unic_idna_punycode/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
// Copyright 2013 The rust-url developers.
// Copyright 2017 The UNIC Project Developers.
//
// See the COPYRIGHT file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![warn(
bad_style,
missing_debug_implementations,
missing_docs,
unconditional_recursion
)]
#![deny(unsafe_code)]
//! # UNIC — IDNA — Punycode (RFC 3492)
//!
//! A component of [`unic`: Unicode and Internationalization Crates for Rust](/unic/).
//!
//! Implementation of Punycode ([RFC 3492](http://tools.ietf.org/html/rfc3492)) algorithm.
//!
//! Since Punycode fundamentally works on Unicode Code-Points,
//! `encode` and `decode` take and return slices and vectors of `char`.
//! `encode_str` and `decode_to_string` provide convenience wrappers
//! that convert from and to Rust’s UTF-8 based `str` and `String` types.
use std::char;
use std::u32;
mod pkg_info;
pub use crate::pkg_info::{PKG_DESCRIPTION, PKG_NAME, PKG_VERSION};
// Bootstring parameters for Punycode
static BASE: u32 = 36;
static T_MIN: u32 = 1;
static T_MAX: u32 = 26;
static SKEW: u32 = 38;
static DAMP: u32 = 700;
static INITIAL_BIAS: u32 = 72;
static INITIAL_N: u32 = 0x80;
static DELIMITER: char = '-';
#[inline]
fn adapt(mut delta: u32, num_points: u32, first_time: bool) -> u32 {
delta /= if first_time { DAMP } else { 2 };
delta += delta / num_points;
let mut k = 0;
while delta > ((BASE - T_MIN) * T_MAX) / 2 {
delta /= BASE - T_MIN;
k += BASE;
}
k + (((BASE - T_MIN + 1) * delta) / (delta + SKEW))
}
/// Convert Punycode to an Unicode `String`.
///
/// This is a convenience wrapper around `decode`.
#[inline]
pub fn decode_to_string(input: &str) -> Option<String> {
decode(input).map(|chars| chars.into_iter().collect())
}
/// Convert Punycode to Unicode.
///
/// Return None on malformed input or overflow.
/// Overflow can only happen on inputs that take more than
/// 63 encoded bytes, the DNS limit on domain name labels.
#[cfg_attr(feature = "cargo-clippy", allow(cast_lossless))]
pub fn decode(input: &str) -> Option<Vec<char>> {
// Handle "basic" (ASCII) code points.
// They are encoded as-is before the last delimiter, if any.
let (mut output, input) = match input.rfind(DELIMITER) {
None => (Vec::new(), input),
Some(position) => (
input[..position].chars().collect(),
if position > 0 {
&input[position + 1..]
} else {
input
},
),
};
let mut code_point = INITIAL_N;
let mut bias = INITIAL_BIAS;
let mut i = 0;
let mut iter = input.bytes();
loop {
let previous_i = i;
let mut weight = 1;
let mut k = BASE;
let mut byte = match iter.next() {
None => break,
Some(byte) => byte,
};
// Decode a generalized variable-length integer into delta,
// which gets added to i.
loop {
let digit = match byte {
byte @ b'0'..=b'9' => byte - b'0' + 26,
byte @ b'A'..=b'Z' => byte - b'A',
byte @ b'a'..=b'z' => byte - b'a',
_ => return None,
} as u32;
if digit > (u32::MAX - i) / weight {
return None; // Overflow
}
i += digit * weight;
let t = if k <= bias {
T_MIN
} else if k >= bias + T_MAX {
T_MAX
} else {
k - bias
};
if digit < t {
break;
}
if weight > u32::MAX / (BASE - t) {
return None; // Overflow
}
weight *= BASE - t;
k += BASE;
byte = match iter.next() {
None => return None, // End of input before the end of this delta
Some(byte) => byte,
};
}
let length = output.len() as u32;
bias = adapt(i - previous_i, length + 1, previous_i == 0);
if i / (length + 1) > u32::MAX - code_point {
return None; // Overflow
}
// i was supposed to wrap around from length+1 to 0,
// incrementing code_point each time.
code_point += i / (length + 1);
i %= length + 1;
let c = match char::from_u32(code_point) {
Some(c) => c,
None => return None,
};
output.insert(i as usize, c);
i += 1;
}
Some(output)
}
/// Convert an Unicode `str` to Punycode.
///
/// This is a convenience wrapper around `encode`.
#[inline]
pub fn encode_str(input: &str) -> Option<String> {
encode(&input.chars().collect::<Vec<char>>())
}
/// Convert Unicode to Punycode.
///
/// Return None on overflow, which can only happen on inputs that would take more than
/// 63 encoded bytes, the DNS limit on domain name labels.
#[allow(unsafe_code)]
pub fn encode(input: &[char]) -> Option<String> {
// Handle "basic" (ASCII) code points. They are encoded as-is.
let output_bytes = input
.iter()
.filter_map(|&c| if c.is_ascii() { Some(c as u8) } else { None })
.collect();
let mut output = unsafe { String::from_utf8_unchecked(output_bytes) };
let basic_length = output.len() as u32;
if basic_length > 0 {
output.push_str("-")
}
let mut code_point = INITIAL_N;
let mut delta = 0;
let mut bias = INITIAL_BIAS;
let mut processed = basic_length;
let input_length = input.len() as u32;
while processed < input_length {
// All code points < code_point have been handled already.
// Find the next larger one.
let min_code_point = input
.iter()
.map(|&c| c as u32)
.filter(|&c| c >= code_point)
.min()
.unwrap();
if min_code_point - code_point > (u32::MAX - delta) / (processed + 1) {
return None; // Overflow
}
// Increase delta to advance the decoder’s <code_point,i> state to <min_code_point,0>
delta += (min_code_point - code_point) * (processed + 1);
code_point = min_code_point;
for &c in input {
let c = c as u32;
if c < code_point {
delta += 1;
if delta == 0 {
return None; // Overflow
}
}
if c == code_point {
// Represent delta as a generalized variable-length integer:
let mut q = delta;
let mut k = BASE;
loop {
let t = if k <= bias {
T_MIN
} else if k >= bias + T_MAX {
T_MAX
} else {
k - bias
};
if q < t {
break;
}
let value = t + ((q - t) % (BASE - t));
output.push(value_to_digit(value));
q = (q - t) / (BASE - t);
k += BASE;
}
output.push(value_to_digit(q));
bias = adapt(delta, processed + 1, processed == basic_length);
delta = 0;
processed += 1;
}
}
delta += 1;
code_point += 1;
}
Some(output)
}
#[inline]
fn value_to_digit(value: u32) -> char {
match value {
0..=25 => (value as u8 + b'a') as char, // a..=z
26..=35 => (value as u8 - 26 + b'0') as char, // 0..=9
_ => panic!("Value larger than BASE: {}", value),
}
}