1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
// For the full copyright and license information, please view the LICENSE
// file that was distributed with this source code.
#![warn(future_incompatible)]
#![warn(missing_copy_implementations)]
#![warn(missing_docs)]
#![warn(nonstandard_style)]
#![warn(trivial_casts, trivial_numeric_casts)]
#![warn(unused)]
#![deny(unsafe_code)]
#![doc = include_str!("../README.md")]
use ansi_width::ansi_width;
use std::fmt;
/// Direction cells should be written in: either across or downwards.
#[derive(PartialEq, Eq, Debug, Copy, Clone)]
pub enum Direction {
/// Starts at the top left and moves rightwards, going back to the first
/// column for a new row, like a typewriter.
LeftToRight,
/// Starts at the top left and moves downwards, going back to the first
/// row for a new column, like how `ls` lists files by default.
TopToBottom,
}
/// The text to put in between each pair of columns.
///
/// This does not include any spaces used when aligning cells.
#[derive(PartialEq, Eq, Debug)]
pub enum Filling {
/// A number of spaces
Spaces(usize),
/// An arbitrary string
///
/// `"|"` is a common choice.
Text(String),
}
impl Filling {
fn width(&self) -> usize {
match self {
Filling::Spaces(w) => *w,
Filling::Text(t) => ansi_width(t),
}
}
}
/// The options for a grid view that should be passed to [`Grid::new`]
#[derive(Debug)]
pub struct GridOptions {
/// The direction that the cells should be written in
pub direction: Direction,
/// The string to put in between each column of cells
pub filling: Filling,
/// The width to fill with the grid
pub width: usize,
}
#[derive(PartialEq, Eq, Debug)]
struct Dimensions {
/// The number of lines in the grid.
num_lines: usize,
/// The width of each column in the grid. The length of this vector serves
/// as the number of columns.
widths: Vec<usize>,
}
impl Dimensions {
fn total_width(&self, separator_width: usize) -> usize {
if self.widths.is_empty() {
0
} else {
let values = self.widths.iter().sum::<usize>();
let separators = separator_width * (self.widths.len() - 1);
values + separators
}
}
}
/// Everything needed to format the cells with the grid options.
#[derive(Debug)]
pub struct Grid<T: AsRef<str>> {
options: GridOptions,
cells: Vec<T>,
widths: Vec<usize>,
widest_cell_width: usize,
dimensions: Dimensions,
}
impl<T: AsRef<str>> Grid<T> {
/// Creates a new grid view with the given cells and options
pub fn new(cells: Vec<T>, options: GridOptions) -> Self {
let widths: Vec<usize> = cells.iter().map(|c| ansi_width(c.as_ref())).collect();
let widest_cell_width = widths.iter().copied().max().unwrap_or(0);
let width = options.width;
let mut grid = Self {
options,
cells,
widths,
widest_cell_width,
dimensions: Dimensions {
num_lines: 0,
widths: Vec::new(),
},
};
grid.dimensions = grid.width_dimensions(width).unwrap_or(Dimensions {
num_lines: grid.cells.len(),
widths: vec![widest_cell_width],
});
grid
}
/// The number of terminal columns this display takes up, based on the separator
/// width and the number and width of the columns.
pub fn width(&self) -> usize {
self.dimensions.total_width(self.options.filling.width())
}
/// The number of rows this display takes up.
pub fn row_count(&self) -> usize {
self.dimensions.num_lines
}
/// The width of each column
pub fn column_widths(&self) -> &[usize] {
&self.dimensions.widths
}
/// Returns whether this display takes up as many columns as were allotted
/// to it.
///
/// It’s possible to construct tables that don’t actually use up all the
/// columns that they could, such as when there are more columns than
/// cells! In this case, a column would have a width of zero. This just
/// checks for that.
pub fn is_complete(&self) -> bool {
self.dimensions.widths.iter().all(|&x| x > 0)
}
fn compute_dimensions(&self, num_lines: usize, num_columns: usize) -> Dimensions {
let mut column_widths = vec![0; num_columns];
for (index, cell_width) in self.widths.iter().copied().enumerate() {
let index = match self.options.direction {
Direction::LeftToRight => index % num_columns,
Direction::TopToBottom => index / num_lines,
};
if cell_width > column_widths[index] {
column_widths[index] = cell_width;
}
}
Dimensions {
num_lines,
widths: column_widths,
}
}
fn theoretical_max_num_lines(&self, maximum_width: usize) -> usize {
// TODO: Make code readable / efficient.
let mut widths = self.widths.clone();
// Sort widths in reverse order
widths.sort_unstable_by(|a, b| b.cmp(a));
let mut col_total_width_so_far = 0;
for (i, &width) in widths.iter().enumerate() {
let adjusted_width = if i == 0 {
width
} else {
width + self.options.filling.width()
};
if col_total_width_so_far + adjusted_width <= maximum_width {
col_total_width_so_far += adjusted_width;
} else {
return div_ceil(self.cells.len(), i);
}
}
// If we make it to this point, we have exhausted all cells before
// reaching the maximum width; the theoretical max number of lines
// needed to display all cells is 1.
1
}
fn width_dimensions(&self, maximum_width: usize) -> Option<Dimensions> {
if self.widest_cell_width > maximum_width {
// Largest cell is wider than maximum width; it is impossible to fit.
return None;
}
if self.cells.is_empty() {
return Some(Dimensions {
num_lines: 0,
widths: Vec::new(),
});
}
if self.cells.len() == 1 {
let cell_widths = self.widths[0];
return Some(Dimensions {
num_lines: 1,
widths: vec![cell_widths],
});
}
let theoretical_max_num_lines = self.theoretical_max_num_lines(maximum_width);
if theoretical_max_num_lines == 1 {
// This if—statement is necessary for the function to work correctly
// for small inputs.
return Some(Dimensions {
num_lines: 1,
widths: self.widths.clone(),
});
}
// Instead of numbers of columns, try to find the fewest number of *lines*
// that the output will fit in.
let mut smallest_dimensions_yet = None;
for num_lines in (1..=theoretical_max_num_lines).rev() {
// The number of columns is the number of cells divided by the number
// of lines, *rounded up*.
let num_columns = div_ceil(self.cells.len(), num_lines);
// Early abort: if there are so many columns that the width of the
// *column separators* is bigger than the width of the screen, then
// don’t even try to tabulate it.
// This is actually a necessary check, because the width is stored as
// a usize, and making it go negative makes it huge instead, but it
// also serves as a speed-up.
let total_separator_width = (num_columns - 1) * self.options.filling.width();
if maximum_width < total_separator_width {
continue;
}
// Remove the separator width from the available space.
let adjusted_width = maximum_width - total_separator_width;
let potential_dimensions = self.compute_dimensions(num_lines, num_columns);
if potential_dimensions.widths.iter().sum::<usize>() <= adjusted_width {
smallest_dimensions_yet = Some(potential_dimensions);
} else {
break;
}
}
smallest_dimensions_yet
}
}
impl<T: AsRef<str>> fmt::Display for Grid<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
let separator = match &self.options.filling {
Filling::Spaces(n) => " ".repeat(*n),
Filling::Text(s) => s.clone(),
};
// Initialize a buffer of spaces. The idea here is that any cell
// that needs padding gets a slice of this buffer of the needed
// size. This avoids the need of creating a string of spaces for
// each cell that needs padding.
//
// We overestimate how many spaces we need, but this is not
// part of the loop and it's therefore not super important to
// get exactly right.
let padding = " ".repeat(self.widest_cell_width);
for y in 0..self.dimensions.num_lines {
for x in 0..self.dimensions.widths.len() {
let num = match self.options.direction {
Direction::LeftToRight => y * self.dimensions.widths.len() + x,
Direction::TopToBottom => y + self.dimensions.num_lines * x,
};
// Abandon a line mid-way through if that’s where the cells end
if num >= self.cells.len() {
continue;
}
let contents = &self.cells[num];
let width = self.widths[num];
let last_in_row = x == self.dimensions.widths.len() - 1;
let col_width = self.dimensions.widths[x];
let padding_size = col_width - width;
// The final column doesn’t need to have trailing spaces,
// as long as it’s left-aligned.
//
// We use write_str directly instead of a the write! macro to
// avoid some of the formatting overhead. For example, if we pad
// using `write!("{contents:>width}")`, the unicode width will
// have to be independently calculated by the macro, which is slow and
// redundant because we already know the width.
//
// For the padding, we instead slice into a buffer of spaces defined
// above, so we don't need to call `" ".repeat(n)` each loop.
// We also only call `write_str` when we actually need padding as
// another optimization.
f.write_str(contents.as_ref())?;
if !last_in_row {
if padding_size > 0 {
f.write_str(&padding[0..padding_size])?;
}
f.write_str(&separator)?;
}
}
f.write_str("\n")?;
}
Ok(())
}
}
// Adapted from the unstable API:
// https://doc.rust-lang.org/std/primitive.usize.html#method.div_ceil
// Can be removed on MSRV 1.73.
/// Division with upward rounding
pub const fn div_ceil(lhs: usize, rhs: usize) -> usize {
let d = lhs / rhs;
let r = lhs % rhs;
if r > 0 && rhs > 0 {
d + 1
} else {
d
}
}