typst_syntax/
node.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
use std::fmt::{self, Debug, Display, Formatter};
use std::ops::{Deref, Range};
use std::rc::Rc;
use std::sync::Arc;

use ecow::{eco_format, eco_vec, EcoString, EcoVec};

use crate::ast::AstNode;
use crate::{FileId, Span, SyntaxKind};

/// A node in the untyped syntax tree.
#[derive(Clone, Eq, PartialEq, Hash)]
pub struct SyntaxNode(Repr);

/// The three internal representations.
#[derive(Clone, Eq, PartialEq, Hash)]
enum Repr {
    /// A leaf node.
    Leaf(LeafNode),
    /// A reference-counted inner node.
    Inner(Arc<InnerNode>),
    /// An error node.
    Error(Arc<ErrorNode>),
}

impl SyntaxNode {
    /// Create a new leaf node.
    pub fn leaf(kind: SyntaxKind, text: impl Into<EcoString>) -> Self {
        Self(Repr::Leaf(LeafNode::new(kind, text)))
    }

    /// Create a new inner node with children.
    pub fn inner(kind: SyntaxKind, children: Vec<SyntaxNode>) -> Self {
        Self(Repr::Inner(Arc::new(InnerNode::new(kind, children))))
    }

    /// Create a new error node.
    pub fn error(error: SyntaxError, text: impl Into<EcoString>) -> Self {
        Self(Repr::Error(Arc::new(ErrorNode::new(error, text))))
    }

    /// Create a dummy node of the given kind.
    ///
    /// Panics if `kind` is `SyntaxKind::Error`.
    #[track_caller]
    pub const fn placeholder(kind: SyntaxKind) -> Self {
        if matches!(kind, SyntaxKind::Error) {
            panic!("cannot create error placeholder");
        }
        Self(Repr::Leaf(LeafNode {
            kind,
            text: EcoString::new(),
            span: Span::detached(),
        }))
    }

    /// The type of the node.
    pub fn kind(&self) -> SyntaxKind {
        match &self.0 {
            Repr::Leaf(leaf) => leaf.kind,
            Repr::Inner(inner) => inner.kind,
            Repr::Error(_) => SyntaxKind::Error,
        }
    }

    /// Return `true` if the length is 0.
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// The byte length of the node in the source text.
    pub fn len(&self) -> usize {
        match &self.0 {
            Repr::Leaf(leaf) => leaf.len(),
            Repr::Inner(inner) => inner.len,
            Repr::Error(node) => node.len(),
        }
    }

    /// The span of the node.
    pub fn span(&self) -> Span {
        match &self.0 {
            Repr::Leaf(leaf) => leaf.span,
            Repr::Inner(inner) => inner.span,
            Repr::Error(node) => node.error.span,
        }
    }

    /// The text of the node if it is a leaf or error node.
    ///
    /// Returns the empty string if this is an inner node.
    pub fn text(&self) -> &EcoString {
        static EMPTY: EcoString = EcoString::new();
        match &self.0 {
            Repr::Leaf(leaf) => &leaf.text,
            Repr::Inner(_) => &EMPTY,
            Repr::Error(node) => &node.text,
        }
    }

    /// Extract the text from the node.
    ///
    /// Builds the string if this is an inner node.
    pub fn into_text(self) -> EcoString {
        match self.0 {
            Repr::Leaf(leaf) => leaf.text,
            Repr::Inner(inner) => {
                inner.children.iter().cloned().map(Self::into_text).collect()
            }
            Repr::Error(node) => node.text.clone(),
        }
    }

    /// The node's children.
    pub fn children(&self) -> std::slice::Iter<'_, SyntaxNode> {
        match &self.0 {
            Repr::Leaf(_) | Repr::Error(_) => [].iter(),
            Repr::Inner(inner) => inner.children.iter(),
        }
    }

    /// Whether the node can be cast to the given AST node.
    pub fn is<'a, T: AstNode<'a>>(&'a self) -> bool {
        self.cast::<T>().is_some()
    }

    /// Try to convert the node to a typed AST node.
    pub fn cast<'a, T: AstNode<'a>>(&'a self) -> Option<T> {
        T::from_untyped(self)
    }

    /// Cast the first child that can cast to the AST type `T`.
    pub fn cast_first_match<'a, T: AstNode<'a>>(&'a self) -> Option<T> {
        self.children().find_map(Self::cast)
    }

    /// Cast the last child that can cast to the AST type `T`.
    pub fn cast_last_match<'a, T: AstNode<'a>>(&'a self) -> Option<T> {
        self.children().rev().find_map(Self::cast)
    }

    /// Whether the node or its children contain an error.
    pub fn erroneous(&self) -> bool {
        match &self.0 {
            Repr::Leaf(_) => false,
            Repr::Inner(inner) => inner.erroneous,
            Repr::Error(_) => true,
        }
    }

    /// The error messages for this node and its descendants.
    pub fn errors(&self) -> Vec<SyntaxError> {
        if !self.erroneous() {
            return vec![];
        }

        if let Repr::Error(node) = &self.0 {
            vec![node.error.clone()]
        } else {
            self.children()
                .filter(|node| node.erroneous())
                .flat_map(|node| node.errors())
                .collect()
        }
    }

    /// Add a user-presentable hint if this is an error node.
    pub fn hint(&mut self, hint: impl Into<EcoString>) {
        if let Repr::Error(node) = &mut self.0 {
            Arc::make_mut(node).hint(hint);
        }
    }

    /// Set a synthetic span for the node and all its descendants.
    pub fn synthesize(&mut self, span: Span) {
        match &mut self.0 {
            Repr::Leaf(leaf) => leaf.span = span,
            Repr::Inner(inner) => Arc::make_mut(inner).synthesize(span),
            Repr::Error(node) => Arc::make_mut(node).error.span = span,
        }
    }

    /// Whether the two syntax nodes are the same apart from spans.
    pub fn spanless_eq(&self, other: &Self) -> bool {
        match (&self.0, &other.0) {
            (Repr::Leaf(a), Repr::Leaf(b)) => a.spanless_eq(b),
            (Repr::Inner(a), Repr::Inner(b)) => a.spanless_eq(b),
            (Repr::Error(a), Repr::Error(b)) => a.spanless_eq(b),
            _ => false,
        }
    }
}

impl SyntaxNode {
    /// Convert the child to another kind.
    ///
    /// Don't use this for converting to an error!
    #[track_caller]
    pub(super) fn convert_to_kind(&mut self, kind: SyntaxKind) {
        debug_assert!(!kind.is_error());
        match &mut self.0 {
            Repr::Leaf(leaf) => leaf.kind = kind,
            Repr::Inner(inner) => Arc::make_mut(inner).kind = kind,
            Repr::Error(_) => panic!("cannot convert error"),
        }
    }

    /// Convert the child to an error, if it isn't already one.
    pub(super) fn convert_to_error(&mut self, message: impl Into<EcoString>) {
        if !self.kind().is_error() {
            let text = std::mem::take(self).into_text();
            *self = SyntaxNode::error(SyntaxError::new(message), text);
        }
    }

    /// Convert the child to an error stating that the given thing was
    /// expected, but the current kind was found.
    pub(super) fn expected(&mut self, expected: &str) {
        let kind = self.kind();
        self.convert_to_error(eco_format!("expected {expected}, found {}", kind.name()));
        if kind.is_keyword() && matches!(expected, "identifier" | "pattern") {
            self.hint(eco_format!(
                "keyword `{text}` is not allowed as an identifier; try `{text}_` instead",
                text = self.text(),
            ));
        }
    }

    /// Convert the child to an error stating it was unexpected.
    pub(super) fn unexpected(&mut self) {
        self.convert_to_error(eco_format!("unexpected {}", self.kind().name()));
    }

    /// Assign spans to each node.
    pub(super) fn numberize(
        &mut self,
        id: FileId,
        within: Range<u64>,
    ) -> NumberingResult {
        if within.start >= within.end {
            return Err(Unnumberable);
        }

        let mid = Span::new(id, (within.start + within.end) / 2).unwrap();
        match &mut self.0 {
            Repr::Leaf(leaf) => leaf.span = mid,
            Repr::Inner(inner) => Arc::make_mut(inner).numberize(id, None, within)?,
            Repr::Error(node) => Arc::make_mut(node).error.span = mid,
        }

        Ok(())
    }

    /// Whether this is a leaf node.
    pub(super) fn is_leaf(&self) -> bool {
        matches!(self.0, Repr::Leaf(_))
    }

    /// The number of descendants, including the node itself.
    pub(super) fn descendants(&self) -> usize {
        match &self.0 {
            Repr::Leaf(_) | Repr::Error(_) => 1,
            Repr::Inner(inner) => inner.descendants,
        }
    }

    /// The node's children, mutably.
    pub(super) fn children_mut(&mut self) -> &mut [SyntaxNode] {
        match &mut self.0 {
            Repr::Leaf(_) | Repr::Error(_) => &mut [],
            Repr::Inner(inner) => &mut Arc::make_mut(inner).children,
        }
    }

    /// Replaces a range of children with a replacement.
    ///
    /// May have mutated the children if it returns `Err(_)`.
    pub(super) fn replace_children(
        &mut self,
        range: Range<usize>,
        replacement: Vec<SyntaxNode>,
    ) -> NumberingResult {
        if let Repr::Inner(inner) = &mut self.0 {
            Arc::make_mut(inner).replace_children(range, replacement)?;
        }
        Ok(())
    }

    /// Update this node after changes were made to one of its children.
    pub(super) fn update_parent(
        &mut self,
        prev_len: usize,
        new_len: usize,
        prev_descendants: usize,
        new_descendants: usize,
    ) {
        if let Repr::Inner(inner) = &mut self.0 {
            Arc::make_mut(inner).update_parent(
                prev_len,
                new_len,
                prev_descendants,
                new_descendants,
            );
        }
    }

    /// The upper bound of assigned numbers in this subtree.
    pub(super) fn upper(&self) -> u64 {
        match &self.0 {
            Repr::Leaf(leaf) => leaf.span.number() + 1,
            Repr::Inner(inner) => inner.upper,
            Repr::Error(node) => node.error.span.number() + 1,
        }
    }
}

impl Debug for SyntaxNode {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        match &self.0 {
            Repr::Leaf(leaf) => leaf.fmt(f),
            Repr::Inner(inner) => inner.fmt(f),
            Repr::Error(node) => node.fmt(f),
        }
    }
}

impl Default for SyntaxNode {
    fn default() -> Self {
        Self::leaf(SyntaxKind::End, EcoString::new())
    }
}

/// A leaf node in the untyped syntax tree.
#[derive(Clone, Eq, PartialEq, Hash)]
struct LeafNode {
    /// What kind of node this is (each kind would have its own struct in a
    /// strongly typed AST).
    kind: SyntaxKind,
    /// The source text of the node.
    text: EcoString,
    /// The node's span.
    span: Span,
}

impl LeafNode {
    /// Create a new leaf node.
    #[track_caller]
    fn new(kind: SyntaxKind, text: impl Into<EcoString>) -> Self {
        debug_assert!(!kind.is_error());
        Self { kind, text: text.into(), span: Span::detached() }
    }

    /// The byte length of the node in the source text.
    fn len(&self) -> usize {
        self.text.len()
    }

    /// Whether the two leaf nodes are the same apart from spans.
    fn spanless_eq(&self, other: &Self) -> bool {
        self.kind == other.kind && self.text == other.text
    }
}

impl Debug for LeafNode {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        write!(f, "{:?}: {:?}", self.kind, self.text)
    }
}

/// An inner node in the untyped syntax tree.
#[derive(Clone, Eq, PartialEq, Hash)]
struct InnerNode {
    /// What kind of node this is (each kind would have its own struct in a
    /// strongly typed AST).
    kind: SyntaxKind,
    /// The byte length of the node in the source.
    len: usize,
    /// The node's span.
    span: Span,
    /// The number of nodes in the whole subtree, including this node.
    descendants: usize,
    /// Whether this node or any of its children are erroneous.
    erroneous: bool,
    /// The upper bound of this node's numbering range.
    upper: u64,
    /// This node's children, losslessly make up this node.
    children: Vec<SyntaxNode>,
}

impl InnerNode {
    /// Create a new inner node with the given kind and children.
    #[track_caller]
    fn new(kind: SyntaxKind, children: Vec<SyntaxNode>) -> Self {
        debug_assert!(!kind.is_error());

        let mut len = 0;
        let mut descendants = 1;
        let mut erroneous = false;

        for child in &children {
            len += child.len();
            descendants += child.descendants();
            erroneous |= child.erroneous();
        }

        Self {
            kind,
            len,
            span: Span::detached(),
            descendants,
            erroneous,
            upper: 0,
            children,
        }
    }

    /// Set a synthetic span for the node and all its descendants.
    fn synthesize(&mut self, span: Span) {
        self.span = span;
        self.upper = span.number();
        for child in &mut self.children {
            child.synthesize(span);
        }
    }

    /// Assign span numbers `within` an interval to this node's subtree or just
    /// a `range` of its children.
    fn numberize(
        &mut self,
        id: FileId,
        range: Option<Range<usize>>,
        within: Range<u64>,
    ) -> NumberingResult {
        // Determine how many nodes we will number.
        let descendants = match &range {
            Some(range) if range.is_empty() => return Ok(()),
            Some(range) => self.children[range.clone()]
                .iter()
                .map(SyntaxNode::descendants)
                .sum::<usize>(),
            None => self.descendants,
        };

        // Determine the distance between two neighbouring assigned numbers. If
        // possible, we try to fit all numbers into the left half of `within`
        // so that there is space for future insertions.
        let space = within.end - within.start;
        let mut stride = space / (2 * descendants as u64);
        if stride == 0 {
            stride = space / self.descendants as u64;
            if stride == 0 {
                return Err(Unnumberable);
            }
        }

        // Number the node itself.
        let mut start = within.start;
        if range.is_none() {
            let end = start + stride;
            self.span = Span::new(id, (start + end) / 2).unwrap();
            self.upper = within.end;
            start = end;
        }

        // Number the children.
        let len = self.children.len();
        for child in &mut self.children[range.unwrap_or(0..len)] {
            let end = start + child.descendants() as u64 * stride;
            child.numberize(id, start..end)?;
            start = end;
        }

        Ok(())
    }

    /// Whether the two inner nodes are the same apart from spans.
    fn spanless_eq(&self, other: &Self) -> bool {
        self.kind == other.kind
            && self.len == other.len
            && self.descendants == other.descendants
            && self.erroneous == other.erroneous
            && self.children.len() == other.children.len()
            && self
                .children
                .iter()
                .zip(&other.children)
                .all(|(a, b)| a.spanless_eq(b))
    }

    /// Replaces a range of children with a replacement.
    ///
    /// May have mutated the children if it returns `Err(_)`.
    fn replace_children(
        &mut self,
        mut range: Range<usize>,
        replacement: Vec<SyntaxNode>,
    ) -> NumberingResult {
        let Some(id) = self.span.id() else { return Err(Unnumberable) };
        let mut replacement_range = 0..replacement.len();

        // Trim off common prefix.
        while range.start < range.end
            && replacement_range.start < replacement_range.end
            && self.children[range.start]
                .spanless_eq(&replacement[replacement_range.start])
        {
            range.start += 1;
            replacement_range.start += 1;
        }

        // Trim off common suffix.
        while range.start < range.end
            && replacement_range.start < replacement_range.end
            && self.children[range.end - 1]
                .spanless_eq(&replacement[replacement_range.end - 1])
        {
            range.end -= 1;
            replacement_range.end -= 1;
        }

        let mut replacement_vec = replacement;
        let replacement = &replacement_vec[replacement_range.clone()];
        let superseded = &self.children[range.clone()];

        // Compute the new byte length.
        self.len = self.len + replacement.iter().map(SyntaxNode::len).sum::<usize>()
            - superseded.iter().map(SyntaxNode::len).sum::<usize>();

        // Compute the new number of descendants.
        self.descendants = self.descendants
            + replacement.iter().map(SyntaxNode::descendants).sum::<usize>()
            - superseded.iter().map(SyntaxNode::descendants).sum::<usize>();

        // Determine whether we're still erroneous after the replacement. That's
        // the case if
        // - any of the new nodes is erroneous,
        // - or if we were erroneous before due to a non-superseded node.
        self.erroneous = replacement.iter().any(SyntaxNode::erroneous)
            || (self.erroneous
                && (self.children[..range.start].iter().any(SyntaxNode::erroneous))
                || self.children[range.end..].iter().any(SyntaxNode::erroneous));

        // Perform the replacement.
        self.children
            .splice(range.clone(), replacement_vec.drain(replacement_range.clone()));
        range.end = range.start + replacement_range.len();

        // Renumber the new children. Retries until it works, taking
        // exponentially more children into account.
        let mut left = 0;
        let mut right = 0;
        let max_left = range.start;
        let max_right = self.children.len() - range.end;
        loop {
            let renumber = range.start - left..range.end + right;

            // The minimum assignable number is either
            // - the upper bound of the node right before the to-be-renumbered
            //   children,
            // - or this inner node's span number plus one if renumbering starts
            //   at the first child.
            let start_number = renumber
                .start
                .checked_sub(1)
                .and_then(|i| self.children.get(i))
                .map_or(self.span.number() + 1, |child| child.upper());

            // The upper bound for renumbering is either
            // - the span number of the first child after the to-be-renumbered
            //   children,
            // - or this node's upper bound if renumbering ends behind the last
            //   child.
            let end_number = self
                .children
                .get(renumber.end)
                .map_or(self.upper, |next| next.span().number());

            // Try to renumber.
            let within = start_number..end_number;
            if self.numberize(id, Some(renumber), within).is_ok() {
                return Ok(());
            }

            // If it didn't even work with all children, we give up.
            if left == max_left && right == max_right {
                return Err(Unnumberable);
            }

            // Exponential expansion to both sides.
            left = (left + 1).next_power_of_two().min(max_left);
            right = (right + 1).next_power_of_two().min(max_right);
        }
    }

    /// Update this node after changes were made to one of its children.
    fn update_parent(
        &mut self,
        prev_len: usize,
        new_len: usize,
        prev_descendants: usize,
        new_descendants: usize,
    ) {
        self.len = self.len + new_len - prev_len;
        self.descendants = self.descendants + new_descendants - prev_descendants;
        self.erroneous = self.children.iter().any(SyntaxNode::erroneous);
    }
}

impl Debug for InnerNode {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        write!(f, "{:?}: {}", self.kind, self.len)?;
        if !self.children.is_empty() {
            f.write_str(" ")?;
            f.debug_list().entries(&self.children).finish()?;
        }
        Ok(())
    }
}

/// An error node in the untyped syntax tree.
#[derive(Clone, Eq, PartialEq, Hash)]
struct ErrorNode {
    /// The source text of the node.
    text: EcoString,
    /// The syntax error.
    error: SyntaxError,
}

impl ErrorNode {
    /// Create new error node.
    fn new(error: SyntaxError, text: impl Into<EcoString>) -> Self {
        Self { text: text.into(), error }
    }

    /// The byte length of the node in the source text.
    fn len(&self) -> usize {
        self.text.len()
    }

    /// Add a user-presentable hint to this error node.
    fn hint(&mut self, hint: impl Into<EcoString>) {
        self.error.hints.push(hint.into());
    }

    /// Whether the two leaf nodes are the same apart from spans.
    fn spanless_eq(&self, other: &Self) -> bool {
        self.text == other.text && self.error.spanless_eq(&other.error)
    }
}

impl Debug for ErrorNode {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        write!(f, "Error: {:?} ({})", self.text, self.error.message)
    }
}

/// A syntactical error.
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
pub struct SyntaxError {
    /// The node's span.
    pub span: Span,
    /// The error message.
    pub message: EcoString,
    /// Additional hints to the user, indicating how this error could be avoided
    /// or worked around.
    pub hints: EcoVec<EcoString>,
}

impl SyntaxError {
    /// Create a new detached syntax error.
    pub fn new(message: impl Into<EcoString>) -> Self {
        Self {
            span: Span::detached(),
            message: message.into(),
            hints: eco_vec![],
        }
    }

    /// Whether the two errors are the same apart from spans.
    fn spanless_eq(&self, other: &Self) -> bool {
        self.message == other.message && self.hints == other.hints
    }
}

/// A syntax node in a context.
///
/// Knows its exact offset in the file and provides access to its
/// children, parent and siblings.
///
/// **Note that all sibling and leaf accessors skip over trivia!**
#[derive(Clone)]
pub struct LinkedNode<'a> {
    node: &'a SyntaxNode,
    parent: Option<Rc<Self>>,
    index: usize,
    offset: usize,
}

impl<'a> LinkedNode<'a> {
    /// Start a new traversal at a root node.
    pub fn new(root: &'a SyntaxNode) -> Self {
        Self { node: root, parent: None, index: 0, offset: 0 }
    }

    /// Get the contained syntax node.
    pub fn get(&self) -> &'a SyntaxNode {
        self.node
    }

    /// The index of this node in its parent's children list.
    pub fn index(&self) -> usize {
        self.index
    }

    /// The absolute byte offset of this node in the source file.
    pub fn offset(&self) -> usize {
        self.offset
    }

    /// The byte range of this node in the source file.
    pub fn range(&self) -> Range<usize> {
        self.offset..self.offset + self.node.len()
    }

    /// An iterator over this node's children.
    pub fn children(&self) -> LinkedChildren<'a> {
        LinkedChildren {
            parent: Rc::new(self.clone()),
            iter: self.node.children().enumerate(),
            front: self.offset,
            back: self.offset + self.len(),
        }
    }

    /// Find a descendant with the given span.
    pub fn find(&self, span: Span) -> Option<LinkedNode<'a>> {
        if self.span() == span {
            return Some(self.clone());
        }

        if let Repr::Inner(inner) = &self.0 {
            // The parent of a subtree has a smaller span number than all of its
            // descendants. Therefore, we can bail out early if the target span's
            // number is smaller than our number.
            if span.number() < inner.span.number() {
                return None;
            }

            let mut children = self.children().peekable();
            while let Some(child) = children.next() {
                // Every node in this child's subtree has a smaller span number than
                // the next sibling. Therefore we only need to recurse if the next
                // sibling's span number is larger than the target span's number.
                if children
                    .peek()
                    .map_or(true, |next| next.span().number() > span.number())
                {
                    if let Some(found) = child.find(span) {
                        return Some(found);
                    }
                }
            }
        }

        None
    }
}

/// Access to parents and siblings.
impl<'a> LinkedNode<'a> {
    /// Get this node's parent.
    pub fn parent(&self) -> Option<&Self> {
        self.parent.as_deref()
    }

    /// Get the first previous non-trivia sibling node.
    pub fn prev_sibling(&self) -> Option<Self> {
        let parent = self.parent()?;
        let index = self.index.checked_sub(1)?;
        let node = parent.node.children().nth(index)?;
        let offset = self.offset - node.len();
        let prev = Self { node, parent: self.parent.clone(), index, offset };
        if prev.kind().is_trivia() {
            prev.prev_sibling()
        } else {
            Some(prev)
        }
    }

    /// Get the next non-trivia sibling node.
    pub fn next_sibling(&self) -> Option<Self> {
        let parent = self.parent()?;
        let index = self.index.checked_add(1)?;
        let node = parent.node.children().nth(index)?;
        let offset = self.offset + self.node.len();
        let next = Self { node, parent: self.parent.clone(), index, offset };
        if next.kind().is_trivia() {
            next.next_sibling()
        } else {
            Some(next)
        }
    }

    /// Get the kind of this node's parent.
    pub fn parent_kind(&self) -> Option<SyntaxKind> {
        Some(self.parent()?.node.kind())
    }

    /// Get the kind of this node's first previous non-trivia sibling.
    pub fn prev_sibling_kind(&self) -> Option<SyntaxKind> {
        Some(self.prev_sibling()?.node.kind())
    }

    /// Get the kind of this node's next non-trivia sibling.
    pub fn next_sibling_kind(&self) -> Option<SyntaxKind> {
        Some(self.next_sibling()?.node.kind())
    }
}

/// Indicates whether the cursor is before the related byte index, or after.
#[derive(Debug, Clone)]
pub enum Side {
    Before,
    After,
}

/// Access to leaves.
impl<'a> LinkedNode<'a> {
    /// Get the rightmost non-trivia leaf before this node.
    pub fn prev_leaf(&self) -> Option<Self> {
        let mut node = self.clone();
        while let Some(prev) = node.prev_sibling() {
            if let Some(leaf) = prev.rightmost_leaf() {
                return Some(leaf);
            }
            node = prev;
        }
        self.parent()?.prev_leaf()
    }

    /// Find the leftmost contained non-trivia leaf.
    pub fn leftmost_leaf(&self) -> Option<Self> {
        if self.is_leaf() && !self.kind().is_trivia() && !self.kind().is_error() {
            return Some(self.clone());
        }

        for child in self.children() {
            if let Some(leaf) = child.leftmost_leaf() {
                return Some(leaf);
            }
        }

        None
    }

    /// Get the leaf immediately before the specified byte offset.
    fn leaf_before(&self, cursor: usize) -> Option<Self> {
        if self.node.children().len() == 0 && cursor <= self.offset + self.len() {
            return Some(self.clone());
        }

        let mut offset = self.offset;
        let count = self.node.children().len();
        for (i, child) in self.children().enumerate() {
            let len = child.len();
            if (offset < cursor && cursor <= offset + len)
                || (offset == cursor && i + 1 == count)
            {
                return child.leaf_before(cursor);
            }
            offset += len;
        }

        None
    }

    /// Get the leaf after the specified byte offset.
    fn leaf_after(&self, cursor: usize) -> Option<Self> {
        if self.node.children().len() == 0 && cursor < self.offset + self.len() {
            return Some(self.clone());
        }

        let mut offset = self.offset;
        for child in self.children() {
            let len = child.len();
            if offset <= cursor && cursor < offset + len {
                return child.leaf_after(cursor);
            }
            offset += len;
        }

        None
    }

    /// Get the leaf at the specified byte offset.
    pub fn leaf_at(&self, cursor: usize, side: Side) -> Option<Self> {
        match side {
            Side::Before => self.leaf_before(cursor),
            Side::After => self.leaf_after(cursor),
        }
    }

    /// Find the rightmost contained non-trivia leaf.
    pub fn rightmost_leaf(&self) -> Option<Self> {
        if self.is_leaf() && !self.kind().is_trivia() {
            return Some(self.clone());
        }

        for child in self.children().rev() {
            if let Some(leaf) = child.rightmost_leaf() {
                return Some(leaf);
            }
        }

        None
    }

    /// Get the leftmost non-trivia leaf after this node.
    pub fn next_leaf(&self) -> Option<Self> {
        let mut node = self.clone();
        while let Some(next) = node.next_sibling() {
            if let Some(leaf) = next.leftmost_leaf() {
                return Some(leaf);
            }
            node = next;
        }
        self.parent()?.next_leaf()
    }
}

impl Deref for LinkedNode<'_> {
    type Target = SyntaxNode;

    /// Dereference to a syntax node. Note that this shortens the lifetime, so
    /// you may need to use [`get()`](Self::get) instead in some situations.
    fn deref(&self) -> &Self::Target {
        self.get()
    }
}

impl Debug for LinkedNode<'_> {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        self.node.fmt(f)
    }
}

/// An iterator over the children of a linked node.
pub struct LinkedChildren<'a> {
    parent: Rc<LinkedNode<'a>>,
    iter: std::iter::Enumerate<std::slice::Iter<'a, SyntaxNode>>,
    front: usize,
    back: usize,
}

impl<'a> Iterator for LinkedChildren<'a> {
    type Item = LinkedNode<'a>;

    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next().map(|(index, node)| {
            let offset = self.front;
            self.front += node.len();
            LinkedNode {
                node,
                parent: Some(self.parent.clone()),
                index,
                offset,
            }
        })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl DoubleEndedIterator for LinkedChildren<'_> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.iter.next_back().map(|(index, node)| {
            self.back -= node.len();
            LinkedNode {
                node,
                parent: Some(self.parent.clone()),
                index,
                offset: self.back,
            }
        })
    }
}

impl ExactSizeIterator for LinkedChildren<'_> {}

/// Result of numbering a node within an interval.
pub(super) type NumberingResult = Result<(), Unnumberable>;

/// Indicates that a node cannot be numbered within a given interval.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub(super) struct Unnumberable;

impl Display for Unnumberable {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        f.pad("cannot number within this interval")
    }
}

impl std::error::Error for Unnumberable {}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::Source;

    #[test]
    fn test_linked_node() {
        let source = Source::detached("#set text(12pt, red)");

        // Find "text" with Before.
        let node = LinkedNode::new(source.root()).leaf_at(7, Side::Before).unwrap();
        assert_eq!(node.offset(), 5);
        assert_eq!(node.text(), "text");

        // Find "text" with After.
        let node = LinkedNode::new(source.root()).leaf_at(7, Side::After).unwrap();
        assert_eq!(node.offset(), 5);
        assert_eq!(node.text(), "text");

        // Go back to "#set". Skips the space.
        let prev = node.prev_sibling().unwrap();
        assert_eq!(prev.offset(), 1);
        assert_eq!(prev.text(), "set");
    }

    #[test]
    fn test_linked_node_non_trivia_leaf() {
        let source = Source::detached("#set fun(12pt, red)");
        let leaf = LinkedNode::new(source.root()).leaf_at(6, Side::Before).unwrap();
        let prev = leaf.prev_leaf().unwrap();
        assert_eq!(leaf.text(), "fun");
        assert_eq!(prev.text(), "set");

        // Check position 9 with Before.
        let source = Source::detached("#let x = 10");
        let leaf = LinkedNode::new(source.root()).leaf_at(9, Side::Before).unwrap();
        let prev = leaf.prev_leaf().unwrap();
        let next = leaf.next_leaf().unwrap();
        assert_eq!(prev.text(), "=");
        assert_eq!(leaf.text(), " ");
        assert_eq!(next.text(), "10");

        // Check position 9 with After.
        let source = Source::detached("#let x = 10");
        let leaf = LinkedNode::new(source.root()).leaf_at(9, Side::After).unwrap();
        let prev = leaf.prev_leaf().unwrap();
        assert!(leaf.next_leaf().is_none());
        assert_eq!(prev.text(), "=");
        assert_eq!(leaf.text(), "10");
    }
}