1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
//! Fast, FFI-friendly string interning. A [`Ustr`] (**U**nique **Str**) is a
//! lightweight handle representing a static, immutable entry in a global string
//! cache, allowing for:
//! * Extremely fast string assignment and comparisons -- it's just a pointer
//! comparison.
//! * Efficient storage -- only one copy of the string is held in memory, and
//! getting access to it is just a pointer indirection.
//! * Fast hashing -- the precomputed hash is stored with the string
//! * Fast FFI -- the string is stored with a terminating null byte so can be
//! passed to C directly without doing the CString dance.
//!
//! The downside is no strings are ever freed, so if you're creating lots and
//! lots of strings, you might run out of memory. On the other hand, War and
//! Peace is only 3MB, so it's probably fine.
//!
//! This crate is based on [OpenImageIO's ustring](https://github.com/OpenImageIO/oiio/blob/master/src/include/OpenImageIO/ustring.h) but it is NOT binary-compatible (yet). The underlying hash map implementation is directy ported from OIIO.
//!
//! # Usage
//!
//! ```
//! use ustr_fxhash::{Ustr, ustr, ustr as u};
//!
//! # unsafe { ustr_fxhash::_clear_cache() };
//! // Creation is quick and easy using either `Ustr::from` or the ustr function
//! // and only one copy of any string is stored
//! let u1 = Ustr::from("the quick brown fox");
//! let u2 = ustr("the quick brown fox");
//!
//! // Comparisons and copies are extremely cheap
//! let u3 = u1;
//! assert_eq!(u2, u3);
//!
//! // You can pass straight to FFI
//! let len = unsafe {
//! libc::strlen(u1.as_char_ptr())
//! };
//! assert_eq!(len, 19);
//!
//! // Use as_str() to get a &str
//! let words: Vec<&str> = u1.as_str().split_whitespace().collect();
//! assert_eq!(words, ["the", "quick", "brown", "fox"]);
//!
//! // For best performance when using Ustr as key for a HashMap or HashSet,
//! // you'll want to use the precomputed hash. To make this easier, just use
//! // the UstrMap and UstrSet exports:
//! use ustr_fxhash::UstrMap;
//!
//! // Key type is always Ustr
//! let mut map: UstrMap<usize> = UstrMap::default();
//! map.insert(u1, 17);
//! assert_eq!(*map.get(&u1).unwrap(), 17);
//! ```
//!
//! By enabling the `"serde"` feature you can serialize individual `Ustr`s
//! or the whole cache with serde.
//!
//! ```
//! # #[cfg(feature = "serde")] {
//! use ustr_fxhash::{Ustr, ustr};
//! let u_ser = ustr("serde");
//! let json = serde_json::to_string(&u_ser).unwrap();
//! let u_de : Ustr = serde_json::from_str(&json).unwrap();
//! assert_eq!(u_ser, u_de);
//! # }
//! ```
//!
//! Since the cache is global, use the `ustr::DeserializedCache` dummy object to
//! drive the deserialization.
//!
//! ```
//! # #[cfg(feature = "serde")] {
//! use ustr_fxhash::{Ustr, ustr};
//! ustr("Send me to JSON and back");
//! let json = serde_json::to_string(ustr::cache()).unwrap();
//!
//! // ... some time later ...
//! let _: ustr::DeserializedCache = serde_json::from_str(&json).unwrap();
//! assert_eq!(ustr_fxhash::num_entries(), 1);
//! assert_eq!(ustr::string_cache_iter().collect::<Vec<_>>(), vec!["Send me to JSON and back"]);
//! # }
//! ```
//!
//! ## Why?
//!
//! It is common in certain types of applications to use strings as identifiers,
//! but not really do any processing with them.
//! To paraphrase from OIIO's `Ustring` documentation -- compared to standard
//! strings, `Ustr`s have several advantages:
//!
//! - Each individual `Ustr` is very small -- in fact, we guarantee that a
//! `Ustr` is the same size and memory layout as an ordinary `*u8`.
//! - Storage is frugal, since there is only one allocated copy of each unique
//! character sequence, throughout the lifetime of the program.
//! - Assignment from one `Ustr` to another is just copy of the pointer; no
//! allocation, no character copying, no reference counting.
//! - Equality testing (do the strings contain the same characters) is a
//! single operation, the comparison of the pointer.
//! - Memory allocation only occurs when a new `Ustr` is constructed from raw
//! characters the FIRST time -- subsequent constructions of the same string
//! just finds it in the canonial string set, but doesn't need to allocate
//! new storage. Destruction of a `Ustr` is trivial, there is no
//! de-allocation because the canonical version stays in the set. Also,
//! therefore, no user code mistake can lead to memory leaks.
//!
//! But there are some problems, too. Canonical strings are never freed
//! from the table. So in some sense all the strings "leak", but they
//! only leak one copy for each unique string that the program ever comes
//! across.
//!
//! On the whole, `Ustr`s are a really great string representation
//! - if you tend to have (relatively) few unique strings, but many copies of
//! those strings;
//! - if the creation of strings from raw characters is relatively rare
//! compared to copying or comparing to existing strings;
//! - if you tend to make the same strings over and over again, and if it's
//! relatively rare that a single unique character sequence is used only
//! once in the entire lifetime of the program;
//! - if your most common string operations are assignment and equality
//! testing and you want them to be as fast as possible;
//! - if you are doing relatively little character-by-character assembly of
//! strings, string concatenation, or other "string manipulation" (other
//! than equality testing).
//!
//! `Ustr`s are not so hot
//! - if your program tends to have very few copies of each character sequence
//! over the entire lifetime of the program;
//! - if your program tends to generate a huge variety of unique strings over
//! its lifetime, each of which is used only a short time and then
//! discarded, never to be needed again;
//! - if you don't need to do a lot of string assignment or equality testing,
//! but lots of more complex string manipulation.
//!
//! ## Safety and Compatibility
//!
//! This crate contains a significant amount of unsafe but usage has been
//! checked and is well-documented. It is also run through Miri as part of the
//! CI process. I use it regularly on 64-bit systems, and it has passed Miri on
//! a 32-bit system as well, bit 32-bit is not checked regularly. If you want to
//! use it on 32-bit, please make sure to run Miri and open and issue if you
//! find any problems.
use parking_lot::Mutex;
use std::fmt;
use std::mem::size_of;
use std::str::FromStr;
mod stringcache;
pub use stringcache::*;
#[cfg(feature = "serde")]
pub mod serialization;
#[cfg(feature = "serde")]
pub use serialization::DeserializedCache;
mod bumpalloc;
mod hash;
pub use hash::*;
use std::cmp::Ordering;
use std::hash::{Hash, Hasher};
use std::ptr::NonNull;
/// A handle representing a string in the global string cache.
///
/// To use, create one using `Ustr::from` or the `ustr` function. You can freely
/// copy, destroy or send Ustrs to other threads: the underlying string is
/// always valid in memory (and is never destroyed).
#[derive(Copy, Clone, PartialEq)]
#[repr(transparent)]
pub struct Ustr {
char_ptr: NonNull<u8>,
}
/// Defer to &str for equality - lexicographic ordering will be slower than
/// pointer comparison, but much less surprising if you use Ustrs as keys in
/// e.g. a BTreeMap
impl Ord for Ustr {
fn cmp(&self, other: &Self) -> Ordering {
self.as_str().cmp(other.as_str())
}
}
/// Defer to &str for equality - lexicographic ordering will be slower than
/// pointer comparison, but much less surprising if you use Ustrs as keys in
/// e.g. a BTreeMap
impl PartialOrd for Ustr {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.as_str().partial_cmp(other.as_str())
}
}
impl Ustr {
/// Create a new Ustr from the given &str.
///
/// You can also use the ustr function
/// ```
/// use ustr_fxhash::{Ustr, ustr as u};
/// # unsafe { ustr_fxhash::_clear_cache() };
///
/// let u1 = Ustr::from("the quick brown fox");
/// let u2 = u("the quick brown fox");
/// assert_eq!(u1, u2);
/// assert_eq!(ustr_fxhash::num_entries(), 1);
/// ```
pub fn from(string: &str) -> Ustr {
let hash = {
let mut hasher = fxhash::FxHasher::default();
hasher.write(string.as_bytes());
hasher.finish()
};
let mut sc = STRING_CACHE.0[whichbin(hash)].lock();
Ustr {
// SAFETY: sc.insert does not give back a null pointer
char_ptr: unsafe {
NonNull::new_unchecked(sc.insert(string, hash) as *mut _)
},
}
}
pub fn from_existing(string: &str) -> Option<Ustr> {
let hash = {
let mut hasher = fxhash::FxHasher::default();
hasher.write(string.as_bytes());
hasher.finish()
};
let sc = STRING_CACHE.0[whichbin(hash)].lock();
sc.get_existing(string, hash).map(|ptr| Ustr {
char_ptr: unsafe { NonNull::new_unchecked(ptr as *mut _) },
})
}
/// Get the cached string as a &str
/// ```
/// use ustr_fxhash::ustr as u;
/// # unsafe { ustr_fxhash::_clear_cache() };
///
/// let u_fox = u("the quick brown fox");
/// let words: Vec<&str> = u_fox.as_str().split_whitespace().collect();
/// assert_eq!(words, ["the", "quick", "brown", "fox"]);
/// ```
pub fn as_str(&self) -> &'static str {
// This is safe if:
// 1) self.char_ptr points to a valid address
// 2) len is a usize stored usize aligned usize bytes before char_ptr
// 3) char_ptr points to a valid UTF-8 string of len bytes.
// All these are guaranteed by StringCache::insert() and by the fact
// we can only construct a Ustr from a valid &str.
unsafe {
std::str::from_utf8_unchecked(std::slice::from_raw_parts(
self.char_ptr.as_ptr(),
self.len(),
))
}
}
/// Get the cached string as a C char*.
///
/// This includes the null terminator so is safe to pass straight to FFI.
///
/// ```
/// use ustr_fxhash::ustr as u;
/// # unsafe { ustr_fxhash::_clear_cache() };
///
/// let u_fox = u("the quick brown fox");
/// let len = unsafe {
/// libc::strlen(u_fox.as_char_ptr())
/// };
/// assert_eq!(len, 19);
/// ```
///
/// # Safety
/// This is just passing a raw byte array with a null terminator to C.
/// If your source string contains non-ascii bytes then this will pass them
/// straight along with no checking.
/// The string is **immutable**. That means that if you modify it across the
/// FFI boundary then all sorts of terrible things will happen.
pub fn as_char_ptr(&self) -> *const std::os::raw::c_char {
self.char_ptr.as_ptr() as *const std::os::raw::c_char
}
/// Get this ustr as a CStr
///
/// This is useful for passing to APIs (like ash) that use CStr
///
/// # Safety
/// This function by itself is safe as the pointer and length are
/// guaranteed to be valid. All the same caveats for the use of the CStr
/// as given in the CSstr docs apply
pub fn as_cstr(&self) -> &std::ffi::CStr {
unsafe {
std::ffi::CStr::from_bytes_with_nul_unchecked(
std::slice::from_raw_parts(self.as_ptr(), self.len() + 1),
)
}
}
// Get a raw pointer to the StringCacheEntry
#[inline]
fn as_string_cache_entry(&self) -> &StringCacheEntry {
// The allocator guarantees that the alignment is correct and that
// this pointer is non-null
unsafe {
&*((self.char_ptr.as_ptr() as usize - size_of::<StringCacheEntry>())
as *const StringCacheEntry)
}
}
/// Get the length (in bytes) of this string.
#[inline]
pub fn len(&self) -> usize {
self.as_string_cache_entry().len
}
/// Returns true if the length is zero.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Get the precomputed hash for this string
#[inline]
pub fn precomputed_hash(&self) -> u64 {
self.as_string_cache_entry().hash
}
/// Get an owned String copy of this string.
pub fn to_owned(&self) -> String {
self.as_str().to_owned()
}
}
// We're safe to impl these because the strings they reference are immutable
// and for all intents and purposes 'static since they're never deleted after
// being created
unsafe impl Send for Ustr {}
unsafe impl Sync for Ustr {}
impl PartialEq<&str> for Ustr {
fn eq(&self, other: &&str) -> bool {
self.as_str() == *other
}
}
impl PartialEq<String> for Ustr {
fn eq(&self, other: &String) -> bool {
self.as_str() == other
}
}
impl Eq for Ustr {}
impl AsRef<str> for Ustr {
fn as_ref(&self) -> &str {
self.as_str()
}
}
impl FromStr for Ustr {
type Err = std::string::ParseError;
#[inline]
fn from_str(s: &str) -> Result<Self, Self::Err> {
Ok(Ustr::from(s))
}
}
impl From<&str> for Ustr {
fn from(s: &str) -> Ustr {
Ustr::from(s)
}
}
impl From<Ustr> for &'static str {
fn from(s: Ustr) -> &'static str {
s.as_str()
}
}
impl From<String> for Ustr {
fn from(s: String) -> Ustr {
Ustr::from(&s)
}
}
impl Default for Ustr {
fn default() -> Self {
Ustr::from("")
}
}
impl std::ops::Deref for Ustr {
type Target = str;
fn deref(&self) -> &Self::Target {
self.as_str()
}
}
impl fmt::Display for Ustr {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.as_str())
}
}
impl fmt::Debug for Ustr {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "u!({:?})", self.as_str())
}
}
// Just feed the precomputed hash into the Hasher. Note that this will of course
// be terrible unless the Hasher in question is expecting a precomputed hash.
#[allow(clippy::derived_hash_with_manual_eq)]
impl Hash for Ustr {
fn hash<H: Hasher>(&self, state: &mut H) {
self.precomputed_hash().hash(state);
}
}
/// DO NOT CALL THIS.
///
/// Clears the cache - used for benchmarking and testing purposes to clear the
/// cache. Calling this will invalidate any previously created `UStr`s and
/// probably cause your house to burn down. DO NOT CALL THIS.
///
/// # Safety
/// DO NOT CALL THIS.
#[doc(hidden)]
pub unsafe fn _clear_cache() {
for m in STRING_CACHE.0.iter() {
m.lock().clear();
}
}
/// Returns the total amount of memory allocated and in use by the cache in
/// bytes
pub fn total_allocated() -> usize {
STRING_CACHE
.0
.iter()
.map(|sc| {
let t = sc.lock().total_allocated();
t
})
.sum()
}
/// Returns the total amount of memory reserved by the cache in bytes
pub fn total_capacity() -> usize {
STRING_CACHE
.0
.iter()
.map(|sc| {
let t = sc.lock().total_capacity();
t
})
.sum()
}
/// Create a new Ustr from the given &str.
///
/// ```
/// use ustr_fxhash::ustr;
/// # unsafe { ustr_fxhash::_clear_cache() };
///
/// let u1 = ustr("the quick brown fox");
/// let u2 = ustr("the quick brown fox");
/// assert_eq!(u1, u2);
/// assert_eq!(ustr_fxhash::num_entries(), 1);
/// ```
#[inline]
pub fn ustr(s: &str) -> Ustr {
Ustr::from(s)
}
/// Create a new Ustr from the given &str but only if it already exists in the
/// string cache.
///
/// ```
/// use ustr_fxhash::{ustr, existing_ustr};
/// # unsafe { ustr_fxhash::_clear_cache() };
///
/// let u1 = existing_ustr("the quick brown fox");
/// let u2 = ustr("the quick brown fox");
/// let u3 = existing_ustr("the quick brown fox");
/// assert_eq!(u1, None);
/// assert_eq!(u3, Some(u2));
/// ```
#[inline]
pub fn existing_ustr(s: &str) -> Option<Ustr> {
Ustr::from_existing(s)
}
/// Utility function to get a reference to the main cache object for use with
/// serialization.
///
/// # Examples
/// ```
/// # use ustr_fxhash::{Ustr, ustr, ustr as u};
/// # #[cfg(feature="serde")]
/// # {
/// # unsafe { ustr_fxhash::_clear_cache() };
/// ustr("Send me to JSON and back");
/// let json = serde_json::to_string(ustr::cache()).unwrap();
/// # }
pub fn cache() -> &'static Bins {
&STRING_CACHE
}
/// Returns the number of unique strings in the cache
///
/// This may be an underestimate if other threads are writing to the cache
/// concurrently.
///
/// ```
/// use ustr_fxhash::ustr as u;
///
/// let _ = u("Hello");
/// let _ = u(", World!");
/// assert_eq!(ustr_fxhash::num_entries(), 2);
/// ```
pub fn num_entries() -> usize {
STRING_CACHE
.0
.iter()
.map(|sc| {
let t = sc.lock().num_entries();
t
})
.sum()
}
#[doc(hidden)]
pub fn num_entries_per_bin() -> Vec<usize> {
STRING_CACHE
.0
.iter()
.map(|sc| {
let t = sc.lock().num_entries();
t
})
.collect::<Vec<_>>()
}
/// Return an iterator over the entire string cache.
///
/// If another thread is adding strings concurrently to this call then they
/// might not show up in the view of the cache presented by this iterator.
///
/// # Safety
/// This returns an iterator to the state of the cache at the time when
/// `string_cache_iter()` was called. It is of course possible that another
/// thread will add more strings to the cache after this, but since we never
/// destroy the strings, they remain valid, meaning it's safe to iterate over
/// them, the list just might not be completely up to date.
pub fn string_cache_iter() -> StringCacheIterator {
let mut allocs = Vec::new();
for m in STRING_CACHE.0.iter() {
let sc = m.lock();
// the start of the allocator's data is actually the ptr, start() just
// points to the beginning of the allocated region. The first bytes will
// be uninitialized since we're bumping down
for a in &sc.old_allocs {
allocs.push((a.ptr(), a.end()));
}
let ptr = sc.alloc.ptr();
let end = sc.alloc.end();
if ptr != end {
allocs.push((sc.alloc.ptr(), sc.alloc.end()));
}
}
let current_ptr = allocs[0].0;
StringCacheIterator {
allocs,
current_alloc: 0,
current_ptr,
}
}
#[repr(transparent)]
pub struct Bins(pub(crate) [Mutex<StringCache>; NUM_BINS]);
#[cfg(test)]
mod tests {
use lazy_static::lazy_static;
use std::sync::Mutex;
lazy_static! {
static ref TEST_LOCK: Mutex<()> = Mutex::new(());
}
#[test]
fn it_works() {
let _t = TEST_LOCK.lock();
use super::ustr as u;
let u_hello = u("hello");
assert_eq!(u_hello, "hello");
let u_world = u("world");
assert_eq!(u_world, String::from("world"));
}
#[test]
fn empty_string() {
let _t = TEST_LOCK.lock();
use super::ustr as u;
unsafe {
super::_clear_cache();
}
let _empty = u("");
let empty = u("");
assert!(empty.as_str().is_empty());
assert_eq!(super::num_entries(), 1);
}
#[test]
fn c_str_works() {
let _t = TEST_LOCK.lock();
use super::ustr as u;
use std::ffi::CStr;
let s_fox = "The quick brown fox jumps over the lazy dog.";
let u_fox = u(s_fox);
let fox = unsafe { CStr::from_ptr(u_fox.as_char_ptr()) }
.to_string_lossy()
.into_owned();
assert_eq!(fox, s_fox);
let s_odys = "Τη γλώσσα μου έδωσαν ελληνική";
let u_odys = u(s_odys);
let odys = unsafe { CStr::from_ptr(u_odys.as_char_ptr()) }
.to_string_lossy()
.into_owned();
assert_eq!(odys, s_odys);
}
#[test]
// We have to disable miri here as it's far too slow unfortunately
#[cfg_attr(miri, ignore)]
fn blns() {
let _t = TEST_LOCK.lock();
use super::{string_cache_iter, ustr as u};
use std::collections::HashSet;
// clear the cache first or our results will be wrong
unsafe { super::_clear_cache() };
// let path =
// std::path::Path::new(&std::env::var("CARGO_MANIFEST_DIR").unwrap())
// .join("data")
// .join("blns.txt");
// let blns = std::fs::read_to_string(path).unwrap();
let blns = include_str!("../data/blns.txt");
let mut hs = HashSet::new();
for s in blns.split_whitespace() {
hs.insert(s);
}
let mut us = Vec::new();
let mut ss = Vec::new();
for s in blns.split_whitespace().cycle().take(100_000) {
let u = u(s);
us.push(u);
ss.push(s.to_owned());
}
let mut hs_u = HashSet::new();
for s in string_cache_iter() {
hs_u.insert(s);
}
let diff: HashSet<_> = hs.difference(&hs_u).collect();
// check that the number of entries is the same
assert_eq!(super::num_entries(), hs.len());
// check that we have the exact same (unique) strings in the cache as in
// the source data
assert_eq!(diff.len(), 0);
let nbs = super::num_entries_per_bin();
println!("{:?}", nbs);
println!("Total allocated: {}", super::total_allocated());
println!("Total capacity: {}", super::total_capacity());
println!(
"size of StringCache: {}",
std::mem::size_of::<super::StringCache>()
);
}
#[test]
// We have to disable miri here as it's far too slow unfortunately
#[cfg_attr(miri, ignore)]
fn raft() {
let _t = TEST_LOCK.lock();
use super::ustr as u;
use std::sync::Arc;
// let path =
// std::path::Path::new(&std::env::var("CARGO_MANIFEST_DIR").unwrap())
// .join("data")
// .join("raft-large-directories.txt");
// let raft = std::fs::read_to_string(path).unwrap();
let raft = include_str!("../data/raft-large-directories.txt");
let raft = Arc::new(
raft.split_whitespace()
.collect::<Vec<_>>()
.chunks(3)
.map(|s| {
if s.len() == 3 {
format!("{}/{}/{}", s[0], s[1], s[2])
} else {
s[0].to_owned()
}
})
.collect::<Vec<_>>(),
);
let s = raft.clone();
for _ in 0..600 {
let mut v = Vec::with_capacity(20_000);
unsafe { super::_clear_cache() };
for s in s.iter().cycle().take(20_000) {
v.push(u(s));
}
}
}
// This test is to have miri check the allocation code paths, but miri
// can't open files so it's not usable right now
// #[test]
// fn words() {
// let _t = TEST_LOCK.lock();
// use super::ustr as u;
// use std::sync::Arc;
// let path = std::path::Path::new("/usr/share/dict/words");
// let wordlist = std::fs::read_to_string(path).unwrap();
// let wordlist = Arc::new(
// wordlist
// .split_whitespace()
// .collect::<Vec<_>>()
// .chunks(7)
// .cycle()
// .take(4_000_000)
// .enumerate()
// .map(|(i, s)| u(&format!("{}{}", i, s.join("-"))))
// .collect::<Vec<_>>(),
// );
// }
#[cfg(all(feature = "serde", not(miri)))]
#[test]
fn serialization() {
let _t = TEST_LOCK.lock();
use super::{string_cache_iter, ustr as u};
use std::collections::HashSet;
// clear the cache first or our results will be wrong
unsafe { super::_clear_cache() };
let path = std::path::Path::new(
&std::env::var("CARGO_MANIFEST_DIR")
.expect("CARGO_MANIFEST_DIR not set"),
)
.join("data")
.join("blns.txt");
let blns = std::fs::read_to_string(path).unwrap();
let mut hs = HashSet::new();
for s in blns.split_whitespace() {
hs.insert(s);
}
let mut us = Vec::new();
let mut ss = Vec::new();
for s in blns.split_whitespace().cycle().take(100_000) {
let u = u(s);
us.push(u);
ss.push(s.to_owned());
}
let json = serde_json::to_string(super::cache()).unwrap();
unsafe {
super::_clear_cache();
}
let _: super::DeserializedCache = serde_json::from_str(&json).unwrap();
// now check that we've got the same data in the cache still
let mut hs_u = HashSet::new();
for s in string_cache_iter() {
hs_u.insert(s);
}
let diff: HashSet<_> = hs.difference(&hs_u).collect();
// check that the number of entries is the same
assert_eq!(super::num_entries(), hs.len());
// check that we have the exact same (unique) strings in the cache as in
// the source data
assert_eq!(diff.len(), 0);
}
#[cfg(all(feature = "serde", not(miri)))]
#[test]
fn serialization_ustr() {
use super::{ustr, Ustr};
let u_hello = ustr("hello");
let json = serde_json::to_string(&u_hello).unwrap();
let me_hello: Ustr = serde_json::from_str(&json).unwrap();
assert_eq!(u_hello, me_hello);
}
#[test]
fn partial_ord() {
let _t = TEST_LOCK.lock();
use super::ustr;
let str_a = ustr("aaa");
let str_z = ustr("zzz");
let str_k = ustr("kkk");
assert!(str_a < str_k);
assert!(str_k < str_z);
}
#[test]
fn ord() {
let _t = TEST_LOCK.lock();
use super::ustr;
let u_apple = ustr("apple");
let u_bravo = ustr("bravo");
let u_charlie = ustr("charlie");
let u_delta = ustr("delta");
let mut v = vec![u_delta, u_bravo, u_charlie, u_apple];
v.sort();
assert_eq!(v, vec![u_apple, u_bravo, u_charlie, u_delta]);
}
fn takes_into_str<'a, S: Into<&'a str>>(s: S) -> &'a str {
s.into()
}
#[test]
fn test_into_str() {
let _t = TEST_LOCK.lock();
use super::ustr;
assert_eq!("converted", takes_into_str(ustr("converted")));
}
#[test]
fn test_existing_ustr() {
let _t = TEST_LOCK.lock();
use super::{existing_ustr, ustr};
assert_eq!(existing_ustr("hello world!"), None);
let s1 = ustr("hello world!");
let s2 = existing_ustr("hello world!");
assert_eq!(Some(s1), s2);
}
}
lazy_static::lazy_static! {
static ref STRING_CACHE: Bins = {
use std::mem::{self, MaybeUninit};
// This deeply unsafe feeling dance allows us to initialize an array of
// arbitrary size and will have to tide us over until const generics
// land. See:
// https://doc.rust-lang.org/beta/std/mem/union.MaybeUninit.html#initializing-an-array-element-by-element
// Create an uninitialized array of `MaybeUninit`. The `assume_init` is
// safe because the type we are claiming to have initialized here is a
// bunch of `MaybeUninit`s, which do not require initialization.
let mut bins: [MaybeUninit<Mutex<StringCache>>; NUM_BINS] = unsafe {
MaybeUninit::uninit().assume_init()
};
// Dropping a `MaybeUninit` does nothing. Thus using raw pointer
// assignment instead of `ptr::write` does not cause the old
// uninitialized value to be dropped. Also if there is a panic during
// this loop, we have a memory leak, but there is no memory safety
// issue.
for bin in &mut bins[..] {
*bin = MaybeUninit::new(Mutex::new(StringCache::default()));
}
// Everything is initialized. Transmute the array to the
// initialized type.
unsafe { mem::transmute::<_, Bins>(bins) }
};
}
// Use the top bits of the hash to choose a bin
#[inline]
fn whichbin(hash: u64) -> usize {
((hash >> TOP_SHIFT as u64) % NUM_BINS as u64) as usize
}