1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
// Copyright 2015-2016 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! Public Key implementations for supported key types
#[cfg(not(any(feature = "openssl", feature = "ring")))]
use std::marker::PhantomData;

#[cfg(all(not(feature = "ring"), feature = "openssl"))]
use openssl::bn::BigNum;
#[cfg(all(not(feature = "ring"), feature = "openssl"))]
use openssl::bn::BigNumContext;
#[cfg(all(not(feature = "ring"), feature = "openssl"))]
use openssl::ec::{EcGroup, EcKey, EcPoint};
#[cfg(all(not(feature = "ring"), feature = "openssl"))]
use openssl::nid::Nid;
#[cfg(all(not(feature = "ring"), feature = "openssl"))]
use openssl::pkey::{PKey, Public};
#[cfg(all(not(feature = "ring"), feature = "openssl"))]
use openssl::rsa::Rsa as OpenSslRsa;
#[cfg(all(not(feature = "ring"), feature = "openssl"))]
use openssl::sign::Verifier;
#[cfg(feature = "ring")]
use ring::signature::{self, ED25519_PUBLIC_KEY_LEN};

use crate::error::*;
use crate::rr::dnssec::Algorithm;
#[cfg(all(not(feature = "ring"), feature = "openssl"))]
use crate::rr::dnssec::DigestType;

#[cfg(any(feature = "openssl", feature = "ring"))]
use crate::rr::dnssec::ec_public_key::ECPublicKey;
#[cfg(any(feature = "openssl", feature = "ring"))]
use crate::rr::dnssec::rsa_public_key::RSAPublicKey;

/// PublicKeys implement the ability to ideally be zero copy abstractions over public keys for verifying signed content.
///
/// In DNS the KEY and DNSKEY types are generally the RData types which store public key material.
pub trait PublicKey {
    /// Returns the public bytes of the public key, in DNS format
    fn public_bytes(&self) -> &[u8];

    /// Verifies the hash matches the signature with the current `key`.
    ///
    /// # Arguments
    ///
    /// * `message` - the message to be validated, see `hash_rrset`
    /// * `signature` - the signature to use to verify the hash, extracted from an `RData::RRSIG`
    ///                 for example.
    ///
    /// # Return value
    ///
    /// True if and only if the signature is valid for the hash. This will always return
    /// false if the `key`.
    #[allow(unused)]
    fn verify(&self, algorithm: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()>;
}

#[cfg(all(not(feature = "ring"), feature = "openssl"))]
fn verify_with_pkey(
    pkey: &PKey<Public>,
    algorithm: Algorithm,
    message: &[u8],
    signature: &[u8],
) -> ProtoResult<()> {
    let digest_type = DigestType::from(algorithm).to_openssl_digest()?;
    let mut verifier = Verifier::new(digest_type, pkey)?;
    verifier.update(message)?;
    verifier
        .verify(signature)
        .map_err(Into::into)
        .and_then(|b| {
            if b {
                Ok(())
            } else {
                Err("could not verify".into())
            }
        })
}

/// Elyptic Curve public key type
#[cfg(all(not(feature = "ring"), feature = "openssl"))]
#[cfg_attr(docsrs, doc(cfg(all(not(feature = "ring"), feature = "openssl"))))]
pub struct Ec<'k> {
    raw: &'k [u8],
    pkey: PKey<Public>,
}

#[cfg(all(not(feature = "ring"), feature = "openssl"))]
#[cfg_attr(docsrs, doc(cfg(all(not(feature = "ring"), feature = "openssl"))))]
impl<'k> Ec<'k> {
    /// ```text
    /// RFC 6605                    ECDSA for DNSSEC                  April 2012
    ///
    ///   4.  DNSKEY and RRSIG Resource Records for ECDSA
    ///
    ///   ECDSA public keys consist of a single value, called "Q" in FIPS
    ///   186-3.  In DNSSEC keys, Q is a simple bit string that represents the
    ///   uncompressed form of a curve point, "x | y".
    ///
    ///   The ECDSA signature is the combination of two non-negative integers,
    ///   called "r" and "s" in FIPS 186-3.  The two integers, each of which is
    ///   formatted as a simple octet string, are combined into a single longer
    ///   octet string for DNSSEC as the concatenation "r | s".  (Conversion of
    ///   the integers to bit strings is described in Section C.2 of FIPS
    ///   186-3.)  For P-256, each integer MUST be encoded as 32 octets; for
    ///   P-384, each integer MUST be encoded as 48 octets.
    ///
    ///   The algorithm numbers associated with the DNSKEY and RRSIG resource
    ///   records are fully defined in the IANA Considerations section.  They
    ///   are:
    ///
    ///   o  DNSKEY and RRSIG RRs signifying ECDSA with the P-256 curve and
    ///      SHA-256 use the algorithm number 13.
    ///
    ///   o  DNSKEY and RRSIG RRs signifying ECDSA with the P-384 curve and
    ///      SHA-384 use the algorithm number 14.
    ///
    ///   Conformant implementations that create records to be put into the DNS
    ///   MUST implement signing and verification for both of the above
    ///   algorithms.  Conformant DNSSEC verifiers MUST implement verification
    ///   for both of the above algorithms.
    /// ```
    pub fn from_public_bytes(public_key: &'k [u8], algorithm: Algorithm) -> ProtoResult<Self> {
        let curve = match algorithm {
            Algorithm::ECDSAP256SHA256 => Nid::X9_62_PRIME256V1,
            Algorithm::ECDSAP384SHA384 => Nid::SECP384R1,
            _ => return Err("only ECDSAP256SHA256 and ECDSAP384SHA384 are supported by Ec".into()),
        };
        // Key needs to be converted to OpenSSL format
        let k = ECPublicKey::from_unprefixed(public_key, algorithm)?;
        EcGroup::from_curve_name(curve)
            .and_then(|group| BigNumContext::new().map(|ctx| (group, ctx)))
            // FYI: BigNum slices treat all slices as BigEndian, i.e NetworkByteOrder
            .and_then(|(group, mut ctx)| {
                EcPoint::from_bytes(&group, k.prefixed_bytes(), &mut ctx)
                    .map(|point| (group, point))
            })
            .and_then(|(group, point)| EcKey::from_public_key(&group, &point))
            .and_then(PKey::from_ec_key)
            .map_err(Into::into)
            .map(|pkey| Ec {
                raw: public_key,
                pkey,
            })
    }
}

#[cfg(all(not(feature = "ring"), feature = "openssl"))]
fn asn1_emit_integer(output: &mut Vec<u8>, int: &[u8]) {
    assert!(!int.is_empty());
    output.push(0x02); // INTEGER
    if int[0] > 0x7f {
        output.push((int.len() + 1) as u8);
        output.push(0x00); // MSB must be zero
        output.extend(int);
        return;
    }
    // Trim leading zeros
    let mut pos = 0;
    while pos < int.len() {
        if int[pos] == 0 {
            if pos == int.len() - 1 {
                break;
            }
            pos += 1;
            continue;
        }
        if int[pos] > 0x7f {
            // We need to leave one 0x00 to make MSB zero
            pos -= 1;
        }
        break;
    }
    let int_output = &int[pos..];
    output.push(int_output.len() as u8);
    output.extend(int_output);
}

/// Convert raw DNSSEC ECDSA signature to ASN.1 DER format
#[cfg(all(not(feature = "ring"), feature = "openssl"))]
#[cfg_attr(docsrs, doc(cfg(all(not(feature = "ring"), feature = "openssl"))))]
pub fn dnssec_ecdsa_signature_to_der(signature: &[u8]) -> ProtoResult<Vec<u8>> {
    if signature.is_empty() || signature.len() & 1 != 0 || signature.len() > 127 {
        return Err("invalid signature length".into());
    }
    let part_len = signature.len() / 2;
    // ASN.1 SEQUENCE: 0x30 [LENGTH]
    let mut signature_asn1 = vec![0x30, 0x00];
    asn1_emit_integer(&mut signature_asn1, &signature[..part_len]);
    asn1_emit_integer(&mut signature_asn1, &signature[part_len..]);
    signature_asn1[1] = (signature_asn1.len() - 2) as u8;
    Ok(signature_asn1)
}

#[cfg(all(not(feature = "ring"), feature = "openssl"))]
#[cfg_attr(docsrs, doc(cfg(all(not(feature = "ring"), feature = "openssl"))))]
impl<'k> PublicKey for Ec<'k> {
    fn public_bytes(&self) -> &[u8] {
        self.raw
    }

    fn verify(&self, algorithm: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
        let signature_asn1 = dnssec_ecdsa_signature_to_der(signature)?;
        verify_with_pkey(&self.pkey, algorithm, message, &signature_asn1)
    }
}

/// Elyptic Curve public key type
#[cfg(feature = "ring")]
#[cfg_attr(docsrs, doc(cfg(feature = "ring")))]
pub type Ec = ECPublicKey;

#[cfg(feature = "ring")]
impl Ec {
    /// ```text
    /// RFC 6605                    ECDSA for DNSSEC                  April 2012
    ///
    ///   4.  DNSKEY and RRSIG Resource Records for ECDSA
    ///
    ///   ECDSA public keys consist of a single value, called "Q" in FIPS
    ///   186-3.  In DNSSEC keys, Q is a simple bit string that represents the
    ///   uncompressed form of a curve point, "x | y".
    ///
    ///   The ECDSA signature is the combination of two non-negative integers,
    ///   called "r" and "s" in FIPS 186-3.  The two integers, each of which is
    ///   formatted as a simple octet string, are combined into a single longer
    ///   octet string for DNSSEC as the concatenation "r | s".  (Conversion of
    ///   the integers to bit strings is described in Section C.2 of FIPS
    ///   186-3.)  For P-256, each integer MUST be encoded as 32 octets; for
    ///   P-384, each integer MUST be encoded as 48 octets.
    ///
    ///   The algorithm numbers associated with the DNSKEY and RRSIG resource
    ///   records are fully defined in the IANA Considerations section.  They
    ///   are:
    ///
    ///   o  DNSKEY and RRSIG RRs signifying ECDSA with the P-256 curve and
    ///      SHA-256 use the algorithm number 13.
    ///
    ///   o  DNSKEY and RRSIG RRs signifying ECDSA with the P-384 curve and
    ///      SHA-384 use the algorithm number 14.
    ///
    ///   Conformant implementations that create records to be put into the DNS
    ///   MUST implement signing and verification for both of the above
    ///   algorithms.  Conformant DNSSEC verifiers MUST implement verification
    ///   for both of the above algorithms.
    /// ```
    pub fn from_public_bytes(public_key: &[u8], algorithm: Algorithm) -> ProtoResult<Self> {
        Self::from_unprefixed(public_key, algorithm)
    }
}

#[cfg(feature = "ring")]
#[cfg_attr(docsrs, doc(cfg(feature = "ring")))]
impl PublicKey for Ec {
    fn public_bytes(&self) -> &[u8] {
        self.unprefixed_bytes()
    }

    fn verify(&self, algorithm: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
        // TODO: assert_eq!(algorithm, self.algorithm); once *ring* allows this.
        let alg = match algorithm {
            Algorithm::ECDSAP256SHA256 => &signature::ECDSA_P256_SHA256_FIXED,
            Algorithm::ECDSAP384SHA384 => &signature::ECDSA_P384_SHA384_FIXED,
            _ => return Err("only ECDSAP256SHA256 and ECDSAP384SHA384 are supported by Ec".into()),
        };
        let public_key = signature::UnparsedPublicKey::new(alg, self.prefixed_bytes());
        public_key.verify(message, signature).map_err(Into::into)
    }
}

/// Ed25519 Public key
#[cfg(feature = "ring")]
#[cfg_attr(docsrs, doc(cfg(feature = "ring")))]
pub struct Ed25519<'k> {
    raw: &'k [u8],
}

#[cfg(feature = "ring")]
#[cfg_attr(docsrs, doc(cfg(feature = "ring")))]
impl<'k> Ed25519<'k> {
    /// ```text
    ///  Internet-Draft              EdDSA for DNSSEC               December 2016
    ///
    ///  An Ed25519 public key consists of a 32-octet value, which is encoded
    ///  into the Public Key field of a DNSKEY resource record as a simple bit
    ///  string.  The generation of a public key is defined in Section 5.1.5
    ///  in [RFC 8032]. Breaking tradition, the keys are encoded in little-
    ///  endian byte order.
    /// ```
    pub fn from_public_bytes(public_key: &'k [u8]) -> ProtoResult<Self> {
        if public_key.len() != ED25519_PUBLIC_KEY_LEN {
            return Err(format!(
                "expected {} byte public_key: {}",
                ED25519_PUBLIC_KEY_LEN,
                public_key.len()
            )
            .into());
        }

        Ok(Ed25519 { raw: public_key })
    }
}

#[cfg(feature = "ring")]
impl<'k> PublicKey for Ed25519<'k> {
    // TODO: just store reference to public key bytes in ctor...
    fn public_bytes(&self) -> &[u8] {
        self.raw
    }

    fn verify(&self, _: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
        let public_key = signature::UnparsedPublicKey::new(&signature::ED25519, self.raw);
        public_key.verify(message, signature).map_err(Into::into)
    }
}

/// Rsa public key
#[cfg(any(feature = "openssl", feature = "ring"))]
#[cfg_attr(docsrs, doc(cfg(any(feature = "openssl", feature = "ring"))))]
pub struct Rsa<'k> {
    raw: &'k [u8],

    #[cfg(all(not(feature = "ring"), feature = "openssl"))]
    pkey: PKey<Public>,

    #[cfg(feature = "ring")]
    pkey: RSAPublicKey<'k>,
}

#[cfg(any(feature = "openssl", feature = "ring"))]
#[cfg_attr(docsrs, doc(cfg(any(feature = "openssl", feature = "ring"))))]
impl<'k> Rsa<'k> {
    /// ```text
    /// RFC 3110              RSA SIGs and KEYs in the DNS              May 2001
    ///
    ///       2. RSA Public KEY Resource Records
    ///
    ///  RSA public keys are stored in the DNS as KEY RRs using algorithm
    ///  number 5 [RFC2535].  The structure of the algorithm specific portion
    ///  of the RDATA part of such RRs is as shown below.
    ///
    ///        Field             Size
    ///        -----             ----
    ///        exponent length   1 or 3 octets (see text)
    ///        exponent          as specified by length field
    ///        modulus           remaining space
    ///
    ///  For interoperability, the exponent and modulus are each limited to
    ///  4096 bits in length.  The public key exponent is a variable length
    ///  unsigned integer.  Its length in octets is represented as one octet
    ///  if it is in the range of 1 to 255 and by a zero octet followed by a
    ///  two octet unsigned length if it is longer than 255 bytes.  The public
    ///  key modulus field is a multiprecision unsigned integer.  The length
    ///  of the modulus can be determined from the RDLENGTH and the preceding
    ///  RDATA fields including the exponent.  Leading zero octets are
    ///  prohibited in the exponent and modulus.
    ///
    ///  Note: KEY RRs for use with RSA/SHA1 DNS signatures MUST use this
    ///  algorithm number (rather than the algorithm number specified in the
    ///  obsoleted RFC 2537).
    ///
    ///  Note: This changes the algorithm number for RSA KEY RRs to be the
    ///  same as the new algorithm number for RSA/SHA1 SIGs.
    /// ```
    pub fn from_public_bytes(raw: &'k [u8]) -> ProtoResult<Self> {
        let parsed = RSAPublicKey::try_from(raw)?;
        let pkey = into_pkey(parsed)?;
        Ok(Rsa { raw, pkey })
    }
}

#[cfg(all(not(feature = "ring"), feature = "openssl"))]
fn into_pkey(parsed: RSAPublicKey<'_>) -> ProtoResult<PKey<Public>> {
    // FYI: BigNum slices treat all slices as BigEndian, i.e NetworkByteOrder
    let e = BigNum::from_slice(parsed.e())?;
    let n = BigNum::from_slice(parsed.n())?;

    OpenSslRsa::from_public_components(n, e)
        .and_then(PKey::from_rsa)
        .map_err(Into::into)
}

#[cfg(feature = "ring")]
#[allow(clippy::unnecessary_wraps)]
fn into_pkey(parsed: RSAPublicKey<'_>) -> ProtoResult<RSAPublicKey<'_>> {
    Ok(parsed)
}

#[cfg(any(feature = "openssl", feature = "ring"))]
impl<'k> PublicKey for Rsa<'k> {
    fn public_bytes(&self) -> &[u8] {
        self.raw
    }

    #[cfg(all(not(feature = "ring"), feature = "openssl"))]
    fn verify(&self, algorithm: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
        verify_with_pkey(&self.pkey, algorithm, message, signature)
    }

    #[cfg(feature = "ring")]
    fn verify(&self, algorithm: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
        #[allow(deprecated)]
        let alg = match algorithm {
            Algorithm::RSASHA256 => &signature::RSA_PKCS1_1024_8192_SHA256_FOR_LEGACY_USE_ONLY,
            Algorithm::RSASHA512 => &signature::RSA_PKCS1_1024_8192_SHA512_FOR_LEGACY_USE_ONLY,
            Algorithm::RSASHA1 => &signature::RSA_PKCS1_1024_8192_SHA1_FOR_LEGACY_USE_ONLY,
            Algorithm::RSASHA1NSEC3SHA1 => {
                return Err("*ring* doesn't support RSASHA1NSEC3SHA1 yet".into())
            }
            _ => unreachable!("non-RSA algorithm passed to RSA verify()"),
        };
        let public_key = signature::RsaPublicKeyComponents {
            n: self.pkey.n(),
            e: self.pkey.e(),
        };
        public_key
            .verify(alg, message, signature)
            .map_err(Into::into)
    }
}

/// Variants of all know public keys
#[non_exhaustive]
pub enum PublicKeyEnum<'k> {
    /// RSA keypair, supported by OpenSSL
    #[cfg(any(feature = "openssl", feature = "ring"))]
    #[cfg_attr(docsrs, doc(cfg(any(feature = "openssl", feature = "ring"))))]
    Rsa(Rsa<'k>),
    /// Elliptic curve keypair
    #[cfg(all(not(feature = "ring"), feature = "openssl"))]
    #[cfg_attr(docsrs, doc(cfg(any(all(not(feature = "ring"), feature = "openssl")))))]
    Ec(Ec<'k>),
    /// Elliptic curve keypair
    #[cfg(feature = "ring")]
    #[cfg_attr(docsrs, doc(cfg(feature = "ring")))]
    Ec(Ec),
    /// Ed25519 public key for the Algorithm::ED25519
    #[cfg(feature = "ring")]
    #[cfg_attr(docsrs, doc(cfg(feature = "ring")))]
    Ed25519(Ed25519<'k>),
    /// PhatomData for compiler when ring and or openssl not defined, do not use...
    #[cfg(not(any(feature = "ring", feature = "openssl")))]
    #[cfg_attr(docsrs, doc(cfg(not(any(feature = "ring", feature = "openssl")))))]
    Phantom(&'k PhantomData<()>),
}

impl<'k> PublicKeyEnum<'k> {
    /// Converts the bytes into a PulbicKey of the specified algorithm
    #[allow(unused_variables, clippy::match_single_binding)]
    pub fn from_public_bytes(public_key: &'k [u8], algorithm: Algorithm) -> ProtoResult<Self> {
        #[allow(deprecated)]
        match algorithm {
            #[cfg(any(feature = "openssl", feature = "ring"))]
            Algorithm::ECDSAP256SHA256 | Algorithm::ECDSAP384SHA384 => Ok(PublicKeyEnum::Ec(
                Ec::from_public_bytes(public_key, algorithm)?,
            )),
            #[cfg(feature = "ring")]
            Algorithm::ED25519 => Ok(PublicKeyEnum::Ed25519(Ed25519::from_public_bytes(
                public_key,
            )?)),
            #[cfg(any(feature = "openssl", feature = "ring"))]
            Algorithm::RSASHA1
            | Algorithm::RSASHA1NSEC3SHA1
            | Algorithm::RSASHA256
            | Algorithm::RSASHA512 => Ok(PublicKeyEnum::Rsa(Rsa::from_public_bytes(public_key)?)),
            _ => Err("public key algorithm not supported".into()),
        }
    }
}

impl<'k> PublicKey for PublicKeyEnum<'k> {
    #[allow(clippy::match_single_binding, clippy::match_single_binding)]
    fn public_bytes(&self) -> &[u8] {
        match *self {
            #[cfg(any(feature = "openssl", feature = "ring"))]
            PublicKeyEnum::Ec(ref ec) => ec.public_bytes(),
            #[cfg(feature = "ring")]
            PublicKeyEnum::Ed25519(ref ed) => ed.public_bytes(),
            #[cfg(any(feature = "openssl", feature = "ring"))]
            PublicKeyEnum::Rsa(ref rsa) => rsa.public_bytes(),
            #[cfg(not(any(feature = "ring", feature = "openssl")))]
            _ => panic!("no public keys registered, enable ring or openssl features"),
        }
    }

    #[allow(unused_variables, clippy::match_single_binding)]
    fn verify(&self, algorithm: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
        match *self {
            #[cfg(any(feature = "openssl", feature = "ring"))]
            PublicKeyEnum::Ec(ref ec) => ec.verify(algorithm, message, signature),
            #[cfg(feature = "ring")]
            PublicKeyEnum::Ed25519(ref ed) => ed.verify(algorithm, message, signature),
            #[cfg(any(feature = "openssl", feature = "ring"))]
            PublicKeyEnum::Rsa(ref rsa) => rsa.verify(algorithm, message, signature),
            #[cfg(not(any(feature = "ring", feature = "openssl")))]
            _ => panic!("no public keys registered, enable ring or openssl features"),
        }
    }
}

/// An owned variant of PublicKey
pub struct PublicKeyBuf {
    key_buf: Vec<u8>,
}

impl PublicKeyBuf {
    /// Constructs a new PublicKey from the specified bytes, these should be in DNSKEY form.
    pub fn new(key_buf: Vec<u8>) -> Self {
        Self { key_buf }
    }
}

impl PublicKey for PublicKeyBuf {
    fn public_bytes(&self) -> &[u8] {
        &self.key_buf
    }

    fn verify(&self, algorithm: Algorithm, message: &[u8], signature: &[u8]) -> ProtoResult<()> {
        let public_key = PublicKeyEnum::from_public_bytes(&self.key_buf, algorithm)?;

        public_key.verify(algorithm, message, signature)
    }
}

#[cfg(all(not(feature = "ring"), feature = "openssl"))]
#[cfg(test)]
mod tests {
    #[cfg(feature = "openssl")]
    #[test]
    fn test_asn1_emit_integer() {
        fn test_case(source: &[u8], expected_data: &[u8]) {
            use crate::rr::dnssec::public_key::asn1_emit_integer;

            let mut output = Vec::<u8>::new();
            asn1_emit_integer(&mut output, source);
            assert_eq!(output[0], 0x02);
            assert_eq!(output[1], expected_data.len() as u8);
            assert_eq!(&output[2..], expected_data);
        }
        test_case(&[0x00], &[0x00]);
        test_case(&[0x00, 0x00], &[0x00]);
        test_case(&[0x7f], &[0x7f]);
        test_case(&[0x80], &[0x00, 0x80]);
        test_case(&[0x00, 0x80], &[0x00, 0x80]);
        test_case(&[0x00, 0x00, 0x80], &[0x00, 0x80]);
        test_case(&[0x7f, 0x00, 0x80], &[0x7f, 0x00, 0x80]);
        test_case(&[0x00, 0x7f, 0x00, 0x80], &[0x7f, 0x00, 0x80]);
        test_case(&[0x80, 0x00, 0x80], &[0x00, 0x80, 0x00, 0x80]);
        test_case(&[0xff, 0x00, 0x80], &[0x00, 0xff, 0x00, 0x80]);
    }
}