..) => RecordType::SOA,
            RData::SRV(..) => RecordType::SRV,
            RData::SSHFP(..) => RecordType::SSHFP,
            RData::TLSA(..) => RecordType::TLSA,
            RData::TXT(..) => RecordType::TXT,
            #[cfg(feature = "dnssec")]
            RData::DNSSEC(ref rdata) => RecordType::DNSSEC(DNSSECRData::to_record_type(rdata)),
            RData::Unknown { code, .. } => RecordType::Unknown(code),
            RData::ZERO => RecordType::ZERO,
        }
    }

    /// If this is an A or AAAA record type, then an IpAddr will be returned
    pub fn to_ip_addr(&self) -> Option<IpAddr> {
        match *self {
            RData::A(a) => Some(IpAddr::from(a)),
            RData::AAAA(aaaa) => Some(IpAddr::from(aaaa)),
            _ => None,
        }
    }
}

impl PartialOrd<RData> for RData {
    fn partial_cmp(&self, other: &RData) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for RData {
    // RFC 4034                DNSSEC Resource Records               March 2005
    //
    // 6.3.  Canonical RR Ordering within an RRset
    //
    //    For the purposes of DNS security, RRs with the same owner name,
    //    class, and type are sorted by treating the RDATA portion of the
    //    canonical form of each RR as a left-justified unsigned octet sequence
    //    in which the absence of an octet sorts before a zero octet.
    //
    //    [RFC2181] specifies that an RRset is not allowed to contain duplicate
    //    records (multiple RRs with the same owner name, class, type, and
    //    RDATA).  Therefore, if an implementation detects duplicate RRs when
    //    putting the RRset in canonical form, it MUST treat this as a protocol
    //    error.  If the implementation chooses to handle this protocol error
    //    in the spirit of the robustness principle (being liberal in what it
    //    accepts), it MUST remove all but one of the duplicate RR(s) for the
    //    purposes of calculating the canonical form of the RRset.
    fn cmp(&self, other: &Self) -> Ordering {
        // TODO: how about we just store the bytes with the decoded data?
        //  the decoded data is useful for queries, the encoded data is needed for transfers, signing
        //  and ordering.
        self.to_bytes().cmp(&other.to_bytes())
    }
}

#[cfg(test)]
mod tests {
    use std::net::Ipv4Addr;
    use std::net::Ipv6Addr;
    use std::str::FromStr;

    use super::*;
    use crate::rr::domain::Name;
    use crate::rr::rdata::{MX, SOA, SRV, TXT};
    use crate::serialize::binary::bin_tests::test_emit_data_set;
    #[allow(clippy::useless_attribute)]
    #[allow(unused)]
    use crate::serialize::binary::*;

    fn get_data() -> Vec<(RData, Vec<u8>)> {
        vec![
            (
                RData::CNAME(Name::from_str("www.example.com").unwrap()),
                vec![
                    3, b'w', b'w', b'w', 7, b'e', b'x', b'a', b'm', b'p', b'l', b'e', 3, b'c',
                    b'o', b'm', 0,
                ],
            ),
            (
                RData::MX(MX::new(256, Name::from_str("n").unwrap())),
                vec![1, 0, 1, b'n', 0],
            ),
            (
                RData::NS(Name::from_str("www.example.com").unwrap()),
                vec![
                    3, b'w', b'w', b'w', 7, b'e', b'x', b'a', b'm', b'p', b'l', b'e', 3, b'c',
                    b'o', b'm', 0,
                ],
            ),
            (
                RData::PTR(Name::from_str("www.example.com").unwrap()),
                vec![
                    3, b'w', b'w', b'w', 7, b'e', b'x', b'a', b'm', b'p', b'l', b'e', 3, b'c',
                    b'o', b'm', 0,
                ],
            ),
            (
                RData::SOA(SOA::new(
                    Name::from_str("www.example.com").unwrap(),
                    Name::from_str("xxx.example.com").unwrap(),
                    u32::max_value(),
                    -1 as i32,
                    -1 as i32,
                    -1 as i32,
                    u32::max_value(),
                )),
                vec![
                    3, b'w', b'w', b'w', 7, b'e', b'x', b'a', b'm', b'p', b'l', b'e', 3, b'c',
                    b'o', b'm', 0, 3, b'x', b'x', b'x', 0xC0, 0x04, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
                    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
                    0xFF, 0xFF,
                ],
            ),
            (
                RData::TXT(TXT::new(vec![
                    "abcdef".to_string(),
                    "ghi".to_string(),
                    "".to_string(),
                    "j".to_string(),
                ])),
                vec![
                    6, b'a', b'b', b'c', b'd', b'e', b'f', 3, b'g', b'h', b'i', 0, 1, b'j',
                ],
            ),
            (
                RData::A(Ipv4Addr::from_str("0.0.0.0").unwrap()),
                vec![0, 0, 0, 0],
            ),
            (
                RData::AAAA(Ipv6Addr::from_str("::").unwrap()),
                vec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            ),
            (
                RData::SRV(SRV::new(
                    1,
                    2,
                    3,
                    Name::from_str("www.example.com").unwrap(),
                )),
                vec![
                    0x00, 0x01, 0x00, 0x02, 0x00, 0x03, 3, b'w', b'w', b'w', 7, b'e', b'x', b'a',
                    b'm', b'p', b'l', b'e', 3, b'c', b'o', b'm', 0,
                ],
            ),
        ]
    }

    // TODO this test kinda sucks, shows the problem with not storing the binary parts
    #[test]
    fn test_order() {
        let ordered: Vec<RData> = vec![
            RData::A(Ipv4Addr::from_str("0.0.0.0").unwrap()),
            RData::AAAA(Ipv6Addr::from_str("::").unwrap()),
            RData::SRV(SRV::new(
                1,
                2,
                3,
                Name::from_str("www.example.com").unwrap(),
            )),
            RData::MX(MX::new(256, Name::from_str("n").unwrap())),
            RData::CNAME(Name::from_str("www.example.com").unwrap()),
            RData::PTR(Name::from_str("www.example.com").unwrap()),
            RData::NS(Name::from_str("www.example.com").unwrap()),
            RData::SOA(SOA::new(
                Name::from_str("www.example.com").unwrap(),
                Name::from_str("xxx.example.com").unwrap(),
                u32::max_value(),
                -1 as i32,
                -1 as i32,
                -1 as i32,
                u32::max_value(),
            )),
            RData::TXT(TXT::new(vec![
                "abcdef".to_string(),
                "ghi".to_string(),
                "".to_string(),
                "j".to_string(),
            ])),
        ];
        let mut unordered = vec![
            RData::CNAME(Name::from_str("www.example.com").unwrap()),
            RData::MX(MX::new(256, Name::from_str("n").unwrap())),
            RData::PTR(Name::from_str("www.example.com").unwrap()),
            RData::NS(Name::from_str("www.example.com").unwrap()),
            RData::SOA(SOA::new(
                Name::from_str("www.example.com").unwrap(),
                Name::from_str("xxx.example.com").unwrap(),
                u32::max_value(),
                -1 as i32,
                -1 as i32,
                -1 as i32,
                u32::max_value(),
            )),
            RData::TXT(TXT::new(vec![
                "abcdef".to_string(),
                "ghi".to_string(),
                "".to_string(),
                "j".to_string(),
            ])),
            RData::A(Ipv4Addr::from_str("0.0.0.0").unwrap()),
            RData::AAAA(Ipv6Addr::from_str("::").unwrap()),
            RData::SRV(SRV::new(
                1,
                2,
                3,
                Name::from_str("www.example.com").unwrap(),
            )),
        ];

        unordered.sort();
        assert_eq!(ordered, unordered);
    }

    #[test]
    fn test_read() {
        for (test_pass, (expect, binary)) in get_data().into_iter().enumerate() {
            println!("test {}: {:?}", test_pass, binary);
            let length = binary.len() as u16; // pre exclusive borrow
            let mut decoder = BinDecoder::new(&binary);

            assert_eq!(
                RData::read(
                    &mut decoder,
                    record_type_from_rdata(&expect),
                    Restrict::new(length)
                )
                .unwrap(),
                expect
            );
        }
    }

    fn record_type_from_rdata(rdata: &RData) -> crate::rr::record_type::RecordType {
        match *rdata {
            RData::A(..) => RecordType::A,
            RData::AAAA(..) => RecordType::AAAA,
            RData::ANAME(..) => RecordType::ANAME,
            RData::CAA(..) => RecordType::CAA,
            RData::CNAME(..) => RecordType::CNAME,
            RData::MX(..) => RecordType::MX,
            RData::NAPTR(..) => RecordType::NAPTR,
            RData::NS(..) => RecordType::NS,
            RData::NULL(..) => RecordType::NULL,
            RData::OPENPGPKEY(..) => RecordType::OPENPGPKEY,
            RData::OPT(..) => RecordType::OPT,
            RData::PTR(..) => RecordType::PTR,
            RData::SOA(..) => RecordType::SOA,
            RData::SRV(..) => RecordType::SRV,
            RData::SSHFP(..) => RecordType::SSHFP,
            RData::TLSA(..) => RecordType::TLSA,
            RData::TXT(..) => RecordType::TXT,
            #[cfg(feature = "dnssec")]
            RData::DNSSEC(ref rdata) => RecordType::DNSSEC(rdata.to_record_type()),
            RData::Unknown { code, .. } => RecordType::Unknown(code),
            RData::ZERO => RecordType::ZERO,
        }
    }

    #[test]
    fn test_write_to() {
        test_emit_data_set(get_data(), |e, d| d.emit(e));
    }
}