typify_impl/cycles.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
// Copyright 2023 Oxide Computer Company
use std::{
collections::{BTreeMap, BTreeSet},
ops::Range,
};
use crate::{
type_entry::{
TypeEntry, TypeEntryDetails, TypeEntryEnum, TypeEntryNewtype, TypeEntryStruct,
VariantDetails,
},
TypeId, TypeSpace,
};
impl TypeSpace {
/// We need to root out any containment cycles, breaking them by inserting
/// a `Box` type. Our choice of *where* to break cycles is more arbitrary
/// than optimal, but is well beyond sufficient.
pub fn break_cycles(&mut self, range: Range<u64>) {
enum Node {
Start {
type_id: TypeId,
},
Processing {
type_id: TypeId,
children_ids: Vec<TypeId>,
},
}
let mut visited = BTreeSet::<TypeId>::new();
for id in range {
let type_id = TypeId(id);
// This isn't strictly necessary, but we'll short-circuit some work
// by checking this right away.
if visited.contains(&type_id) {
continue;
}
let mut active = BTreeSet::<TypeId>::new();
let mut stack = Vec::<Node>::new();
active.insert(type_id.clone());
stack.push(Node::Start { type_id });
while let Some(top) = stack.last_mut() {
match top {
// Skip right to the end since we've already seen this type.
Node::Start { type_id } if visited.contains(type_id) => {
assert!(active.contains(type_id));
let type_id = type_id.clone();
*top = Node::Processing {
type_id,
children_ids: Vec::new(),
};
}
// Break any immediate cycles and queue up this type for
// descent into its child types.
Node::Start { type_id } => {
assert!(active.contains(type_id));
visited.insert(type_id.clone());
// Determine which child types form cycles--and
// therefore need to be snipped--and the rest--into
// which we should descend. We make this its own block
// to clarify the lifetime of the exclusive reference
// to the type. We don't really *need* to have an
// exclusive reference here, but there's no point in
// writing `get_child_ids` again for shared references.
let (snip, descend) = {
let type_entry = self.id_to_entry.get_mut(type_id).unwrap();
let child_ids = get_child_ids(type_entry)
.into_iter()
.map(|child_id| child_id.clone());
// If the child type is in active then we've found
// a cycle (otherwise we'll descend).
child_ids.partition::<Vec<_>, _>(|child_id| active.contains(child_id))
};
// Note that while `snip` might contain duplicates,
// `id_to_box` is idempotent insofar as the same input
// TypeId will result in the same output TypeId. Ergo
// the resulting pairs from which we construct the
// mapping would contain exact duplicates; it would not
// contain two values associated with the same key.
let replace = snip
.into_iter()
.map(|type_id| {
let box_id = self.id_to_box(&type_id);
(type_id, box_id)
})
.collect::<BTreeMap<_, _>>();
// Break any cycles by reassigning the child type to a box.
let type_entry = self.id_to_entry.get_mut(type_id).unwrap();
let child_ids = get_child_ids(type_entry);
for child_id in child_ids {
if let Some(replace_id) = replace.get(child_id) {
*child_id = replace_id.clone();
}
}
// Descend into child types.
let node = Node::Processing {
type_id: type_id.clone(),
children_ids: descend,
};
*top = node;
}
// If there are children left, push the next child onto the
// stack. If there are none left, pop this type.
Node::Processing {
type_id,
children_ids,
} => {
if let Some(type_id) = children_ids.pop() {
// Descend into the next child node.
active.insert(type_id.clone());
stack.push(Node::Start { type_id });
} else {
// All done; remove the item from the active list
// and stack.
active.remove(type_id);
let _ = stack.pop();
}
}
}
}
}
}
}
/// For types that could potentially participate in a cycle, return a list of
/// mutable references to the child types.
fn get_child_ids(type_entry: &mut TypeEntry) -> Vec<&mut TypeId> {
match &mut type_entry.details {
TypeEntryDetails::Enum(TypeEntryEnum { variants, .. }) => variants
.iter_mut()
.flat_map(|variant| match &mut variant.details {
VariantDetails::Simple => Vec::new(),
VariantDetails::Item(type_id) => vec![type_id],
VariantDetails::Tuple(type_ids) => type_ids.iter_mut().collect(),
VariantDetails::Struct(properties) => properties
.iter_mut()
.map(|prop| &mut prop.type_id)
.collect(),
})
.collect::<Vec<_>>(),
TypeEntryDetails::Struct(TypeEntryStruct { properties, .. }) => properties
.iter_mut()
.map(|prop| &mut prop.type_id)
.collect(),
TypeEntryDetails::Newtype(TypeEntryNewtype { type_id, .. }) => {
vec![type_id]
}
// Unnamed types that can participate in containment cycles.
TypeEntryDetails::Option(type_id) => vec![type_id],
TypeEntryDetails::Array(type_id, _) => vec![type_id],
TypeEntryDetails::Tuple(type_ids) => type_ids.iter_mut().collect(),
_ => Vec::new(),
}
}
#[cfg(test)]
mod tests {
use schema::Schema;
use schemars::JsonSchema;
use crate::test_util::validate_output;
#[test]
fn test_trivial_cycle() {
#[derive(JsonSchema, Schema)]
#[allow(dead_code)]
struct A {
a: Box<A>,
}
validate_output::<A>();
}
#[test]
fn test_optional_trivial_cycle() {
#[derive(JsonSchema, Schema)]
#[allow(dead_code)]
struct A {
a: Option<Box<A>>,
}
validate_output::<A>();
}
#[test]
fn test_enum_trivial_cycles() {
#[derive(JsonSchema, Schema)]
#[allow(dead_code)]
enum A {
Variant0(u64),
Variant1 {
a: u64,
b: Vec<A>,
rop: Option<Box<A>>,
},
Variant2 {
a: Box<A>,
},
Variant3(u64, Box<A>),
Variant4(Option<Box<A>>, String),
}
validate_output::<A>();
}
#[test]
fn test_newtype_trivial_cycle() {
#[derive(JsonSchema, Schema)]
#[allow(dead_code)]
struct A(Box<A>);
validate_output::<A>();
}
#[test]
fn test_abab_cycle() {
#[derive(JsonSchema, Schema)]
#[allow(dead_code)]
struct A(B);
#[derive(JsonSchema, Schema)]
#[allow(dead_code)]
struct B(Box<A>);
validate_output::<A>();
}
}