v8/handle.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
use std::borrow::Borrow;
use std::cell::Cell;
use std::ffi::c_void;
use std::hash::Hash;
use std::hash::Hasher;
use std::marker::PhantomData;
use std::mem::forget;
use std::mem::transmute;
use std::ops::Deref;
use std::ptr::NonNull;
use crate::support::Opaque;
use crate::Data;
use crate::HandleScope;
use crate::Isolate;
use crate::IsolateHandle;
extern "C" {
fn v8__Local__New(isolate: *mut Isolate, other: *const Data) -> *const Data;
fn v8__Global__New(isolate: *mut Isolate, data: *const Data) -> *const Data;
fn v8__Global__NewWeak(
isolate: *mut Isolate,
data: *const Data,
parameter: *const c_void,
callback: extern "C" fn(*const WeakCallbackInfo),
) -> *const Data;
fn v8__Global__Reset(data: *const Data);
fn v8__WeakCallbackInfo__GetIsolate(
this: *const WeakCallbackInfo,
) -> *mut Isolate;
fn v8__WeakCallbackInfo__GetParameter(
this: *const WeakCallbackInfo,
) -> *mut c_void;
fn v8__WeakCallbackInfo__SetSecondPassCallback(
this: *const WeakCallbackInfo,
callback: extern "C" fn(*const WeakCallbackInfo),
);
fn v8__TracedReference__CONSTRUCT(this: *mut TracedReference<Data>);
fn v8__TracedReference__DESTRUCT(this: *mut TracedReference<Data>);
fn v8__TracedReference__Reset(
this: *mut TracedReference<Data>,
isolate: *mut Isolate,
data: *mut Data,
);
fn v8__TracedReference__Get(
this: *const TracedReference<Data>,
isolate: *mut Isolate,
) -> *const Data;
}
/// An object reference managed by the v8 garbage collector.
///
/// All objects returned from v8 have to be tracked by the garbage
/// collector so that it knows that the objects are still alive. Also,
/// because the garbage collector may move objects, it is unsafe to
/// point directly to an object. Instead, all objects are stored in
/// handles which are known by the garbage collector and updated
/// whenever an object moves. Handles should always be passed by value
/// (except in cases like out-parameters) and they should never be
/// allocated on the heap.
///
/// There are two types of handles: local and persistent handles.
///
/// Local handles are light-weight and transient and typically used in
/// local operations. They are managed by HandleScopes. That means that a
/// HandleScope must exist on the stack when they are created and that they are
/// only valid inside of the `HandleScope` active during their creation.
/// For passing a local handle to an outer `HandleScope`, an
/// `EscapableHandleScope` and its `Escape()` method must be used.
///
/// Persistent handles can be used when storing objects across several
/// independent operations and have to be explicitly deallocated when they're no
/// longer used.
///
/// It is safe to extract the object stored in the handle by
/// dereferencing the handle (for instance, to extract the `*Object` from
/// a `Local<Object>`); the value will still be governed by a handle
/// behind the scenes and the same rules apply to these values as to
/// their handles.
///
/// Note: Local handles in Rusty V8 differ from the V8 C++ API in that they are
/// never empty. In situations where empty handles are needed, use
/// `Option<Local>`.
#[repr(C)]
#[derive(Debug)]
pub struct Local<'s, T>(NonNull<T>, PhantomData<&'s ()>);
impl<'s, T> Local<'s, T> {
/// Construct a new Local from an existing Handle.
#[inline(always)]
pub fn new(
scope: &mut HandleScope<'s, ()>,
handle: impl Handle<Data = T>,
) -> Self {
let HandleInfo { data, host } = handle.get_handle_info();
host.assert_match_isolate(scope);
unsafe {
scope.cast_local(|sd| {
v8__Local__New(sd.get_isolate_ptr(), data.cast().as_ptr()) as *const T
})
}
.unwrap()
}
/// Create a local handle by downcasting from one of its super types.
/// This function is unsafe because the cast is unchecked.
#[inline(always)]
pub unsafe fn cast_unchecked<A>(other: Local<'s, A>) -> Self
where
Local<'s, A>: TryFrom<Self>,
{
transmute(other)
}
#[inline(always)]
pub(crate) unsafe fn from_raw(ptr: *const T) -> Option<Self> {
NonNull::new(ptr as *mut _).map(|nn| Self::from_non_null(nn))
}
#[inline(always)]
pub(crate) unsafe fn from_raw_unchecked(ptr: *const T) -> Self {
Self(NonNull::new_unchecked(ptr as *mut _), PhantomData)
}
#[inline(always)]
pub(crate) unsafe fn from_non_null(nn: NonNull<T>) -> Self {
Self(nn, PhantomData)
}
#[inline(always)]
pub(crate) fn as_non_null(self) -> NonNull<T> {
self.0
}
#[inline(always)]
pub(crate) fn slice_into_raw(slice: &[Self]) -> &[*const T] {
unsafe { &*(slice as *const [Self] as *const [*const T]) }
}
}
impl<'s, T> Copy for Local<'s, T> {}
impl<'s, T> Clone for Local<'s, T> {
fn clone(&self) -> Self {
*self
}
}
impl<'s, T> Deref for Local<'s, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { self.0.as_ref() }
}
}
impl<'s, T> Local<'s, T> {
/// Attempts to cast the contained type to another,
/// returning an error if the conversion fails.
///
/// # Examples
///
/// ```ignore
/// let value: Local<'_, Value> = get_v8_value();
///
/// if let Ok(func) = value.try_cast::<Function> {
/// //
/// }
/// ```
#[inline(always)]
pub fn try_cast<A>(
self,
) -> Result<Local<'s, A>, <Self as TryInto<Local<'s, A>>>::Error>
where
Self: TryInto<Local<'s, A>>,
{
self.try_into()
}
/// Attempts to cast the contained type to another,
/// panicking if the conversion fails.
///
/// # Example
///
/// ```ignore
/// let value: Local<'_, Value> = get_v8_value();
///
/// let func = value.cast::<Function>();
/// ```
#[inline(always)]
pub fn cast<A>(self) -> Local<'s, A>
where
Self: TryInto<Local<'s, A>, Error: std::fmt::Debug>,
{
self.try_into().unwrap()
}
}
/// An object reference that is independent of any handle scope. Where
/// a Local handle only lives as long as the HandleScope in which it was
/// allocated, a global handle remains valid until it is dropped.
///
/// A global handle contains a reference to a storage cell within
/// the V8 engine which holds an object value and which is updated by
/// the garbage collector whenever the object is moved.
///
/// You can create a `v8::Local` out of `v8::Global` using
/// `v8::Local::new(scope, global_handle)`.
#[derive(Debug)]
pub struct Global<T> {
data: NonNull<T>,
isolate_handle: IsolateHandle,
}
impl<T> Global<T> {
/// Construct a new Global from an existing Handle.
#[inline(always)]
pub fn new(isolate: &mut Isolate, handle: impl Handle<Data = T>) -> Self {
let HandleInfo { data, host } = handle.get_handle_info();
host.assert_match_isolate(isolate);
unsafe { Self::new_raw(isolate, data) }
}
/// Implementation helper function that contains the code that can be shared
/// between `Global::new()` and `Global::clone()`.
#[inline(always)]
unsafe fn new_raw(isolate: *mut Isolate, data: NonNull<T>) -> Self {
let data = data.cast().as_ptr();
let data = v8__Global__New(isolate, data) as *const T;
let data = NonNull::new_unchecked(data as *mut _);
let isolate_handle = (*isolate).thread_safe_handle();
Self {
data,
isolate_handle,
}
}
/// Consume this `Global` and return the underlying raw pointer.
///
/// The returned raw pointer must be converted back into a `Global` by using
/// [`Global::from_raw`], otherwise the V8 value referenced by this global
/// handle will be pinned on the V8 heap permanently and never get garbage
/// collected.
#[inline(always)]
pub fn into_raw(self) -> NonNull<T> {
let data = self.data;
forget(self);
data
}
/// Converts a raw pointer created with [`Global::into_raw()`] back to its
/// original `Global`.
#[inline(always)]
pub unsafe fn from_raw(isolate: &mut Isolate, data: NonNull<T>) -> Self {
let isolate_handle = isolate.thread_safe_handle();
Self {
data,
isolate_handle,
}
}
#[inline(always)]
pub fn open<'a>(&'a self, scope: &mut Isolate) -> &'a T {
Handle::open(self, scope)
}
}
impl<T> Clone for Global<T> {
fn clone(&self) -> Self {
let HandleInfo { data, host } = self.get_handle_info();
unsafe { Self::new_raw(host.get_isolate().as_mut(), data) }
}
}
impl<T> Drop for Global<T> {
fn drop(&mut self) {
unsafe {
if self.isolate_handle.get_isolate_ptr().is_null() {
// This `Global` handle is associated with an `Isolate` that has already
// been disposed.
} else {
// Destroy the storage cell that contains the contents of this Global.
v8__Global__Reset(self.data.cast().as_ptr())
}
}
}
}
/// An implementation of [`Handle`] that can be constructed unsafely from a
/// reference.
pub(crate) struct UnsafeRefHandle<'a, T> {
reference: &'a T,
isolate_handle: IsolateHandle,
}
impl<'a, T> UnsafeRefHandle<'a, T> {
/// Constructs an `UnsafeRefHandle`.
///
/// # Safety
///
/// `reference` must be derived from a [`Local`] or [`Global`] handle, and its
/// lifetime must not outlive that handle. Furthermore, `isolate` must be the
/// isolate associated with the handle (for [`Local`], the current isolate;
/// for [`Global`], the isolate you would pass to the [`Global::open()`]
/// method).
#[inline(always)]
pub unsafe fn new(reference: &'a T, isolate: &mut Isolate) -> Self {
UnsafeRefHandle {
reference,
isolate_handle: isolate.thread_safe_handle(),
}
}
}
pub trait Handle: Sized {
type Data;
#[doc(hidden)]
fn get_handle_info(&self) -> HandleInfo<Self::Data>;
/// Returns a reference to the V8 heap object that this handle represents.
/// The handle does not get cloned, nor is it converted to a `Local` handle.
///
/// # Panics
///
/// This function panics in the following situations:
/// - The handle is not hosted by the specified Isolate.
/// - The Isolate that hosts this handle has been disposed.
fn open<'a>(&'a self, isolate: &mut Isolate) -> &'a Self::Data {
let HandleInfo { data, host } = self.get_handle_info();
host.assert_match_isolate(isolate);
unsafe { &*data.as_ptr() }
}
/// Reads the inner value contained in this handle, _without_ verifying that
/// the this handle is hosted by the currently active `Isolate`.
///
/// # Safety
///
/// Using a V8 heap object with another `Isolate` than the `Isolate` that
/// hosts it is not permitted under any circumstance. Doing so leads to
/// undefined behavior, likely a crash.
///
/// # Panics
///
/// This function panics if the `Isolate` that hosts the handle has been
/// disposed.
unsafe fn get_unchecked(&self) -> &Self::Data {
let HandleInfo { data, host } = self.get_handle_info();
if let HandleHost::DisposedIsolate = host {
panic!("attempt to access Handle hosted by disposed Isolate");
}
&*data.as_ptr()
}
}
impl<'s, T> Handle for Local<'s, T> {
type Data = T;
fn get_handle_info(&self) -> HandleInfo<T> {
HandleInfo::new(self.as_non_null(), HandleHost::Scope)
}
}
impl<'a, 's: 'a, T> Handle for &'a Local<'s, T> {
type Data = T;
fn get_handle_info(&self) -> HandleInfo<T> {
HandleInfo::new(self.as_non_null(), HandleHost::Scope)
}
}
impl<T> Handle for Global<T> {
type Data = T;
fn get_handle_info(&self) -> HandleInfo<T> {
HandleInfo::new(self.data, (&self.isolate_handle).into())
}
}
impl<'a, T> Handle for &'a Global<T> {
type Data = T;
fn get_handle_info(&self) -> HandleInfo<T> {
HandleInfo::new(self.data, (&self.isolate_handle).into())
}
}
impl<'a, T> Handle for UnsafeRefHandle<'a, T> {
type Data = T;
fn get_handle_info(&self) -> HandleInfo<T> {
HandleInfo::new(
NonNull::from(self.reference),
(&self.isolate_handle).into(),
)
}
}
impl<'a, T> Handle for &'a UnsafeRefHandle<'_, T> {
type Data = T;
fn get_handle_info(&self) -> HandleInfo<T> {
HandleInfo::new(
NonNull::from(self.reference),
(&self.isolate_handle).into(),
)
}
}
impl<'s, T> Borrow<T> for Local<'s, T> {
fn borrow(&self) -> &T {
self
}
}
impl<T> Borrow<T> for Global<T> {
fn borrow(&self) -> &T {
let HandleInfo { data, host } = self.get_handle_info();
if let HandleHost::DisposedIsolate = host {
panic!("attempt to access Handle hosted by disposed Isolate");
}
unsafe { &*data.as_ptr() }
}
}
impl<'s, T> Eq for Local<'s, T> where T: Eq {}
impl<T> Eq for Global<T> where T: Eq {}
impl<'s, T: Hash> Hash for Local<'s, T> {
fn hash<H: Hasher>(&self, state: &mut H) {
(**self).hash(state)
}
}
impl<T: Hash> Hash for Global<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
unsafe {
if self.isolate_handle.get_isolate_ptr().is_null() {
panic!("can't hash Global after its host Isolate has been disposed");
}
self.data.as_ref().hash(state);
}
}
}
impl<'s, T, Rhs: Handle> PartialEq<Rhs> for Local<'s, T>
where
T: PartialEq<Rhs::Data>,
{
fn eq(&self, other: &Rhs) -> bool {
let i1 = self.get_handle_info();
let i2 = other.get_handle_info();
i1.host.match_host(i2.host, None)
&& unsafe { i1.data.as_ref() == i2.data.as_ref() }
}
}
impl<T, Rhs: Handle> PartialEq<Rhs> for Global<T>
where
T: PartialEq<Rhs::Data>,
{
fn eq(&self, other: &Rhs) -> bool {
let i1 = self.get_handle_info();
let i2 = other.get_handle_info();
i1.host.match_host(i2.host, None)
&& unsafe { i1.data.as_ref() == i2.data.as_ref() }
}
}
#[derive(Copy, Debug, Clone)]
pub struct HandleInfo<T> {
data: NonNull<T>,
host: HandleHost,
}
impl<T> HandleInfo<T> {
fn new(data: NonNull<T>, host: HandleHost) -> Self {
Self { data, host }
}
}
#[derive(Copy, Debug, Clone)]
enum HandleHost {
// Note: the `HandleHost::Scope` variant does not indicate that the handle
// it applies to is not associated with an `Isolate`. It only means that
// the handle is a `Local` handle that was unable to provide a pointer to
// the `Isolate` that hosts it (the handle) and the currently entered
// scope.
Scope,
Isolate(NonNull<Isolate>),
DisposedIsolate,
}
impl From<&'_ mut Isolate> for HandleHost {
fn from(isolate: &'_ mut Isolate) -> Self {
Self::Isolate(NonNull::from(isolate))
}
}
impl From<&'_ IsolateHandle> for HandleHost {
fn from(isolate_handle: &IsolateHandle) -> Self {
NonNull::new(unsafe { isolate_handle.get_isolate_ptr() })
.map(Self::Isolate)
.unwrap_or(Self::DisposedIsolate)
}
}
impl HandleHost {
/// Compares two `HandleHost` values, returning `true` if they refer to the
/// same `Isolate`, or `false` if they refer to different isolates.
///
/// If the caller knows which `Isolate` the currently entered scope (if any)
/// belongs to, it should pass on this information via the second argument
/// (`scope_isolate_opt`).
///
/// # Panics
///
/// This function panics if one of the `HandleHost` values refers to an
/// `Isolate` that has been disposed.
///
/// # Safety / Bugs
///
/// The current implementation is a bit too forgiving. If it cannot decide
/// whether two hosts refer to the same `Isolate`, it just returns `true`.
/// Note that this can only happen when the caller does _not_ provide a value
/// for the `scope_isolate_opt` argument.
fn match_host(
self,
other: Self,
scope_isolate_opt: Option<&mut Isolate>,
) -> bool {
let scope_isolate_opt_nn = scope_isolate_opt.map(NonNull::from);
match (self, other, scope_isolate_opt_nn) {
(Self::Scope, Self::Scope, _) => true,
(Self::Isolate(ile1), Self::Isolate(ile2), _) => ile1 == ile2,
(Self::Scope, Self::Isolate(ile1), Some(ile2)) => ile1 == ile2,
(Self::Isolate(ile1), Self::Scope, Some(ile2)) => ile1 == ile2,
// TODO(pisciaureus): If the caller didn't provide a `scope_isolate_opt`
// value that works, we can't do a meaningful check. So all we do for now
// is pretend the Isolates match and hope for the best. This eventually
// needs to be tightened up.
(Self::Scope, Self::Isolate(_), _) => true,
(Self::Isolate(_), Self::Scope, _) => true,
// Handles hosted in an Isolate that has been disposed aren't good for
// anything, even if a pair of handles used to to be hosted in the same
// now-disposed solate.
(Self::DisposedIsolate, ..) | (_, Self::DisposedIsolate, _) => {
panic!("attempt to access Handle hosted by disposed Isolate")
}
}
}
fn assert_match_host(self, other: Self, scope_opt: Option<&mut Isolate>) {
assert!(
self.match_host(other, scope_opt),
"attempt to use Handle in an Isolate that is not its host"
)
}
#[allow(dead_code)]
fn match_isolate(self, isolate: &mut Isolate) -> bool {
self.match_host(isolate.into(), Some(isolate))
}
fn assert_match_isolate(self, isolate: &mut Isolate) {
self.assert_match_host(isolate.into(), Some(isolate))
}
fn get_isolate(self) -> NonNull<Isolate> {
match self {
Self::Scope => panic!("host Isolate for Handle not available"),
Self::Isolate(ile) => ile,
Self::DisposedIsolate => panic!("attempt to access disposed Isolate"),
}
}
#[allow(dead_code)]
fn get_isolate_handle(self) -> IsolateHandle {
unsafe { self.get_isolate().as_ref() }.thread_safe_handle()
}
}
/// An object reference that does not prevent garbage collection for the object,
/// and which allows installing finalization callbacks which will be called
/// after the object has been GC'd.
///
/// Note that finalization callbacks are tied to the lifetime of a `Weak<T>`,
/// and will not be called after the `Weak<T>` is dropped.
///
/// # `Clone`
///
/// Since finalization callbacks are specific to a `Weak<T>` instance, cloning
/// will create a new object reference without a finalizer, as if created by
/// [`Self::new`]. You can use [`Self::clone_with_finalizer`] to attach a
/// finalization callback to the clone.
#[derive(Debug)]
pub struct Weak<T> {
data: Option<Box<WeakData<T>>>,
isolate_handle: IsolateHandle,
}
impl<T> Weak<T> {
pub fn new(isolate: &mut Isolate, handle: impl Handle<Data = T>) -> Self {
let HandleInfo { data, host } = handle.get_handle_info();
host.assert_match_isolate(isolate);
Self::new_raw(isolate, data, None)
}
/// Create a weak handle with a finalization callback installed.
///
/// There is no guarantee as to *when* or even *if* the finalization callback
/// will be invoked. The invocation is performed solely on a best effort
/// basis. GC-based finalization should *not* be relied upon for any critical
/// form of resource management! Consider using
/// [`Self::with_guaranteed_finalizer`] instead.
///
/// The callback does not have access to the inner value, because it has
/// already been collected by the time it runs.
pub fn with_finalizer(
isolate: &mut Isolate,
handle: impl Handle<Data = T>,
finalizer: Box<dyn FnOnce(&mut Isolate)>,
) -> Self {
let HandleInfo { data, host } = handle.get_handle_info();
host.assert_match_isolate(isolate);
let finalizer_id = isolate
.get_finalizer_map_mut()
.add(FinalizerCallback::Regular(finalizer));
Self::new_raw(isolate, data, Some(finalizer_id))
}
/// Create a weak handle with a finalization callback installed, which is
/// guaranteed to run at some point.
///
/// Unlike [`Self::with_finalizer`], whose finalization callbacks are not
/// guaranteed to run, this method is guaranteed to be called before the
/// isolate is destroyed. It can therefore be used for critical resource
/// management. Note that other than that, there is still no guarantee as to
/// *when* the callback will be called.
///
/// Unlike regular finalizers, guaranteed finalizers aren't passed a mutable
/// [`Isolate`] reference, since they might be called when the isolate is
/// being destroyed, at which point it might be no longer valid to use.
/// Accessing the isolate (with unsafe code) from the finalizer callback is
/// therefore unsound, unless you prove the isolate is not being destroyed.
pub fn with_guaranteed_finalizer(
isolate: &mut Isolate,
handle: impl Handle<Data = T>,
finalizer: Box<dyn FnOnce()>,
) -> Self {
let HandleInfo { data, host } = handle.get_handle_info();
host.assert_match_isolate(isolate);
let finalizer_id = isolate
.get_finalizer_map_mut()
.add(FinalizerCallback::Guaranteed(finalizer));
Self::new_raw(isolate, data, Some(finalizer_id))
}
fn new_raw(
isolate: *mut Isolate,
data: NonNull<T>,
finalizer_id: Option<FinalizerId>,
) -> Self {
let weak_data = Box::new(WeakData {
pointer: Default::default(),
finalizer_id,
weak_dropped: Cell::new(false),
});
let data = data.cast().as_ptr();
let data = unsafe {
v8__Global__NewWeak(
isolate,
data,
weak_data.deref() as *const _ as *const c_void,
Self::first_pass_callback,
)
};
weak_data
.pointer
.set(Some(unsafe { NonNull::new_unchecked(data as *mut _) }));
Self {
data: Some(weak_data),
isolate_handle: unsafe { (*isolate).thread_safe_handle() },
}
}
/// Creates a new empty handle, identical to one for an object that has
/// already been GC'd.
pub fn empty(isolate: &mut Isolate) -> Self {
Weak {
data: None,
isolate_handle: isolate.thread_safe_handle(),
}
}
/// Clones this handle and installs a finalizer callback on the clone, as if
/// by calling [`Self::with_finalizer`].
///
/// Note that if this handle is empty (its value has already been GC'd), the
/// finalization callback will never run.
pub fn clone_with_finalizer(
&self,
finalizer: Box<dyn FnOnce(&mut Isolate)>,
) -> Self {
self.clone_raw(Some(FinalizerCallback::Regular(finalizer)))
}
/// Clones this handle and installs a guaranteed finalizer callback on the
/// clone, as if by calling [`Self::with_guaranteed_finalizer`].
///
/// Note that if this handle is empty (its value has already been GC'd), the
/// finalization callback will never run.
pub fn clone_with_guaranteed_finalizer(
&self,
finalizer: Box<dyn FnOnce()>,
) -> Self {
self.clone_raw(Some(FinalizerCallback::Guaranteed(finalizer)))
}
fn clone_raw(&self, finalizer: Option<FinalizerCallback>) -> Self {
if let Some(data) = self.get_pointer() {
// SAFETY: We're in the isolate's thread, because Weak<T> isn't Send or
// Sync.
let isolate_ptr = unsafe { self.isolate_handle.get_isolate_ptr() };
if isolate_ptr.is_null() {
unreachable!("Isolate was dropped but weak handle wasn't reset.");
}
let finalizer_id = if let Some(finalizer) = finalizer {
let isolate = unsafe { &mut *isolate_ptr };
Some(isolate.get_finalizer_map_mut().add(finalizer))
} else {
None
};
Self::new_raw(isolate_ptr, data, finalizer_id)
} else {
Weak {
data: None,
isolate_handle: self.isolate_handle.clone(),
}
}
}
/// Converts an optional raw pointer created with [`Weak::into_raw()`] back to
/// its original `Weak`.
///
/// This method is called with `Some`, the pointer is invalidated and it
/// cannot be used with this method again. Additionally, it is unsound to call
/// this method with an isolate other than that in which the original `Weak`
/// was created.
pub unsafe fn from_raw(
isolate: &mut Isolate,
data: Option<NonNull<WeakData<T>>>,
) -> Self {
Weak {
data: data.map(|raw| Box::from_raw(raw.cast().as_ptr())),
isolate_handle: isolate.thread_safe_handle(),
}
}
/// Consume this `Weak` handle and return the underlying raw pointer, or
/// `None` if the value has been GC'd.
///
/// The return value can be converted back into a `Weak` by using
/// [`Weak::from_raw`]. Note that `Weak` allocates some memory, and if this
/// method returns `Some`, the pointer must be converted back into a `Weak`
/// for it to be freed.
///
/// Note that this method might return `Some` even after the V8 value has been
/// GC'd.
pub fn into_raw(mut self) -> Option<NonNull<WeakData<T>>> {
if let Some(data) = self.data.take() {
let has_finalizer = if let Some(finalizer_id) = data.finalizer_id {
// SAFETY: We're in the isolate's thread because Weak isn't Send or Sync
let isolate_ptr = unsafe { self.isolate_handle.get_isolate_ptr() };
if isolate_ptr.is_null() {
// Disposed isolates have no finalizers.
false
} else {
let isolate = unsafe { &mut *isolate_ptr };
isolate.get_finalizer_map().map.contains_key(&finalizer_id)
}
} else {
false
};
if data.pointer.get().is_none() && !has_finalizer {
// If the pointer is None and we're not waiting for the second pass,
// drop the box and return None.
None
} else {
assert!(!data.weak_dropped.get());
Some(unsafe { NonNull::new_unchecked(Box::into_raw(data)) })
}
} else {
None
}
}
fn get_pointer(&self) -> Option<NonNull<T>> {
if let Some(data) = &self.data {
// It seems like when the isolate is dropped, even the first pass callback
// might not be called.
if unsafe { self.isolate_handle.get_isolate_ptr() }.is_null() {
None
} else {
data.pointer.get()
}
} else {
None
}
}
pub fn is_empty(&self) -> bool {
self.get_pointer().is_none()
}
pub fn to_global(&self, isolate: &mut Isolate) -> Option<Global<T>> {
if let Some(data) = self.get_pointer() {
let handle_host: HandleHost = (&self.isolate_handle).into();
handle_host.assert_match_isolate(isolate);
Some(unsafe { Global::new_raw(isolate, data) })
} else {
None
}
}
pub fn to_local<'s>(
&self,
scope: &mut HandleScope<'s, ()>,
) -> Option<Local<'s, T>> {
if let Some(data) = self.get_pointer() {
let handle_host: HandleHost = (&self.isolate_handle).into();
handle_host.assert_match_isolate(scope);
let local = unsafe {
scope.cast_local(|sd| {
v8__Local__New(sd.get_isolate_ptr(), data.cast().as_ptr()) as *const T
})
};
Some(local.unwrap())
} else {
None
}
}
// Finalization callbacks.
extern "C" fn first_pass_callback(wci: *const WeakCallbackInfo) {
// SAFETY: If this callback is called, then the weak handle hasn't been
// reset, which means the `Weak` instance which owns the pinned box that the
// parameter points to hasn't been dropped.
let weak_data = unsafe {
let ptr = v8__WeakCallbackInfo__GetParameter(wci);
&*(ptr as *mut WeakData<T>)
};
let data = weak_data.pointer.take().unwrap();
unsafe {
v8__Global__Reset(data.cast().as_ptr());
}
// Only set the second pass callback if there could be a finalizer.
if weak_data.finalizer_id.is_some() {
unsafe {
v8__WeakCallbackInfo__SetSecondPassCallback(
wci,
Self::second_pass_callback,
)
};
}
}
extern "C" fn second_pass_callback(wci: *const WeakCallbackInfo) {
// SAFETY: This callback is guaranteed by V8 to be called in the isolate's
// thread before the isolate is disposed.
let isolate = unsafe { &mut *v8__WeakCallbackInfo__GetIsolate(wci) };
// SAFETY: This callback might be called well after the first pass callback,
// which means the corresponding Weak might have been dropped. In Weak's
// Drop impl we make sure that if the second pass callback hasn't yet run, the
// Box<WeakData<T>> is leaked, so it will still be alive by the time this
// callback is called.
let weak_data = unsafe {
let ptr = v8__WeakCallbackInfo__GetParameter(wci);
&*(ptr as *mut WeakData<T>)
};
let finalizer: Option<FinalizerCallback> = {
let finalizer_id = weak_data.finalizer_id.unwrap();
isolate.get_finalizer_map_mut().map.remove(&finalizer_id)
};
if weak_data.weak_dropped.get() {
// SAFETY: If weak_dropped is true, the corresponding Weak has been dropped,
// so it's safe to take ownership of the Box<WeakData<T>> and drop it.
let _ = unsafe {
Box::from_raw(weak_data as *const WeakData<T> as *mut WeakData<T>)
};
}
match finalizer {
Some(FinalizerCallback::Regular(finalizer)) => finalizer(isolate),
Some(FinalizerCallback::Guaranteed(finalizer)) => finalizer(),
None => {}
}
}
}
impl<T> Clone for Weak<T> {
fn clone(&self) -> Self {
self.clone_raw(None)
}
}
impl<T> Drop for Weak<T> {
fn drop(&mut self) {
// Returns whether the finalizer existed.
let remove_finalizer = |finalizer_id: Option<FinalizerId>| -> bool {
if let Some(finalizer_id) = finalizer_id {
// SAFETY: We're in the isolate's thread because `Weak` isn't Send or Sync.
let isolate_ptr = unsafe { self.isolate_handle.get_isolate_ptr() };
if !isolate_ptr.is_null() {
let isolate = unsafe { &mut *isolate_ptr };
let finalizer =
isolate.get_finalizer_map_mut().map.remove(&finalizer_id);
return finalizer.is_some();
}
}
false
};
if let Some(data) = self.get_pointer() {
// If the pointer is not None, the first pass callback hasn't been
// called yet, and resetting will prevent it from being called.
unsafe { v8__Global__Reset(data.cast().as_ptr()) };
remove_finalizer(self.data.as_ref().unwrap().finalizer_id);
} else if let Some(weak_data) = self.data.take() {
// The second pass callback removes the finalizer, so if there is one,
// the second pass hasn't yet run, and WeakData will have to be alive.
// In that case we leak the WeakData but remove the finalizer.
if remove_finalizer(weak_data.finalizer_id) {
weak_data.weak_dropped.set(true);
Box::leak(weak_data);
}
}
}
}
impl<T> Eq for Weak<T> where T: Eq {}
impl<T, Rhs: Handle> PartialEq<Rhs> for Weak<T>
where
T: PartialEq<Rhs::Data>,
{
fn eq(&self, other: &Rhs) -> bool {
let HandleInfo {
data: other_data,
host: other_host,
} = other.get_handle_info();
let self_host: HandleHost = (&self.isolate_handle).into();
if !self_host.match_host(other_host, None) {
false
} else if let Some(self_data) = self.get_pointer() {
unsafe { self_data.as_ref() == other_data.as_ref() }
} else {
false
}
}
}
impl<T, T2> PartialEq<Weak<T2>> for Weak<T>
where
T: PartialEq<T2>,
{
fn eq(&self, other: &Weak<T2>) -> bool {
let self_host: HandleHost = (&self.isolate_handle).into();
let other_host: HandleHost = (&other.isolate_handle).into();
if !self_host.match_host(other_host, None) {
return false;
}
match (self.get_pointer(), other.get_pointer()) {
(Some(self_data), Some(other_data)) => unsafe {
self_data.as_ref() == other_data.as_ref()
},
(None, None) => true,
_ => false,
}
}
}
/// The inner mechanism behind [`Weak`] and finalizations.
///
/// This struct is heap-allocated and will not move until it's dropped, so it
/// can be accessed by the finalization callbacks by creating a shared reference
/// from a pointer. The fields are wrapped in [`Cell`] so they are modifiable by
/// both the [`Weak`] and the finalization callbacks.
pub struct WeakData<T> {
pointer: Cell<Option<NonNull<T>>>,
finalizer_id: Option<FinalizerId>,
weak_dropped: Cell<bool>,
}
impl<T> std::fmt::Debug for WeakData<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("WeakData")
.field("pointer", &self.pointer)
.finish_non_exhaustive()
}
}
#[repr(C)]
struct WeakCallbackInfo(Opaque);
type FinalizerId = usize;
pub(crate) enum FinalizerCallback {
Regular(Box<dyn FnOnce(&mut Isolate)>),
Guaranteed(Box<dyn FnOnce()>),
}
#[derive(Default)]
pub(crate) struct FinalizerMap {
map: std::collections::HashMap<FinalizerId, FinalizerCallback>,
next_id: FinalizerId,
}
impl FinalizerMap {
fn add(&mut self, finalizer: FinalizerCallback) -> FinalizerId {
let id = self.next_id;
// TODO: Overflow.
self.next_id += 1;
self.map.insert(id, finalizer);
id
}
pub(crate) fn drain(
&mut self,
) -> impl Iterator<Item = FinalizerCallback> + '_ {
self.map.drain().map(|(_, finalizer)| finalizer)
}
}
/// A traced handle without destructor that clears the handle. The embedder needs
/// to ensure that the handle is not accessed once the V8 object has been
/// reclaimed. For more details see BasicTracedReference.
#[repr(C)]
pub struct TracedReference<T> {
data: [u8; crate::binding::v8__TracedReference_SIZE],
_phantom: PhantomData<T>,
}
impl<T> TracedReference<T> {
/// An empty TracedReference without storage cell.
pub fn empty() -> Self {
let mut this = std::mem::MaybeUninit::uninit();
unsafe {
v8__TracedReference__CONSTRUCT(this.as_mut_ptr() as _);
this.assume_init()
}
}
/// Construct a TracedReference from a Local.
///
/// A new storage cell is created pointing to the same object.
pub fn new(scope: &mut HandleScope<()>, data: Local<T>) -> Self {
let mut this = Self::empty();
this.reset(scope, Some(data));
this
}
pub fn get<'s>(
&self,
scope: &mut HandleScope<'s, ()>,
) -> Option<Local<'s, T>> {
unsafe {
scope.cast_local(|sd| {
v8__TracedReference__Get(
self as *const Self as *const TracedReference<Data>,
sd.get_isolate_ptr(),
) as *const T
})
}
}
/// Always resets the reference. Creates a new reference from `other` if it is
/// non-empty.
pub fn reset(&mut self, scope: &mut HandleScope<()>, data: Option<Local<T>>) {
unsafe {
v8__TracedReference__Reset(
self as *mut Self as *mut TracedReference<Data>,
scope.get_isolate_ptr(),
data
.map(|h| h.as_non_null().as_ptr())
.unwrap_or(std::ptr::null_mut())
.cast(),
);
}
}
}
impl<T> Drop for TracedReference<T> {
fn drop(&mut self) {
unsafe {
v8__TracedReference__DESTRUCT(
self as *mut Self as *mut TracedReference<Data>,
);
}
}
}