1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
// Copyright 2023 Oxide Computer Company

//! typify backend implementation.

#![deny(missing_docs)]

use std::collections::{BTreeMap, BTreeSet};

use conversions::SchemaCache;
use log::info;
use output::OutputSpace;
use proc_macro2::TokenStream;
use quote::{format_ident, quote, ToTokens};
use schemars::schema::{Metadata, RootSchema, Schema};
use thiserror::Error;
use type_entry::{
    StructPropertyState, TypeEntry, TypeEntryDetails, TypeEntryNative, TypeEntryNewtype,
    WrappedValue,
};

use crate::util::{sanitize, Case};

#[cfg(test)]
mod test_util;

mod conversions;
mod convert;
mod cycles;
mod defaults;
mod enums;
mod merge;
mod output;
mod rust_extension;
mod structs;
mod type_entry;
mod util;
mod validate;
mod value;

#[allow(missing_docs)]
#[derive(Error, Debug)]
pub enum Error {
    #[error("unexpected value type")]
    BadValue(String, serde_json::Value),
    #[error("invalid TypeId")]
    InvalidTypeId,
    #[error("value does not conform to the given schema")]
    InvalidValue,
    #[error("invalid schema for {}: {reason}", show_type_name(.type_name.as_deref()))]
    InvalidSchema {
        type_name: Option<String>,
        reason: String,
    },
}

impl Error {
    fn invalid_value() -> Self {
        Self::InvalidValue
    }
}

#[allow(missing_docs)]
pub type Result<T> = std::result::Result<T, Error>;

fn show_type_name(type_name: Option<&str>) -> &str {
    if let Some(type_name) = type_name {
        type_name
    } else {
        "<unknown type>"
    }
}

/// Representation of a type which may have a definition or may be built-in.
#[derive(Debug)]
pub struct Type<'a> {
    type_space: &'a TypeSpace,
    type_entry: &'a TypeEntry,
}

#[allow(missing_docs)]
/// Type details returned by Type::details() to inspect a type.
pub enum TypeDetails<'a> {
    Enum(TypeEnum<'a>),
    Struct(TypeStruct<'a>),
    Newtype(TypeNewtype<'a>),

    Option(TypeId),
    Vec(TypeId),
    Map(TypeId, TypeId),
    Set(TypeId),
    Box(TypeId),
    Tuple(Box<dyn Iterator<Item = TypeId> + 'a>),
    Array(TypeId, usize),
    Builtin(&'a str),

    Unit,
    String,
}

/// Enum type details.
pub struct TypeEnum<'a> {
    details: &'a type_entry::TypeEntryEnum,
}

/// Enum variant details.
pub enum TypeEnumVariant<'a> {
    /// Variant with no associated data.
    Simple,
    /// Tuple-type variant with at least one associated type.
    Tuple(Vec<TypeId>),
    /// Struct-type variant with named properties and types.
    Struct(Vec<(&'a str, TypeId)>),
}

/// Full information pertaining to an enum variant.
pub struct TypeEnumVariantInfo<'a> {
    /// Name.
    pub name: &'a str,
    /// Description.
    pub description: Option<&'a str>,
    /// Details for the enum variant.
    pub details: TypeEnumVariant<'a>,
}

/// Struct type details.
pub struct TypeStruct<'a> {
    details: &'a type_entry::TypeEntryStruct,
}

/// Full information pertaining to a struct property.
pub struct TypeStructPropInfo<'a> {
    /// Name.
    pub name: &'a str,
    /// Description.
    pub description: Option<&'a str>,
    /// Whether the propertty is required.
    pub required: bool,
    /// Identifies the schema for the property.
    pub type_id: TypeId,
}

/// Newtype details.
pub struct TypeNewtype<'a> {
    details: &'a type_entry::TypeEntryNewtype,
}

/// Type identifier returned from type creation and used to lookup types.
#[derive(Debug, PartialEq, PartialOrd, Ord, Eq, Clone, Hash)]
pub struct TypeId(u64);

#[derive(Debug, Clone, PartialEq)]
pub(crate) enum Name {
    Required(String),
    Suggested(String),
    Unknown,
}

impl Name {
    pub fn into_option(self) -> Option<String> {
        match self {
            Name::Required(s) | Name::Suggested(s) => Some(s),
            Name::Unknown => None,
        }
    }

    pub fn append(&self, s: &str) -> Self {
        match self {
            Name::Required(prefix) | Name::Suggested(prefix) => {
                Self::Suggested(format!("{}_{}", prefix, s))
            }
            Name::Unknown => Name::Unknown,
        }
    }
}

#[derive(Debug, Clone, Eq, PartialEq, Ord, PartialOrd)]
pub(crate) enum RefKey {
    Root,
    Def(String),
}

/// A collection of types.
#[derive(Debug)]
pub struct TypeSpace {
    next_id: u64,

    // TODO we need this in order to inspect the collection of reference types
    // e.g. to do `all_mutually_exclusive`. In the future, we could obviate the
    // need this by keeping a single Map of referenced types whose value was an
    // enum of a "raw" or a "converted" schema.
    definitions: BTreeMap<RefKey, Schema>,

    id_to_entry: BTreeMap<TypeId, TypeEntry>,
    type_to_id: BTreeMap<TypeEntryDetails, TypeId>,

    name_to_id: BTreeMap<String, TypeId>,
    ref_to_id: BTreeMap<RefKey, TypeId>,

    uses_chrono: bool,
    uses_uuid: bool,
    uses_serde_json: bool,
    uses_regress: bool,

    settings: TypeSpaceSettings,

    cache: SchemaCache,

    // Shared functions for generating default values
    defaults: BTreeSet<DefaultImpl>,
}

impl Default for TypeSpace {
    fn default() -> Self {
        Self {
            next_id: 1,
            definitions: Default::default(),
            id_to_entry: Default::default(),
            type_to_id: Default::default(),
            name_to_id: Default::default(),
            ref_to_id: Default::default(),
            uses_chrono: Default::default(),
            uses_uuid: Default::default(),
            uses_serde_json: Default::default(),
            uses_regress: Default::default(),
            settings: Default::default(),
            cache: Default::default(),
            defaults: Default::default(),
        }
    }
}

#[derive(Debug, PartialEq, Eq, PartialOrd, Ord)]
pub(crate) enum DefaultImpl {
    Boolean,
    I64,
    U64,
}

/// Settings that alter type generation.
#[derive(Debug, Default, Clone)]
pub struct TypeSpaceSettings {
    type_mod: Option<String>,
    extra_derives: Vec<String>,
    struct_builder: bool,

    unknown_crates: UnknownPolicy,
    crates: BTreeMap<String, CrateSpec>,

    patch: BTreeMap<String, TypeSpacePatch>,
    replace: BTreeMap<String, TypeSpaceReplace>,
    convert: Vec<TypeSpaceConversion>,
}

#[derive(Debug, Clone)]
struct CrateSpec {
    version: CrateVers,
    rename: Option<String>,
}

/// Policy to apply to external types described by schema extensions whose
/// crates are not explicitly specified.
#[derive(Default, Debug, Clone, Copy, Eq, PartialEq, serde::Deserialize)]
pub enum UnknownPolicy {
    /// Generate the type rather according to the schema.
    #[default]
    Generate,
    /// Use the specified type by path (this will result in a compile error if
    /// one of the crates is not an existing dependency). Note that this
    /// ignores compatibility requirements specified by the schema extension
    /// and may result in subtle failures if the crate used is incompatible
    /// with the version that produced the schema.
    Allow,
    /// If an unknown crate is encountered, generate a compiler warning
    /// indicating the crate that must be specified to proceed along with
    /// version constraints. This affords users an opportunity to specify the
    /// specific crate version to use (or the user may explicitly deny use of
    /// that crate).
    Deny,
}

/// Specify the version for a named crate to consider for type use (rather than
/// generating types) in the presense of a schema extension.
#[derive(Debug, Clone)]
pub enum CrateVers {
    /// An explicit version.
    Version(semver::Version),
    /// Any version.
    Any,
    /// Never use the given crate.
    Never,
}

impl CrateVers {
    /// Parse from a string
    pub fn parse(s: &str) -> Option<Self> {
        if s == "!" {
            Some(Self::Never)
        } else if s == "*" {
            Some(Self::Any)
        } else {
            Some(Self::Version(semver::Version::parse(s).ok()?))
        }
    }
}

/// Contains a set of modifications that may be applied to an existing type.
#[derive(Debug, Default, Clone)]
pub struct TypeSpacePatch {
    rename: Option<String>,
    derives: Vec<String>,
}

/// Contains the attributes of a replacement of an existing type.
#[derive(Debug, Default, Clone)]
pub struct TypeSpaceReplace {
    replace_type: String,
    impls: Vec<TypeSpaceImpl>,
}

/// Defines a schema which will be replaced, and the attributes of the
/// replacement.
#[derive(Debug, Clone)]
struct TypeSpaceConversion {
    schema: schemars::schema::SchemaObject,
    type_name: String,
    impls: Vec<TypeSpaceImpl>,
}

#[allow(missing_docs)]
// TODO we can currently only address traits for which cycle analysis is not
// required.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[non_exhaustive]
pub enum TypeSpaceImpl {
    FromStr,
    Display,
    Default,
}

impl std::str::FromStr for TypeSpaceImpl {
    type Err = String;

    fn from_str(s: &str) -> std::result::Result<Self, Self::Err> {
        match s {
            "FromStr" => Ok(Self::FromStr),
            "Display" => Ok(Self::Display),
            "Default" => Ok(Self::Default),
            _ => Err(format!("{} is not a valid trait specifier", s)),
        }
    }
}

impl TypeSpaceSettings {
    /// Set the name of the path prefix for types defined in this [TypeSpace].
    pub fn with_type_mod<S: AsRef<str>>(&mut self, type_mod: S) -> &mut Self {
        self.type_mod = Some(type_mod.as_ref().to_string());
        self
    }

    /// Add an additional derive macro to apply to all defined types.
    pub fn with_derive(&mut self, derive: String) -> &mut Self {
        if !self.extra_derives.contains(&derive) {
            self.extra_derives.push(derive);
        }
        self
    }

    /// For structs, include a "builder" type that can be used to construct it.
    pub fn with_struct_builder(&mut self, struct_builder: bool) -> &mut Self {
        self.struct_builder = struct_builder;
        self
    }

    /// Replace a referenced type with a named type. This causes the referenced
    /// type *not* to be generated. If the same `type_name` is specified multiple times,
    /// the last one is honored.
    pub fn with_replacement<TS: ToString, RS: ToString, I: Iterator<Item = TypeSpaceImpl>>(
        &mut self,
        type_name: TS,
        replace_type: RS,
        impls: I,
    ) -> &mut Self {
        self.replace.insert(
            type_name.to_string(),
            TypeSpaceReplace {
                replace_type: replace_type.to_string(),
                impls: impls.collect(),
            },
        );
        self
    }

    /// Modify a type with the given name. Note that specifying a type not
    /// created by the input JSON schema does **not** result in an error and is
    /// silently ignored. If the same `type_name` is specified multiple times,
    /// the last one is honored.
    pub fn with_patch<S: ToString>(
        &mut self,
        type_name: S,
        type_patch: &TypeSpacePatch,
    ) -> &mut Self {
        self.patch.insert(type_name.to_string(), type_patch.clone());
        self
    }

    /// Replace a given schema with a named type. The given schema must precisely
    /// match the schema from the input, including fields such as `description`.
    /// Typical usage is to map a schema definition to a builtin type or type
    /// provided by a crate, such as `'rust_decimal::Decimal'`. If the same schema
    /// is specified multiple times, the first one is honored.
    pub fn with_conversion<S: ToString, I: Iterator<Item = TypeSpaceImpl>>(
        &mut self,
        schema: schemars::schema::SchemaObject,
        type_name: S,
        impls: I,
    ) -> &mut Self {
        self.convert.push(TypeSpaceConversion {
            schema,
            type_name: type_name.to_string(),
            impls: impls.collect(),
        });
        self
    }

    /// Type schemas may contain an extension (`x-rust-type`) that indicates
    /// the corresponding Rust type within a particular crate. This function
    /// changes the disposition regarding crates not otherwise specified via
    /// [`Self::with_crate`]. The default value is `false`.
    pub fn with_unknown_crates(&mut self, policy: UnknownPolicy) -> &mut Self {
        self.unknown_crates = policy;
        self
    }

    /// Type schemas may contain an extension (`x-rust-type`) that indicates
    /// the corresponding Rust type within a particular crate. This extension
    /// indicates the crate, version compatibility, type path, and type
    /// parameters. This function modifies settings to use (rather than
    /// generate) types from the given crate and version. The version should
    /// precisely match the version of the crate that you expect as a
    /// dependency.
    pub fn with_crate<S1: ToString>(
        &mut self,
        crate_name: S1,
        version: CrateVers,
        rename: Option<&String>,
    ) -> &mut Self {
        self.crates.insert(
            crate_name.to_string(),
            CrateSpec {
                version,
                rename: rename.cloned(),
            },
        );
        self
    }
}

impl TypeSpacePatch {
    /// Specify the new name for patched type.
    pub fn with_rename<S: ToString>(&mut self, rename: S) -> &mut Self {
        self.rename = Some(rename.to_string());
        self
    }

    /// Specify an additional derive to apply to the patched type.
    pub fn with_derive<S: ToString>(&mut self, derive: S) -> &mut Self {
        self.derives.push(derive.to_string());
        self
    }
}

impl TypeSpace {
    /// Create a new TypeSpace with custom settings
    pub fn new(settings: &TypeSpaceSettings) -> Self {
        let mut cache = SchemaCache::default();

        settings.convert.iter().for_each(
            |TypeSpaceConversion {
                 schema,
                 type_name,
                 impls,
             }| {
                cache.insert(schema, type_name, impls);
            },
        );

        Self {
            settings: settings.clone(),
            cache,
            ..Default::default()
        }
    }

    /// Add a collection of types that will be used as references. Regardless
    /// of how these types are defined--*de novo* or built-in--each type will
    /// appear in the final output as a struct, enum or newtype. This method
    /// may be called multiple times, but collections of references must be
    /// self-contained; in other words, a type in one invocation may not refer
    /// to a type in another invocation.
    // TODO on an error the TypeSpace is in a weird state; we, perhaps, create
    // a child TypeSpace and then merge it in once all conversions hae
    // succeeded.
    pub fn add_ref_types<I, S>(&mut self, type_defs: I) -> Result<()>
    where
        I: IntoIterator<Item = (S, Schema)>,
        S: AsRef<str>,
    {
        self.add_ref_types_impl(
            type_defs
                .into_iter()
                .map(|(key, schema)| (RefKey::Def(key.as_ref().to_string()), schema)),
        )
    }

    fn add_ref_types_impl<I>(&mut self, type_defs: I) -> Result<()>
    where
        I: IntoIterator<Item = (RefKey, Schema)>,
    {
        // Gather up all types to make things a little more convenient.
        let definitions = type_defs.into_iter().collect::<Vec<_>>();

        // Assign IDs to reference types before actually converting them. We'll
        // need these in the case of forward (or circular) references.
        let base_id = self.next_id;
        let def_len = definitions.len() as u64;
        self.next_id += def_len;

        for (index, (ref_name, schema)) in definitions.iter().enumerate() {
            self.ref_to_id
                .insert(ref_name.clone(), TypeId(base_id + index as u64));
            self.definitions.insert(ref_name.clone(), schema.clone());
        }

        // Convert all types; note that we use the type id assigned from the
        // previous step because each type may create additional types. This
        // effectively is doing the work of `add_type_with_name` but for a
        // batch of types.
        for (index, (ref_name, schema)) in definitions.into_iter().enumerate() {
            info!(
                "converting type: {:?} with schema {}",
                ref_name,
                serde_json::to_string(&schema).unwrap()
            );

            // Check for manually replaced types. Proceed with type conversion
            // if there is none; use the specified type if there is.
            let type_id = TypeId(base_id + index as u64);

            let maybe_replace = match &ref_name {
                RefKey::Root => None,
                RefKey::Def(def_name) => {
                    let check_name = sanitize(def_name, Case::Pascal);
                    self.settings.replace.get(&check_name)
                }
            };

            match maybe_replace {
                None => {
                    let type_name = if let RefKey::Def(name) = ref_name {
                        Name::Required(name.clone())
                    } else {
                        Name::Unknown
                    };
                    self.convert_ref_type(type_name, schema, type_id)?
                }

                Some(replace_type) => {
                    let type_entry = TypeEntry::new_native(
                        replace_type.replace_type.clone(),
                        &replace_type.impls.clone(),
                    );
                    self.id_to_entry.insert(type_id, type_entry);
                }
            }
        }

        // Eliminate cycles. It's sufficient to only start from referenced
        // types as a reference is required to make a cycle.
        self.break_cycles(base_id..base_id + def_len);

        // Finalize all created types.
        for index in base_id..self.next_id {
            let type_id = TypeId(index);
            let mut type_entry = self.id_to_entry.get(&type_id).unwrap().clone();
            type_entry.finalize(self)?;
            self.id_to_entry.insert(type_id, type_entry);
        }

        Ok(())
    }

    fn convert_ref_type(&mut self, type_name: Name, schema: Schema, type_id: TypeId) -> Result<()> {
        let (mut type_entry, metadata) = self.convert_schema(type_name.clone(), &schema)?;
        let default = metadata
            .as_ref()
            .and_then(|m| m.default.as_ref())
            .cloned()
            .map(WrappedValue::new);
        let type_entry = match &mut type_entry.details {
            // The types that are already named are good to go.
            TypeEntryDetails::Enum(details) => {
                details.default = default;
                type_entry
            }
            TypeEntryDetails::Struct(details) => {
                details.default = default;
                type_entry
            }
            TypeEntryDetails::Newtype(details) => {
                details.default = default;
                type_entry
            }

            // If the type entry is a reference, then this definition is a
            // simple alias to another type in this list of definitions
            // (which may nor may not have already been converted). We
            // simply create a newtype with that type ID.
            TypeEntryDetails::Reference(type_id) => TypeEntryNewtype::from_metadata(
                self,
                type_name,
                metadata,
                type_id.clone(),
                schema.clone(),
            ),

            TypeEntryDetails::Native(native) if native.name_match(&type_name) => type_entry,

            // For types that don't have names, this is effectively a type
            // alias which we treat as a newtype.
            _ => {
                info!(
                    "type alias {:?} {}\n{:?}",
                    type_name,
                    serde_json::to_string_pretty(&schema).unwrap(),
                    metadata
                );
                let subtype_id = self.assign_type(type_entry);
                TypeEntryNewtype::from_metadata(
                    self,
                    type_name,
                    metadata,
                    subtype_id,
                    schema.clone(),
                )
            }
        };
        // TODO need a type alias?
        if let Some(entry_name) = type_entry.name() {
            self.name_to_id.insert(entry_name.clone(), type_id.clone());
        }
        self.id_to_entry.insert(type_id, type_entry);
        Ok(())
    }

    /// Add a new type and return a type identifier that may be used in
    /// function signatures or embedded within other types.
    pub fn add_type(&mut self, schema: &Schema) -> Result<TypeId> {
        self.add_type_with_name(schema, None)
    }

    /// Add a new type with a name hint and return a the components necessary
    /// to use the type for various components of a function signature.
    pub fn add_type_with_name(
        &mut self,
        schema: &Schema,
        name_hint: Option<String>,
    ) -> Result<TypeId> {
        let base_id = self.next_id;

        let name = match name_hint {
            Some(s) => Name::Suggested(s),
            None => Name::Unknown,
        };
        let (type_id, _) = self.id_for_schema(name, schema)?;

        // Finalize all created types.
        for index in base_id..self.next_id {
            let type_id = TypeId(index);
            let mut type_entry = self.id_to_entry.get(&type_id).unwrap().clone();
            type_entry.finalize(self)?;
            self.id_to_entry.insert(type_id, type_entry);
        }

        Ok(type_id)
    }

    /// Add all the types contained within a RootSchema including any
    /// referenced types and the top-level type (if there is one and it has a
    /// title).
    pub fn add_root_schema(&mut self, schema: RootSchema) -> Result<Option<TypeId>> {
        let RootSchema {
            meta_schema: _,
            schema,
            definitions,
        } = schema;

        let mut defs = definitions
            .into_iter()
            .map(|(key, schema)| (RefKey::Def(key), schema))
            .collect::<Vec<_>>();

        // Does the root type have a name (otherwise... ignore it)
        let root_type = schema
            .metadata
            .as_ref()
            .and_then(|m| m.title.as_ref())
            .is_some();

        if root_type {
            defs.push((RefKey::Root, schema.into()));
        }

        self.add_ref_types_impl(defs)?;

        if root_type {
            Ok(self.ref_to_id.get(&RefKey::Root).cloned())
        } else {
            Ok(None)
        }
    }

    /// Get a type given its ID.
    pub fn get_type(&self, type_id: &TypeId) -> Result<Type> {
        let type_entry = self.id_to_entry.get(type_id).ok_or(Error::InvalidTypeId)?;
        Ok(Type {
            type_space: self,
            type_entry,
        })
    }

    /// Whether the generated code needs `chrono` crate.
    pub fn uses_chrono(&self) -> bool {
        self.uses_chrono
    }

    /// Whether the generated code needs [regress] crate.
    pub fn uses_regress(&self) -> bool {
        self.uses_regress
    }

    /// Whether the generated code needs [serde_json] crate.
    pub fn uses_serde_json(&self) -> bool {
        self.uses_serde_json
    }

    /// Whether the generated code needs `uuid` crate.
    pub fn uses_uuid(&self) -> bool {
        self.uses_uuid
    }

    /// Iterate over all types including those defined in this [TypeSpace] and
    /// those referred to by those types.
    pub fn iter_types(&self) -> impl Iterator<Item = Type> {
        self.id_to_entry.values().map(move |type_entry| Type {
            type_space: self,
            type_entry,
        })
    }

    /// All code for processed types.
    pub fn to_stream(&self) -> TokenStream {
        let mut output = OutputSpace::default();

        // Add the error type we use for conversions; it's fine if this is
        // unused.
        output.add_item(
            output::OutputSpaceMod::Error,
            "",
            quote! {
                /// Error from a TryFrom or FromStr implementation.
                pub struct ConversionError(std::borrow::Cow<'static, str>);

                impl std::error::Error for ConversionError {}
                impl std::fmt::Display for ConversionError {
                    fn fmt(&self, f: &mut std::fmt::Formatter<'_>)
                        -> Result<(), std::fmt::Error>
                    {
                        std::fmt::Display::fmt(&self.0, f)
                    }
                }

                impl std::fmt::Debug for ConversionError {
                    fn fmt(&self, f: &mut std::fmt::Formatter<'_>)
                        -> Result<(), std::fmt::Error>
                    {
                        std::fmt::Debug::fmt(&self.0, f)
                    }
                }
                impl From<&'static str> for ConversionError {
                    fn from(value: &'static str) -> Self {
                        Self(value.into())
                    }
                }
                impl From<String> for ConversionError {
                    fn from(value: String) -> Self {
                        Self(value.into())
                    }
                }
            },
        );

        // Add all types.
        self.id_to_entry
            .values()
            .for_each(|type_entry| type_entry.output(self, &mut output));

        // Add all shared default functions.
        self.defaults
            .iter()
            .for_each(|x| output.add_item(output::OutputSpaceMod::Defaults, "", x.into()));

        output.into_stream()
    }

    /// Allocated the next TypeId.
    fn assign(&mut self) -> TypeId {
        let id = TypeId(self.next_id);
        self.next_id += 1;
        id
    }

    /// Assign a TypeId for a TypeEntry. This handles resolving references,
    /// checking for duplicate type definitions (e.g. to make sure there aren't
    /// two conflicting types of the same name), and deduplicates various
    /// flavors of built-in types.
    fn assign_type(&mut self, ty: TypeEntry) -> TypeId {
        if let TypeEntryDetails::Reference(type_id) = ty.details {
            type_id
        } else if let Some(name) = ty.name() {
            // If there's already a type of this name, we make sure it's
            // identical. Note that this covers all user-defined types.

            // TODO there are many different choices we might make here
            // that could differ depending on the texture of the schema.
            // For example, a schema might use the string "Response" in a
            // bunch of places and if that were the case we might expect
            // them to be different and resolve that by renaming or scoping
            // them in some way.
            if let Some(type_id) = self.name_to_id.get(name) {
                // TODO we'd like to verify that the type is structurally the
                // same, but the types may not be functionally equal. This is a
                // consequence of types being "finalized" after each type
                // addition. This further emphasized the need for a more
                // deliberate, multi-pass approach.
                type_id.clone()
            } else {
                let type_id = self.assign();
                self.name_to_id.insert(name.clone(), type_id.clone());
                self.id_to_entry.insert(type_id.clone(), ty);
                type_id
            }
        } else if let Some(type_id) = self.type_to_id.get(&ty.details) {
            type_id.clone()
        } else {
            let type_id = self.assign();
            self.type_to_id.insert(ty.details.clone(), type_id.clone());
            self.id_to_entry.insert(type_id.clone(), ty);
            type_id
        }
    }

    /// Convert a schema to a TypeEntry and assign it a TypeId.
    ///
    /// This is used for sub-types such as the type of an array or the types of
    /// properties of a struct.
    fn id_for_schema<'a>(
        &mut self,
        type_name: Name,
        schema: &'a Schema,
    ) -> Result<(TypeId, &'a Option<Box<Metadata>>)> {
        let (mut type_entry, metadata) = self.convert_schema(type_name, schema)?;
        if let Some(metadata) = metadata {
            let default = metadata.default.clone().map(WrappedValue::new);
            match &mut type_entry.details {
                TypeEntryDetails::Enum(details) => {
                    details.default = default;
                }
                TypeEntryDetails::Struct(details) => {
                    details.default = default;
                }
                TypeEntryDetails::Newtype(details) => {
                    details.default = default;
                }
                _ => (),
            }
        }
        let type_id = self.assign_type(type_entry);
        Ok((type_id, metadata))
    }

    /// Create an Option<T> from a pre-assigned TypeId and assign it an ID.
    fn id_to_option(&mut self, id: &TypeId) -> TypeId {
        self.assign_type(TypeEntryDetails::Option(id.clone()).into())
    }

    // Create an Option<T> from a TypeEntry by assigning it type.
    fn type_to_option(&mut self, ty: TypeEntry) -> TypeEntry {
        TypeEntryDetails::Option(self.assign_type(ty)).into()
    }

    /// Create a Box<T> from a pre-assigned TypeId and assign it an ID.
    fn id_to_box(&mut self, id: &TypeId) -> TypeId {
        self.assign_type(TypeEntryDetails::Box(id.clone()).into())
    }
}

impl ToTokens for TypeSpace {
    fn to_tokens(&self, tokens: &mut TokenStream) {
        tokens.extend(self.to_stream())
    }
}

impl<'a> Type<'a> {
    /// The name of the type as a String.
    pub fn name(&self) -> String {
        let Type {
            type_space,
            type_entry,
        } = self;
        type_entry.type_name(type_space)
    }

    /// The identifier for the type as might be used for a function return or
    /// defining the type of a member of a struct..
    pub fn ident(&self) -> TokenStream {
        let Type {
            type_space,
            type_entry,
        } = self;
        type_entry.type_ident(type_space, &type_space.settings.type_mod)
    }

    /// The identifier for the type as might be used for a parameter in a
    /// function signature. In general: simple types are the same as
    /// [Type::ident] and complex types prepend a `&`.
    pub fn parameter_ident(&self) -> TokenStream {
        let Type {
            type_space,
            type_entry,
        } = self;
        type_entry.type_parameter_ident(type_space, None)
    }

    /// The identifier for the type as might be used for a parameter in a
    /// function signature along with a lifetime parameter. In general: simple
    /// types are the same as [Type::ident] and complex types prepend a
    /// `&'<lifetime>`.
    pub fn parameter_ident_with_lifetime(&self, lifetime: &str) -> TokenStream {
        let Type {
            type_space,
            type_entry,
        } = self;
        type_entry.type_parameter_ident(type_space, Some(lifetime))
    }

    /// A textual description of the type appropriate for debug output.
    pub fn describe(&self) -> String {
        self.type_entry.describe()
    }

    /// Get details about the type.
    pub fn details(&self) -> TypeDetails {
        match &self.type_entry.details {
            // Named user-defined types
            TypeEntryDetails::Enum(details) => TypeDetails::Enum(TypeEnum { details }),
            TypeEntryDetails::Struct(details) => TypeDetails::Struct(TypeStruct { details }),
            TypeEntryDetails::Newtype(details) => TypeDetails::Newtype(TypeNewtype { details }),

            // Compound types
            TypeEntryDetails::Option(type_id) => TypeDetails::Option(type_id.clone()),
            TypeEntryDetails::Vec(type_id) => TypeDetails::Vec(type_id.clone()),
            TypeEntryDetails::Map(key_id, value_id) => {
                TypeDetails::Map(key_id.clone(), value_id.clone())
            }
            TypeEntryDetails::Set(type_id) => TypeDetails::Set(type_id.clone()),
            TypeEntryDetails::Box(type_id) => TypeDetails::Box(type_id.clone()),
            TypeEntryDetails::Tuple(types) => TypeDetails::Tuple(Box::new(types.iter().cloned())),
            TypeEntryDetails::Array(type_id, length) => {
                TypeDetails::Array(type_id.clone(), *length)
            }

            // Builtin types
            TypeEntryDetails::Unit => TypeDetails::Unit,
            TypeEntryDetails::Native(TypeEntryNative {
                type_name: name, ..
            })
            | TypeEntryDetails::Integer(name)
            | TypeEntryDetails::Float(name) => TypeDetails::Builtin(name.as_str()),
            TypeEntryDetails::Boolean => TypeDetails::Builtin("bool"),
            TypeEntryDetails::String => TypeDetails::String,
            TypeEntryDetails::JsonValue => TypeDetails::Builtin("serde_json::Value"),

            // Only used during processing; shouldn't be visible at this point
            TypeEntryDetails::Reference(_) => unreachable!(),
        }
    }

    /// Checks if the type has the associated impl.
    pub fn has_impl(&self, impl_name: TypeSpaceImpl) -> bool {
        let Type {
            type_space,
            type_entry,
        } = self;
        type_entry.has_impl(type_space, impl_name)
    }

    /// Provides the the type identifier for the builder if one exists.
    pub fn builder(&self) -> Option<TokenStream> {
        let Type {
            type_space,
            type_entry,
        } = self;

        if !type_space.settings.struct_builder {
            return None;
        }

        match &type_entry.details {
            TypeEntryDetails::Struct(type_entry::TypeEntryStruct { name, .. }) => {
                match &type_space.settings.type_mod {
                    Some(type_mod) => {
                        let type_mod = format_ident!("{}", type_mod);
                        let type_name = format_ident!("{}", name);
                        Some(quote! { #type_mod :: builder :: #type_name })
                    }
                    None => {
                        let type_name = format_ident!("{}", name);
                        Some(quote! { builder :: #type_name })
                    }
                }
            }
            _ => None,
        }
    }
}

impl<'a> TypeEnum<'a> {
    /// Get name and information of each enum variant.
    pub fn variants(&'a self) -> impl Iterator<Item = (&'a str, TypeEnumVariant<'a>)> {
        self.variants_info().map(|info| (info.name, info.details))
    }

    /// Get all information for each enum variant.
    pub fn variants_info(&'a self) -> impl Iterator<Item = TypeEnumVariantInfo<'a>> {
        self.details.variants.iter().map(move |variant| {
            let details = match &variant.details {
                type_entry::VariantDetails::Simple => TypeEnumVariant::Simple,
                // The distinction between a lone item variant and a tuple
                // variant with a single item is only relevant internally.
                type_entry::VariantDetails::Item(type_id) => {
                    TypeEnumVariant::Tuple(vec![type_id.clone()])
                }
                type_entry::VariantDetails::Tuple(types) => TypeEnumVariant::Tuple(types.clone()),
                type_entry::VariantDetails::Struct(properties) => TypeEnumVariant::Struct(
                    properties
                        .iter()
                        .map(|prop| (prop.name.as_str(), prop.type_id.clone()))
                        .collect(),
                ),
            };
            TypeEnumVariantInfo {
                name: variant.name.as_str(),
                description: variant.description.as_deref(),
                details,
            }
        })
    }
}

impl<'a> TypeStruct<'a> {
    /// Get name and type of each property.
    pub fn properties(&'a self) -> impl Iterator<Item = (&'a str, TypeId)> {
        self.details
            .properties
            .iter()
            .map(move |prop| (prop.name.as_str(), prop.type_id.clone()))
    }

    /// Get all information about each struct property.
    pub fn properties_info(&'a self) -> impl Iterator<Item = TypeStructPropInfo> {
        self.details
            .properties
            .iter()
            .map(move |prop| TypeStructPropInfo {
                name: prop.name.as_str(),
                description: prop.description.as_deref(),
                required: matches!(&prop.state, StructPropertyState::Required),
                type_id: prop.type_id.clone(),
            })
    }
}

impl<'a> TypeNewtype<'a> {
    /// Get the inner type of the newtype struct.
    pub fn inner(&self) -> TypeId {
        self.details.type_id.clone()
    }
}

#[cfg(test)]
mod tests {
    use schema::Schema;
    use schemars::{schema_for, JsonSchema};
    use serde::Serialize;
    use serde_json::json;
    use std::collections::HashSet;

    use crate::{
        output::OutputSpace,
        test_util::validate_output,
        type_entry::{TypeEntryEnum, VariantDetails},
        Name, TypeEntryDetails, TypeSpace, TypeSpaceSettings,
    };

    #[allow(dead_code)]
    #[derive(Serialize, JsonSchema)]
    struct Blah {
        blah: String,
    }

    #[allow(dead_code)]
    #[derive(Serialize, JsonSchema)]
    #[serde(rename_all = "camelCase")]
    //#[serde(untagged)]
    //#[serde(tag = "type", content = "content")]
    enum E {
        /// aaa
        A,
        /// bee
        B,
        /// cee
        //C(Vec<String>),
        C(Blah),
        /// dee
        D {
            /// double D
            dd: String,
        },
        // /// eff
        // F(
        //     /// eff.0
        //     u32,
        //     /// eff.1
        //     u32,
        // ),
    }

    #[allow(dead_code)]
    #[derive(JsonSchema)]
    #[serde(rename_all = "camelCase")]
    struct Foo {
        /// this is bar
        #[serde(default)]
        bar: Option<String>,
        baz_baz: i32,
        /// eeeeee!
        e: E,
    }

    #[test]
    fn test_simple() {
        let schema = schema_for!(Foo);
        println!("{:#?}", schema);
        let mut type_space = TypeSpace::default();
        type_space.add_ref_types(schema.definitions).unwrap();
        let (ty, _) = type_space
            .convert_schema_object(
                Name::Unknown,
                &schemars::schema::Schema::Object(schema.schema.clone()),
                &schema.schema,
            )
            .unwrap();

        println!("{:#?}", ty);

        let mut output = OutputSpace::default();
        ty.output(&type_space, &mut output);
        println!("{}", output.into_stream());

        for ty in type_space.id_to_entry.values() {
            println!("{:#?}", ty);
            let mut output = OutputSpace::default();
            ty.output(&type_space, &mut output);
            println!("{}", output.into_stream());
        }
    }

    #[test]
    fn test_external_references() {
        let schema = json!({
            "$schema": "http://json-schema.org/draft-04/schema#",
            "definitions": {
                "somename": {
                    "$ref": "#/definitions/someothername",
                    "required": [ "someproperty" ]
                },
                "someothername": {
                    "type": "object",
                    "properties": {
                        "someproperty": {
                            "type": "string"
                        }
                    }
                }
            }
        });
        let schema = serde_json::from_value(schema).unwrap();
        println!("{:#?}", schema);
        let settings = TypeSpaceSettings::default();
        let mut type_space = TypeSpace::new(&settings);
        type_space.add_root_schema(schema).unwrap();
        let tokens = type_space.to_stream().to_string();
        println!("{}", tokens);
        assert!(tokens.contains(" pub struct Somename { pub someproperty : String , }"))
    }

    #[test]
    fn test_convert_enum_string() {
        #[allow(dead_code)]
        #[derive(JsonSchema)]
        #[serde(rename_all = "camelCase")]
        enum SimpleEnum {
            DotCom,
            Grizz,
            Kenneth,
        }

        let schema = schema_for!(SimpleEnum);
        println!("{:#?}", schema);

        let mut type_space = TypeSpace::default();
        type_space.add_ref_types(schema.definitions).unwrap();
        let (ty, _) = type_space
            .convert_schema_object(
                Name::Unknown,
                &schemars::schema::Schema::Object(schema.schema.clone()),
                &schema.schema,
            )
            .unwrap();

        match ty.details {
            TypeEntryDetails::Enum(TypeEntryEnum { variants, .. }) => {
                for variant in &variants {
                    assert_eq!(variant.details, VariantDetails::Simple);
                }
                let var_names = variants
                    .iter()
                    .map(|variant| variant.name.clone())
                    .collect::<HashSet<_>>();
                assert_eq!(
                    var_names,
                    ["DotCom", "Grizz", "Kenneth",]
                        .iter()
                        .map(ToString::to_string)
                        .collect::<HashSet<_>>()
                );
            }
            _ => {
                let mut output = OutputSpace::default();
                ty.output(&type_space, &mut output);
                println!("{}", output.into_stream());
                panic!();
            }
        }
    }

    #[test]
    fn test_string_enum_with_null() {
        let original_schema = json!({ "$ref": "xxx"});
        let enum_values = vec![
            json!("Shadrach"),
            json!("Meshach"),
            json!("Abednego"),
            json!(null),
        ];

        let mut type_space = TypeSpace::default();
        let (te, _) = type_space
            .convert_enum_string(
                Name::Required("OnTheGo".to_string()),
                &serde_json::from_value(original_schema).unwrap(),
                &None,
                &enum_values,
                None,
            )
            .unwrap();

        if let TypeEntryDetails::Option(id) = &te.details {
            let ote = type_space.id_to_entry.get(id).unwrap();
            if let TypeEntryDetails::Enum(TypeEntryEnum { variants, .. }) = &ote.details {
                let variants = variants
                    .iter()
                    .map(|v| match v.details {
                        VariantDetails::Simple => v.name.clone(),
                        _ => panic!("unexpected variant type"),
                    })
                    .collect::<HashSet<_>>();

                assert_eq!(
                    variants,
                    enum_values
                        .iter()
                        .flat_map(|j| j.as_str().map(ToString::to_string))
                        .collect::<HashSet<_>>()
                );
            } else {
                panic!("not the sub-type we expected {:#?}", te)
            }
        } else {
            panic!("not the type we expected {:#?}", te)
        }
    }

    #[test]
    fn test_alias() {
        #[derive(JsonSchema, Schema)]
        struct Stuff(Vec<String>);

        #[allow(dead_code)]
        #[derive(JsonSchema, Schema)]
        struct Things {
            a: String,
            b: Stuff,
        }

        validate_output::<Things>();
    }

    #[test]
    fn test_builder_name() {
        #[allow(dead_code)]
        #[derive(JsonSchema)]
        struct TestStruct {
            x: u32,
        }

        let mut type_space = TypeSpace::default();
        let schema = schema_for!(TestStruct);
        let type_id = type_space.add_root_schema(schema).unwrap().unwrap();
        let ty = type_space.get_type(&type_id).unwrap();

        assert!(ty.builder().is_none());

        let mut type_space = TypeSpace::new(TypeSpaceSettings::default().with_struct_builder(true));
        let schema = schema_for!(TestStruct);
        let type_id = type_space.add_root_schema(schema).unwrap().unwrap();
        let ty = type_space.get_type(&type_id).unwrap();

        assert_eq!(
            ty.builder().map(|ts| ts.to_string()),
            Some("builder :: TestStruct".to_string())
        );

        let mut type_space = TypeSpace::new(
            TypeSpaceSettings::default()
                .with_type_mod("types")
                .with_struct_builder(true),
        );
        let schema = schema_for!(TestStruct);
        let type_id = type_space.add_root_schema(schema).unwrap().unwrap();
        let ty = type_space.get_type(&type_id).unwrap();

        assert_eq!(
            ty.builder().map(|ts| ts.to_string()),
            Some("types :: builder :: TestStruct".to_string())
        );

        #[allow(dead_code)]
        #[derive(JsonSchema)]
        enum TestEnum {
            X,
            Y,
        }
        let mut type_space = TypeSpace::new(
            TypeSpaceSettings::default()
                .with_type_mod("types")
                .with_struct_builder(true),
        );
        let schema = schema_for!(TestEnum);
        let type_id = type_space.add_root_schema(schema).unwrap().unwrap();
        let ty = type_space.get_type(&type_id).unwrap();
        assert!(ty.builder().is_none());
    }
}