typst/foundations/
str.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
use std::borrow::{Borrow, Cow};
use std::fmt::{self, Debug, Display, Formatter};
use std::hash::{Hash, Hasher};
use std::ops::{Add, AddAssign, Deref, Range};

use comemo::Tracked;
use ecow::EcoString;
use serde::{Deserialize, Serialize};
use unicode_segmentation::UnicodeSegmentation;

use crate::diag::{bail, At, SourceResult, StrResult};
use crate::engine::Engine;
use crate::foundations::{
    cast, dict, func, repr, scope, ty, Array, Bytes, Context, Decimal, Dict, Func,
    IntoValue, Label, Repr, Type, Value, Version,
};
use crate::layout::Alignment;
use crate::syntax::{Span, Spanned};
use crate::utils::PicoStr;

/// Create a new [`Str`] from a format string.
#[macro_export]
#[doc(hidden)]
macro_rules! __format_str {
    ($($tts:tt)*) => {{
        $crate::foundations::Str::from($crate::foundations::eco_format!($($tts)*))
    }};
}

#[doc(inline)]
pub use crate::__format_str as format_str;

#[doc(hidden)]
pub use ecow::eco_format;

/// A sequence of Unicode codepoints.
///
/// You can iterate over the grapheme clusters of the string using a [for
/// loop]($scripting/#loops). Grapheme clusters are basically characters but
/// keep together things that belong together, e.g. multiple codepoints that
/// together form a flag emoji. Strings can be added with the `+` operator,
/// [joined together]($scripting/#blocks) and multiplied with integers.
///
/// Typst provides utility methods for string manipulation. Many of these
/// methods (e.g., `split`, `trim` and `replace`) operate on _patterns:_ A
/// pattern can be either a string or a [regular expression]($regex). This makes
/// the methods quite versatile.
///
/// All lengths and indices are expressed in terms of UTF-8 bytes. Indices are
/// zero-based and negative indices wrap around to the end of the string.
///
/// You can convert a value to a string with this type's constructor.
///
/// # Example
/// ```example
/// #"hello world!" \
/// #"\"hello\n  world\"!" \
/// #"1 2 3".split() \
/// #"1,2;3".split(regex("[,;]")) \
/// #(regex("\d+") in "ten euros") \
/// #(regex("\d+") in "10 euros")
/// ```
///
/// # Escape sequences { #escapes }
/// Just like in markup, you can escape a few symbols in strings:
/// - `[\\]` for a backslash
/// - `[\"]` for a quote
/// - `[\n]` for a newline
/// - `[\r]` for a carriage return
/// - `[\t]` for a tab
/// - `[\u{1f600}]` for a hexadecimal Unicode escape sequence
#[ty(scope, cast, title = "String")]
#[derive(Default, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[derive(Serialize, Deserialize)]
#[serde(transparent)]
pub struct Str(EcoString);

impl Str {
    /// Create a new, empty string.
    pub fn new() -> Self {
        Self(EcoString::new())
    }

    /// Return `true` if the length is 0.
    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    /// Repeat the string a number of times.
    pub fn repeat(&self, n: usize) -> StrResult<Self> {
        if self.0.len().checked_mul(n).is_none() {
            return Err(eco_format!("cannot repeat this string {n} times"));
        }
        Ok(Self(self.0.repeat(n)))
    }

    /// A string slice containing the entire string.
    pub fn as_str(&self) -> &str {
        self
    }

    /// Resolve an index or throw an out of bounds error.
    fn locate(&self, index: i64) -> StrResult<usize> {
        self.locate_opt(index)?
            .ok_or_else(|| out_of_bounds(index, self.len()))
    }

    /// Resolve an index, if it is within bounds and on a valid char boundary.
    ///
    /// `index == len` is considered in bounds.
    fn locate_opt(&self, index: i64) -> StrResult<Option<usize>> {
        let wrapped =
            if index >= 0 { Some(index) } else { (self.len() as i64).checked_add(index) };

        let resolved = wrapped
            .and_then(|v| usize::try_from(v).ok())
            .filter(|&v| v <= self.0.len());

        if resolved.is_some_and(|i| !self.0.is_char_boundary(i)) {
            return Err(not_a_char_boundary(index));
        }

        Ok(resolved)
    }
}

#[scope]
impl Str {
    /// Converts a value to a string.
    ///
    /// - Integers are formatted in base 10. This can be overridden with the
    ///   optional `base` parameter.
    /// - Floats are formatted in base 10 and never in exponential notation.
    /// - From labels the name is extracted.
    /// - Bytes are decoded as UTF-8.
    ///
    /// If you wish to convert from and to Unicode code points, see the
    /// [`to-unicode`]($str.to-unicode) and [`from-unicode`]($str.from-unicode)
    /// functions.
    ///
    /// ```example
    /// #str(10) \
    /// #str(4000, base: 16) \
    /// #str(2.7) \
    /// #str(1e8) \
    /// #str(<intro>)
    /// ```
    #[func(constructor)]
    pub fn construct(
        /// The value that should be converted to a string.
        value: ToStr,
        /// The base (radix) to display integers in, between 2 and 36.
        #[named]
        #[default(Spanned::new(10, Span::detached()))]
        base: Spanned<i64>,
    ) -> SourceResult<Str> {
        Ok(match value {
            ToStr::Str(s) => {
                if base.v != 10 {
                    bail!(base.span, "base is only supported for integers");
                }
                s
            }
            ToStr::Int(n) => {
                if base.v < 2 || base.v > 36 {
                    bail!(base.span, "base must be between 2 and 36");
                }
                repr::format_int_with_base(n, base.v).into()
            }
        })
    }

    /// The length of the string in UTF-8 encoded bytes.
    #[func(title = "Length")]
    pub fn len(&self) -> usize {
        self.0.len()
    }

    /// Extracts the first grapheme cluster of the string.
    /// Fails with an error if the string is empty.
    #[func]
    pub fn first(&self) -> StrResult<Str> {
        self.0
            .graphemes(true)
            .next()
            .map(Into::into)
            .ok_or_else(string_is_empty)
    }

    /// Extracts the last grapheme cluster of the string.
    /// Fails with an error if the string is empty.
    #[func]
    pub fn last(&self) -> StrResult<Str> {
        self.0
            .graphemes(true)
            .next_back()
            .map(Into::into)
            .ok_or_else(string_is_empty)
    }

    /// Extracts the first grapheme cluster after the specified index. Returns
    /// the default value if the index is out of bounds or fails with an error
    /// if no default value was specified.
    #[func]
    pub fn at(
        &self,
        /// The byte index. If negative, indexes from the back.
        index: i64,
        /// A default value to return if the index is out of bounds.
        #[named]
        default: Option<Value>,
    ) -> StrResult<Value> {
        let len = self.len();
        self.locate_opt(index)?
            .and_then(|i| self.0[i..].graphemes(true).next().map(|s| s.into_value()))
            .or(default)
            .ok_or_else(|| no_default_and_out_of_bounds(index, len))
    }

    /// Extracts a substring of the string.
    /// Fails with an error if the start or end index is out of bounds.
    #[func]
    pub fn slice(
        &self,
        /// The start byte index (inclusive). If negative, indexes from the
        /// back.
        start: i64,
        /// The end byte index (exclusive). If omitted, the whole slice until
        /// the end of the string is extracted. If negative, indexes from the
        /// back.
        #[default]
        end: Option<i64>,
        /// The number of bytes to extract. This is equivalent to passing
        /// `start + count` as the `end` position. Mutually exclusive with `end`.
        #[named]
        count: Option<i64>,
    ) -> StrResult<Str> {
        let end = end.or(count.map(|c| start + c)).unwrap_or(self.len() as i64);
        let start = self.locate(start)?;
        let end = self.locate(end)?.max(start);
        Ok(self.0[start..end].into())
    }

    /// Returns the grapheme clusters of the string as an array of substrings.
    #[func]
    pub fn clusters(&self) -> Array {
        self.as_str().graphemes(true).map(|s| Value::Str(s.into())).collect()
    }

    /// Returns the Unicode codepoints of the string as an array of substrings.
    #[func]
    pub fn codepoints(&self) -> Array {
        self.chars().map(|c| Value::Str(c.into())).collect()
    }

    /// Converts a character into its corresponding code point.
    ///
    /// ```example
    /// #"a".to-unicode() \
    /// #("a\u{0300}"
    ///    .codepoints()
    ///    .map(str.to-unicode))
    /// ```
    #[func]
    pub fn to_unicode(
        /// The character that should be converted.
        character: char,
    ) -> u32 {
        character as u32
    }

    /// Converts a unicode code point into its corresponding string.
    ///
    /// ```example
    /// #str.from-unicode(97)
    /// ```
    #[func]
    pub fn from_unicode(
        /// The code point that should be converted.
        value: u32,
    ) -> StrResult<Str> {
        let c: char = value
            .try_into()
            .map_err(|_| eco_format!("{value:#x} is not a valid codepoint"))?;
        Ok(c.into())
    }

    /// Whether the string contains the specified pattern.
    ///
    /// This method also has dedicated syntax: You can write `{"bc" in "abcd"}`
    /// instead of `{"abcd".contains("bc")}`.
    #[func]
    pub fn contains(
        &self,
        /// The pattern to search for.
        pattern: StrPattern,
    ) -> bool {
        match pattern {
            StrPattern::Str(pat) => self.0.contains(pat.as_str()),
            StrPattern::Regex(re) => re.is_match(self),
        }
    }

    /// Whether the string starts with the specified pattern.
    #[func]
    pub fn starts_with(
        &self,
        /// The pattern the string might start with.
        pattern: StrPattern,
    ) -> bool {
        match pattern {
            StrPattern::Str(pat) => self.0.starts_with(pat.as_str()),
            StrPattern::Regex(re) => re.find(self).is_some_and(|m| m.start() == 0),
        }
    }

    /// Whether the string ends with the specified pattern.
    #[func]
    pub fn ends_with(
        &self,
        /// The pattern the string might end with.
        pattern: StrPattern,
    ) -> bool {
        match pattern {
            StrPattern::Str(pat) => self.0.ends_with(pat.as_str()),
            StrPattern::Regex(re) => {
                let mut start_byte = 0;
                while let Some(mat) = re.find_at(self, start_byte) {
                    if mat.end() == self.0.len() {
                        return true;
                    }

                    // There might still be a match overlapping this one, so
                    // restart at the next code point.
                    let Some(c) = self[mat.start()..].chars().next() else { break };
                    start_byte = mat.start() + c.len_utf8();
                }
                false
            }
        }
    }

    /// Searches for the specified pattern in the string and returns the first
    /// match as a string or `{none}` if there is no match.
    #[func]
    pub fn find(
        &self,
        /// The pattern to search for.
        pattern: StrPattern,
    ) -> Option<Str> {
        match pattern {
            StrPattern::Str(pat) => self.0.contains(pat.as_str()).then_some(pat),
            StrPattern::Regex(re) => re.find(self).map(|m| m.as_str().into()),
        }
    }

    /// Searches for the specified pattern in the string and returns the index
    /// of the first match as an integer or `{none}` if there is no match.
    #[func]
    pub fn position(
        &self,
        /// The pattern to search for.
        pattern: StrPattern,
    ) -> Option<usize> {
        match pattern {
            StrPattern::Str(pat) => self.0.find(pat.as_str()),
            StrPattern::Regex(re) => re.find(self).map(|m| m.start()),
        }
    }

    /// Searches for the specified pattern in the string and returns a
    /// dictionary with details about the first match or `{none}` if there is no
    /// match.
    ///
    /// The returned dictionary has the following keys:
    /// - `start`: The start offset of the match
    /// - `end`: The end offset of the match
    /// - `text`: The text that matched.
    /// - `captures`: An array containing a string for each matched capturing
    ///   group. The first item of the array contains the first matched
    ///   capturing, not the whole match! This is empty unless the `pattern` was
    ///   a regex with capturing groups.
    #[func]
    pub fn match_(
        &self,
        /// The pattern to search for.
        pattern: StrPattern,
    ) -> Option<Dict> {
        match pattern {
            StrPattern::Str(pat) => {
                self.0.match_indices(pat.as_str()).next().map(match_to_dict)
            }
            StrPattern::Regex(re) => re.captures(self).map(captures_to_dict),
        }
    }

    /// Searches for the specified pattern in the string and returns an array of
    /// dictionaries with details about all matches. For details about the
    /// returned dictionaries, see above.
    #[func]
    pub fn matches(
        &self,
        /// The pattern to search for.
        pattern: StrPattern,
    ) -> Array {
        match pattern {
            StrPattern::Str(pat) => self
                .0
                .match_indices(pat.as_str())
                .map(match_to_dict)
                .map(Value::Dict)
                .collect(),
            StrPattern::Regex(re) => re
                .captures_iter(self)
                .map(captures_to_dict)
                .map(Value::Dict)
                .collect(),
        }
    }

    /// Replace at most `count` occurrences of the given pattern with a
    /// replacement string or function (beginning from the start). If no count
    /// is given, all occurrences are replaced.
    #[func]
    pub fn replace(
        &self,
        /// The engine.
        engine: &mut Engine,
        /// The callsite context.
        context: Tracked<Context>,
        /// The pattern to search for.
        pattern: StrPattern,
        /// The string to replace the matches with or a function that gets a
        /// dictionary for each match and can return individual replacement
        /// strings.
        replacement: Replacement,
        ///  If given, only the first `count` matches of the pattern are placed.
        #[named]
        count: Option<usize>,
    ) -> SourceResult<Str> {
        // Heuristic: Assume the new string is about the same length as
        // the current string.
        let mut output = EcoString::with_capacity(self.as_str().len());

        // Replace one match of a pattern with the replacement.
        let mut last_match = 0;
        let mut handle_match = |range: Range<usize>, dict: Dict| -> SourceResult<()> {
            // Push everything until the match.
            output.push_str(&self[last_match..range.start]);
            last_match = range.end;

            // Determine and push the replacement.
            match &replacement {
                Replacement::Str(s) => output.push_str(s),
                Replacement::Func(func) => {
                    let piece = func
                        .call(engine, context, [dict])?
                        .cast::<Str>()
                        .at(func.span())?;
                    output.push_str(&piece);
                }
            }

            Ok(())
        };

        // Iterate over the matches of the `pattern`.
        let count = count.unwrap_or(usize::MAX);
        match &pattern {
            StrPattern::Str(pat) => {
                for m in self.match_indices(pat.as_str()).take(count) {
                    let (start, text) = m;
                    handle_match(start..start + text.len(), match_to_dict(m))?;
                }
            }
            StrPattern::Regex(re) => {
                for caps in re.captures_iter(self).take(count) {
                    // Extract the entire match over all capture groups.
                    let m = caps.get(0).unwrap();
                    handle_match(m.start()..m.end(), captures_to_dict(caps))?;
                }
            }
        }

        // Push the remainder.
        output.push_str(&self[last_match..]);
        Ok(output.into())
    }

    /// Removes matches of a pattern from one or both sides of the string, once or
    /// repeatedly and returns the resulting string.
    #[func]
    pub fn trim(
        &self,
        /// The pattern to search for. If `{none}`, trims white spaces.
        #[default]
        pattern: Option<StrPattern>,
        /// Can be `{start}` or `{end}` to only trim the start or end of the
        /// string. If omitted, both sides are trimmed.
        #[named]
        at: Option<StrSide>,
        /// Whether to repeatedly removes matches of the pattern or just once.
        /// Defaults to `{true}`.
        #[named]
        #[default(true)]
        repeat: bool,
    ) -> Str {
        let mut start = matches!(at, Some(StrSide::Start) | None);
        let end = matches!(at, Some(StrSide::End) | None);

        let trimmed = match pattern {
            None => match at {
                None => self.0.trim(),
                Some(StrSide::Start) => self.0.trim_start(),
                Some(StrSide::End) => self.0.trim_end(),
            },
            Some(StrPattern::Str(pat)) => {
                let pat = pat.as_str();
                let mut s = self.as_str();
                if repeat {
                    if start {
                        s = s.trim_start_matches(pat);
                    }
                    if end {
                        s = s.trim_end_matches(pat);
                    }
                } else {
                    if start {
                        s = s.strip_prefix(pat).unwrap_or(s);
                    }
                    if end {
                        s = s.strip_suffix(pat).unwrap_or(s);
                    }
                }
                s
            }
            Some(StrPattern::Regex(re)) => {
                let s = self.as_str();
                let mut last = None;
                let mut range = 0..s.len();

                for m in re.find_iter(s) {
                    // Does this match follow directly after the last one?
                    let consecutive = last == Some(m.start());

                    // As long as we're at the beginning or in a consecutive run
                    // of matches, and we're still trimming at the start, trim.
                    start &= m.start() == 0 || consecutive;
                    if start {
                        range.start = m.end();
                        start &= repeat;
                    }

                    // Reset end trim if we aren't consecutive anymore or aren't
                    // repeating.
                    if end && (!consecutive || !repeat) {
                        range.end = m.start();
                    }

                    last = Some(m.end());
                }

                // Is the last match directly at the end?
                if last.is_some_and(|last| last < s.len()) {
                    range.end = s.len();
                }

                &s[range.start..range.start.max(range.end)]
            }
        };

        trimmed.into()
    }

    /// Splits a string at matches of a specified pattern and returns an array
    /// of the resulting parts.
    #[func]
    pub fn split(
        &self,
        /// The pattern to split at. Defaults to whitespace.
        #[default]
        pattern: Option<StrPattern>,
    ) -> Array {
        let s = self.as_str();
        match pattern {
            None => s.split_whitespace().map(|v| Value::Str(v.into())).collect(),
            Some(StrPattern::Str(pat)) => {
                s.split(pat.as_str()).map(|v| Value::Str(v.into())).collect()
            }
            Some(StrPattern::Regex(re)) => {
                re.split(s).map(|v| Value::Str(v.into())).collect()
            }
        }
    }

    /// Reverse the string.
    #[func(title = "Reverse")]
    pub fn rev(&self) -> Str {
        let mut s = EcoString::with_capacity(self.0.len());
        for grapheme in self.as_str().graphemes(true).rev() {
            s.push_str(grapheme);
        }
        s.into()
    }
}

impl Deref for Str {
    type Target = str;

    fn deref(&self) -> &str {
        &self.0
    }
}

impl Debug for Str {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        Debug::fmt(self.as_str(), f)
    }
}

impl Display for Str {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        Display::fmt(self.as_str(), f)
    }
}

impl Repr for Str {
    fn repr(&self) -> EcoString {
        self.as_ref().repr()
    }
}

impl Repr for EcoString {
    fn repr(&self) -> EcoString {
        self.as_ref().repr()
    }
}

impl Repr for str {
    fn repr(&self) -> EcoString {
        let mut r = EcoString::with_capacity(self.len() + 2);
        r.push('"');
        for c in self.chars() {
            match c {
                '\0' => r.push_str(r"\u{0}"),
                '\'' => r.push('\''),
                '"' => r.push_str(r#"\""#),
                _ => c.escape_debug().for_each(|c| r.push(c)),
            }
        }
        r.push('"');
        r
    }
}

impl Add for Str {
    type Output = Self;

    fn add(mut self, rhs: Self) -> Self::Output {
        self += rhs;
        self
    }
}

impl AddAssign for Str {
    fn add_assign(&mut self, rhs: Self) {
        self.0.push_str(rhs.as_str());
    }
}

impl AsRef<str> for Str {
    fn as_ref(&self) -> &str {
        self
    }
}

impl Borrow<str> for Str {
    fn borrow(&self) -> &str {
        self
    }
}

impl From<char> for Str {
    fn from(c: char) -> Self {
        Self(c.into())
    }
}

impl From<&str> for Str {
    fn from(s: &str) -> Self {
        Self(s.into())
    }
}

impl From<EcoString> for Str {
    fn from(s: EcoString) -> Self {
        Self(s)
    }
}

impl From<String> for Str {
    fn from(s: String) -> Self {
        Self(s.into())
    }
}

impl From<Cow<'_, str>> for Str {
    fn from(s: Cow<str>) -> Self {
        Self(s.into())
    }
}

impl FromIterator<char> for Str {
    fn from_iter<T: IntoIterator<Item = char>>(iter: T) -> Self {
        Self(iter.into_iter().collect())
    }
}

impl From<Str> for EcoString {
    fn from(str: Str) -> Self {
        str.0
    }
}

impl From<Str> for String {
    fn from(s: Str) -> Self {
        s.0.into()
    }
}

cast! {
    char,
    self => Value::Str(self.into()),
    string: Str => {
        let mut chars = string.chars();
        match (chars.next(), chars.next()) {
            (Some(c), None) => c,
            _ => bail!("expected exactly one character"),
        }
    },
}

cast! {
    &str,
    self => Value::Str(self.into()),
}

cast! {
    EcoString,
    self => Value::Str(self.into()),
    v: Str => v.into(),
}

cast! {
    PicoStr,
    self => Value::Str(self.resolve().into()),
    v: Str => v.as_str().into(),
}

cast! {
    String,
    self => Value::Str(self.into()),
    v: Str => v.into(),
}

/// A value that can be cast to a string.
pub enum ToStr {
    /// A string value ready to be used as-is.
    Str(Str),
    /// An integer about to be formatted in a given base.
    Int(i64),
}

cast! {
    ToStr,
    v: i64 => Self::Int(v),
    v: f64 => Self::Str(repr::display_float(v).into()),
    v: Decimal => Self::Str(format_str!("{}", v)),
    v: Version => Self::Str(format_str!("{}", v)),
    v: Bytes => Self::Str(
        std::str::from_utf8(&v)
            .map_err(|_| "bytes are not valid utf-8")?
            .into()
    ),
    v: Label => Self::Str(v.as_str().into()),
    v: Type => Self::Str(v.long_name().into()),
    v: Str => Self::Str(v),
}

/// Convert an item of std's `match_indices` to a dictionary.
fn match_to_dict((start, text): (usize, &str)) -> Dict {
    dict! {
        "start" => start,
        "end" => start + text.len(),
        "text" => text,
        "captures" => Array::new(),
    }
}

/// Convert regex captures to a dictionary.
fn captures_to_dict(cap: regex::Captures) -> Dict {
    let m = cap.get(0).expect("missing first match");
    dict! {
        "start" => m.start(),
        "end" => m.end(),
        "text" => m.as_str(),
        "captures" =>  cap.iter()
            .skip(1)
            .map(|opt| opt.map_or(Value::None, |m| m.as_str().into_value()))
            .collect::<Array>(),
    }
}

/// The out of bounds access error message.
#[cold]
fn out_of_bounds(index: i64, len: usize) -> EcoString {
    eco_format!("string index out of bounds (index: {}, len: {})", index, len)
}

/// The out of bounds access error message when no default value was given.
#[cold]
fn no_default_and_out_of_bounds(index: i64, len: usize) -> EcoString {
    eco_format!("no default value was specified and string index out of bounds (index: {}, len: {})", index, len)
}

/// The char boundary access error message.
#[cold]
fn not_a_char_boundary(index: i64) -> EcoString {
    eco_format!("string index {} is not a character boundary", index)
}

/// The error message when the string is empty.
#[cold]
fn string_is_empty() -> EcoString {
    "string is empty".into()
}

/// A regular expression.
///
/// Can be used as a [show rule selector]($styling/#show-rules) and with
/// [string methods]($str) like `find`, `split`, and `replace`.
///
/// [See here](https://docs.rs/regex/latest/regex/#syntax) for a specification
/// of the supported syntax.
///
/// # Example
/// ```example
/// // Works with string methods.
/// #"a,b;c".split(regex("[,;]"))
///
/// // Works with show rules.
/// #show regex("\d+"): set text(red)
///
/// The numbers 1 to 10.
/// ```
#[ty(scope)]
#[derive(Debug, Clone)]
pub struct Regex(regex::Regex);

impl Regex {
    /// Create a new regular expression.
    pub fn new(re: &str) -> StrResult<Self> {
        regex::Regex::new(re).map(Self).map_err(|err| eco_format!("{err}"))
    }
}

#[scope]
impl Regex {
    /// Create a regular expression from a string.
    #[func(constructor)]
    pub fn construct(
        /// The regular expression as a string.
        ///
        /// Most regex escape sequences just work because they are not valid Typst
        /// escape sequences. To produce regex escape sequences that are also valid in
        /// Typst (e.g. `[\\]`), you need to escape twice. Thus, to match a verbatim
        /// backslash, you would need to write `{regex("\\\\")}`.
        ///
        /// If you need many escape sequences, you can also create a raw element
        /// and extract its text to use it for your regular expressions:
        /// ```{regex(`\d+\.\d+\.\d+`.text)}```.
        regex: Spanned<Str>,
    ) -> SourceResult<Regex> {
        Self::new(&regex.v).at(regex.span)
    }
}

impl Deref for Regex {
    type Target = regex::Regex;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl Repr for Regex {
    fn repr(&self) -> EcoString {
        eco_format!("regex({})", self.0.as_str().repr())
    }
}

impl PartialEq for Regex {
    fn eq(&self, other: &Self) -> bool {
        self.0.as_str() == other.0.as_str()
    }
}

impl Hash for Regex {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.0.as_str().hash(state);
    }
}

/// A pattern which can be searched for in a string.
#[derive(Debug, Clone)]
pub enum StrPattern {
    /// Just a string.
    Str(Str),
    /// A regular expression.
    Regex(Regex),
}

cast! {
    StrPattern,
    self => match self {
        Self::Str(v) => v.into_value(),
        Self::Regex(v) => v.into_value(),
    },
    v: Str => Self::Str(v),
    v: Regex => Self::Regex(v),
}

/// A side of a string.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
pub enum StrSide {
    /// The logical start of the string, may be left or right depending on the
    /// language.
    Start,
    /// The logical end of the string.
    End,
}

cast! {
    StrSide,
    v: Alignment => match v {
        Alignment::START => Self::Start,
        Alignment::END => Self::End,
        _ => bail!("expected either `start` or `end`"),
    },
}

/// A replacement for a matched [`Str`]
pub enum Replacement {
    /// A string a match is replaced with.
    Str(Str),
    /// Function of type Dict -> Str (see `captures_to_dict` or `match_to_dict`)
    /// whose output is inserted for the match.
    Func(Func),
}

cast! {
    Replacement,
    self => match self {
        Self::Str(v) => v.into_value(),
        Self::Func(v) => v.into_value(),
    },
    v: Str => Self::Str(v),
    v: Func => Self::Func(v)
}