vart/art.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
use core::panic;
use std::cmp::min;
use std::ops::RangeBounds;
use std::sync::Arc;
use crate::iter::{query_keys_at_node, scan_node, Iter, Range};
use crate::node::{FlatNode, LeafValue, Node256, Node48, NodeTrait, TwigNode, Version};
use crate::snapshot::Snapshot;
use crate::{KeyTrait, TrieError};
// Minimum and maximum number of children for Node4
const NODE4MIN: usize = 2;
const NODE4MAX: usize = 4;
// Minimum and maximum number of children for Node16
const NODE16MIN: usize = NODE4MAX + 1;
const NODE16MAX: usize = 16;
// Minimum and maximum number of children for Node48
const NODE48MIN: usize = NODE16MAX + 1;
const NODE48MAX: usize = 48;
// Minimum and maximum number of children for Node256
const NODE256MIN: usize = NODE48MAX + 1;
/// A struct representing a node in an Adaptive Radix Trie.
///
/// The `Node` struct encapsulates a single node within the adaptive radix trie structure.
/// It holds information about the type of the node, which can be one of the various node types
/// defined by the `NodeType` enum.
///
/// # Type Parameters
///
/// - `P`: A type implementing the `Prefix` trait, defining the key prefix for the node.
/// - `V`: The type of value associated with the node.
///
/// # Fields
///
/// - `node_type`: The `NodeType` variant representing the type of the node, containing its
/// specific structure and associated data.
///
pub(crate) struct Node<P: KeyTrait, V: Clone> {
pub(crate) node_type: NodeType<P, V>, // Type of the node
}
impl<P: KeyTrait, V: Clone> Version for Node<P, V> {
fn version(&self) -> u64 {
match &self.node_type {
NodeType::Twig(twig) => twig.version(),
NodeType::Node4(n) => n.version(),
NodeType::Node16(n) => n.version(),
NodeType::Node48(n) => n.version(),
NodeType::Node256(n) => n.version(),
}
}
}
#[derive(Copy, Clone)]
// An enum for the different types of queries on the TwigNode
pub enum QueryType {
LatestByVersion(u64),
LatestByTs(u64),
LastLessThanTs(u64),
LastLessOrEqualTs(u64),
FirstGreaterThanTs(u64),
FirstGreaterOrEqualTs(u64),
}
/// An enumeration representing different types of nodes in an Adaptive Radix Trie.
///
/// The `NodeType` enum encompasses various node types that can exist within the adaptive radix trie structure.
/// It includes different types of inner nodes, such as `Node4`, `Node16`, `Node48`, and `Node256`, as well as the
/// leaf nodes represented by `TwigNode`.
///
/// # Type Parameters
///
/// - `P`: A type implementing the `Prefix` trait, which is used to define the key prefix for each node.
/// - `V`: The type of value associated with each node.
///
/// # Variants
///
/// - `Twig(TwigNode<P, V>)`: Represents a Twig node, which is a leaf node in the adaptive radix trie.
/// - `Node4(FlatNode<P, Node<P, V>, 4>)`: Represents an inner node with 4 keys and 4 children.
/// - `Node16(FlatNode<P, Node<P, V>, 16>)`: Represents an inner node with 16 keys and 16 children.
/// - `Node48(Node48<P, Node<P, V>>)`: Represents an inner node with 256 keys and 48 children.
/// - `Node256(Node256<P, Node<P, V>>)`: Represents an inner node with 256 keys and 256 children.
///
pub(crate) enum NodeType<P: KeyTrait, V: Clone> {
// Twig node of the adaptive radix trie
Twig(TwigNode<P, V>),
// Inner node of the adaptive radix trie
Node4(FlatNode<P, Node<P, V>, 4>), // Node with 4 keys and 4 children
Node16(FlatNode<P, Node<P, V>, 16>), // Node with 16 keys and 16 children
Node48(Node48<P, Node<P, V>>), // Node with 256 keys and 48 children
Node256(Node256<P, Node<P, V>>), // Node with 256 keys and 256 children
}
impl<P: KeyTrait, V: Clone> NodeType<P, V> {
pub(crate) fn set_prefix(&mut self, prefix: P) {
match self {
NodeType::Node4(n) => n.prefix = prefix,
NodeType::Node16(n) => n.prefix = prefix,
NodeType::Node48(n) => n.prefix = prefix,
NodeType::Node256(n) => n.prefix = prefix,
NodeType::Twig(n) => n.prefix = prefix,
}
}
}
impl<P: KeyTrait, V: Clone> Node<P, V> {
/// Creates a new Twig node with a given prefix, key, value, and version.
///
/// Constructs a new Twig node using the provided prefix, key, and value. The version
/// indicates the time of the insertion.
///
/// # Parameters
///
/// - `prefix`: The common prefix for the node.
/// - `key`: The key associated with the Twig node.
/// - `value`: The value to be associated with the key.
/// - `ts`: The version when the value was inserted.
///
/// # Returns
///
/// Returns a new `Node` instance with a Twig node containing the provided key, value, and version.
///
#[inline]
pub(crate) fn new_twig(prefix: P, key: P, value: V, version: u64, ts: u64) -> Node<P, V> {
// Create a new TwigNode instance using the provided prefix and key.
let mut twig = TwigNode::new(prefix, key);
// Insert the provided value into the TwigNode along with the version.
twig.insert_mut(value, version, ts);
// Return a new Node instance encapsulating the constructed Twig node.
Self {
node_type: NodeType::Twig(twig),
}
}
/// Creates a new inner Node4 node with the provided prefix.
///
/// Constructs a new Node4 node using the provided prefix. Node4 is an inner node
/// type that can store up to 4 child pointers and uses arrays for keys and pointers.
///
/// # Parameters
///
/// - `prefix`: The common prefix for the Node4 node.
///
/// # Returns
///
/// Returns a new `Node` instance with an empty Node4 node.
///
#[inline]
#[allow(dead_code)]
pub(crate) fn new_node4(prefix: P) -> Self {
// Create a new FlatNode instance using the provided prefix.
let flat_node = FlatNode::new(prefix);
// Create a new Node4 instance with the constructed FlatNode.
Self {
node_type: NodeType::Node4(flat_node),
}
}
/// Checks if the current node is full based on its type.
///
/// Determines if the current node is full by comparing the number of children to its
/// capacity, which varies based on the node type.
///
/// # Returns
///
/// Returns `true` if the node is full, `false` otherwise.
///
#[inline]
fn is_full(&self) -> bool {
match &self.node_type {
NodeType::Node4(n) => n.num_children() >= n.size(),
NodeType::Node16(n) => n.num_children() >= n.size(),
NodeType::Node48(n) => n.num_children() >= n.size(),
NodeType::Node256(n) => n.num_children() > n.size(),
NodeType::Twig(_) => panic!("Unexpected Twig node encountered in is_full()"),
}
}
/// Adds a child node with the given key to the current node.
///
/// Inserts a child node with the specified key into the current node.
/// Depending on the node type, this may lead to growth if the node becomes full.
///
/// # Parameters
///
/// - `key`: The key associated with the child node.
/// - `child`: The child node to be added.
///
/// # Returns
///
/// Returns a new `Node` instance with the added child node.
///
#[inline]
fn add_child(&self, key: u8, child: Node<P, V>) -> Self {
let cloned_node = if self.is_full() {
self.grow()
} else {
match &self.node_type {
NodeType::Node4(n) => Self {
node_type: NodeType::Node4(n.clone()),
},
NodeType::Node16(n) => Self {
node_type: NodeType::Node16(n.clone()),
},
NodeType::Node48(n) => Self {
node_type: NodeType::Node48(n.clone()),
},
NodeType::Node256(n) => Self {
node_type: NodeType::Node256(n.clone()),
},
NodeType::Twig(_) => panic!("Unexpected Twig node encountered in add_child()"),
}
};
match cloned_node.node_type {
NodeType::Node4(mut n) => {
// Add the child node to the Node4 instance.
n.add_child(key, child);
let node = NodeType::Node4(n);
// Create a new Node instance with the updated NodeType.
Self { node_type: node }
}
NodeType::Node16(mut n) => {
// Add the child node to the Node16 instance.
n.add_child(key, child);
let node = NodeType::Node16(n);
// Create a new Node instance with the updated NodeType.
Self { node_type: node }
}
NodeType::Node48(mut n) => {
// Add the child node to the Node48 instance.
n.add_child(key, child);
let node = NodeType::Node48(n);
// Create a new Node instance with the updated NodeType.
Self { node_type: node }
}
NodeType::Node256(mut n) => {
// Add the child node to the Node256 instance.
n.add_child(key, child);
let node = NodeType::Node256(n);
// Create a new Node instance with the updated NodeType.
Self { node_type: node }
}
NodeType::Twig(_) => panic!("Unexpected Twig node encountered in add_child_mut()"),
}
}
#[inline]
fn add_child_mut(&mut self, key: u8, child: Node<P, V>) {
if self.is_full() {
let new_node = self.grow();
*self = new_node;
}
match &mut self.node_type {
NodeType::Node4(ref mut n) => {
// Add the child node to the Node4 instance.
n.add_child(key, child);
}
NodeType::Node16(ref mut n) => {
// Add the child node to the Node16 instance.
n.add_child(key, child);
}
NodeType::Node48(ref mut n) => {
// Add the child node to the Node48 instance.
n.add_child(key, child);
}
NodeType::Node256(ref mut n) => {
// Add the child node to the Node256 instance.
n.add_child(key, child);
}
NodeType::Twig(_) => panic!("Unexpected Twig node encountered in add_child()"),
}
}
/// Grows the current node to the next bigger size.
///
/// Grows the current node to a larger size based on its type.
/// This method is typically used to upgrade nodes when they become full.
///
/// ArtNodes of type NODE4 will grow to NODE16
/// ArtNodes of type NODE16 will grow to NODE48.
/// ArtNodes of type NODE48 will grow to NODE256.
/// ArtNodes of type NODE256 will not grow, as they are the biggest type of ArtNodes
#[inline]
fn grow(&self) -> Self {
let node_type = match &self.node_type {
NodeType::Node4(n) => {
// Grow a Node4 to a Node16 by resizing.
NodeType::Node16(n.resize())
}
NodeType::Node16(n) => {
// Grow a Node16 to a Node48 by performing growth.
NodeType::Node48(n.grow())
}
NodeType::Node48(n) => {
// Grow a Node48 to a Node256 by performing growth.
NodeType::Node256(n.grow())
}
NodeType::Node256 { .. } => {
panic!("Node256 cannot be grown further");
}
NodeType::Twig(_) => panic!("Unexpected Twig node encountered in grow()"),
};
Self { node_type }
}
/// Recursively searches for a child node with the specified key.
///
/// Searches for a child node with the given key in the current node.
/// The search continues recursively in the child nodes based on the node type.
///
/// # Parameters
///
/// - `key`: The key associated with the child node.
///
/// # Returns
///
/// Returns an `Option` containing a reference to the found child node or `None` if not found.
///
#[inline]
fn find_child(&self, key: u8) -> Option<&Arc<Node<P, V>>> {
// If there are no children, return None.
if self.num_children() == 0 {
return None;
}
// Match the node type to find the child using the appropriate method.
match &self.node_type {
NodeType::Node4(n) => n.find_child(key),
NodeType::Node16(n) => n.find_child(key),
NodeType::Node48(n) => n.find_child(key),
NodeType::Node256(n) => n.find_child(key),
NodeType::Twig(_) => None,
}
}
#[inline]
fn find_child_mut(&mut self, key: u8) -> Option<&mut Node<P, V>> {
// If there are no children, return None.
if self.num_children() == 0 {
return None;
}
// Match the node type to find the child using the appropriate method.
match &mut self.node_type {
NodeType::Node4(n) => n.find_child_mut(key),
NodeType::Node16(n) => n.find_child_mut(key),
NodeType::Node48(n) => n.find_child_mut(key),
NodeType::Node256(n) => n.find_child_mut(key),
NodeType::Twig(_) => None,
}
}
/// Replaces a child node with a new node for the given key.
///
/// Replaces the child node associated with the specified key with the provided new node.
///
/// # Parameters
///
/// - `key`: The key associated with the child node to be replaced.
/// - `node`: The new node to replace the existing child node.
///
/// # Returns
///
/// Returns a new `Node` instance with the child node replaced.
///
fn replace_child(&self, key: u8, node: Arc<Node<P, V>>) -> Self {
match &self.node_type {
NodeType::Node4(n) => {
// Replace the child node in the Node4 instance and update the NodeType.
let node = NodeType::Node4(n.replace_child(key, node));
Self { node_type: node }
}
NodeType::Node16(n) => {
// Replace the child node in the Node16 instance and update the NodeType.
let node = NodeType::Node16(n.replace_child(key, node));
Self { node_type: node }
}
NodeType::Node48(n) => {
// Replace the child node in the Node48 instance and update the NodeType.
let node = NodeType::Node48(n.replace_child(key, node));
Self { node_type: node }
}
NodeType::Node256(n) => {
// Replace the child node in the Node256 instance and update the NodeType.
let node = NodeType::Node256(n.replace_child(key, node));
Self { node_type: node }
}
NodeType::Twig(_) => panic!("Unexpected Twig node encountered in replace_child()"),
}
}
/// Removes a child node with the specified key from the current node.
///
/// Removes a child node with the provided key from the current node.
/// Depending on the node type, this may trigger shrinking if the number of children becomes low.
///
/// # Parameters
///
/// - `key`: The key associated with the child node to be removed.
///
/// # Returns
///
/// Returns a new `Node` instance with the child node removed.
///
#[inline]
fn delete_child(&self, key: u8) -> Self {
match &self.node_type {
NodeType::Node4(n) => {
// Delete the child node from the Node4 instance and update the NodeType.
let node = NodeType::Node4(n.delete_child(key));
let mut new_node = Self { node_type: node };
// Check if the number of remaining children is below the threshold.
if new_node.num_children() < NODE4MIN {
new_node.shrink();
}
new_node
}
NodeType::Node16(n) => {
// Delete the child node from the Node16 instance and update the NodeType.
let node = NodeType::Node16(n.delete_child(key));
let mut new_node = Self { node_type: node };
// Check if the number of remaining children is below the threshold.
if new_node.num_children() < NODE16MIN {
new_node.shrink();
}
new_node
}
NodeType::Node48(n) => {
// Delete the child node from the Node48 instance and update the NodeType.
let node = NodeType::Node48(n.delete_child(key));
let mut new_node = Self { node_type: node };
// Check if the number of remaining children is below the threshold.
if new_node.num_children() < NODE48MIN {
new_node.shrink();
}
new_node
}
NodeType::Node256(n) => {
// Delete the child node from the Node256 instance and update the NodeType.
let node = NodeType::Node256(n.delete_child(key));
let mut new_node = Self { node_type: node };
// Check if the number of remaining children is below the threshold.
if new_node.num_children() < NODE256MIN {
new_node.shrink();
}
new_node
}
NodeType::Twig(_) => panic!("Unexpected Twig node encountered in delete_child()"),
}
}
/// Checks if the node type is a Twig node.
///
/// Determines whether the current node is a Twig node based on its node type.
///
/// # Returns
///
/// Returns `true` if the node type is a Twig node, otherwise returns `false`.
///
#[inline]
pub(crate) fn is_twig(&self) -> bool {
matches!(&self.node_type, NodeType::Twig(_))
}
/// Checks if the node type is an inner node.
///
/// Determines whether the current node is an inner node, which includes Node4, Node16, Node48, and Node256.
/// The check is performed based on the absence of a Twig node.
///
/// # Returns
///
/// Returns `true` if the node type is an inner node, otherwise returns `false`.
///
#[allow(dead_code)]
pub(crate) fn is_inner(&self) -> bool {
!self.is_twig()
}
/// Gets the prefix associated with the node.
///
/// Retrieves the prefix associated with the current node based on its node type.
///
/// # Returns
///
/// Returns a reference to the prefix associated with the node.
///
#[inline]
pub(crate) fn prefix(&self) -> &P {
match &self.node_type {
NodeType::Node4(n) => &n.prefix,
NodeType::Node16(n) => &n.prefix,
NodeType::Node48(n) => &n.prefix,
NodeType::Node256(n) => &n.prefix,
NodeType::Twig(n) => &n.prefix,
}
}
/// Sets the prefix for the node.
///
/// Updates the prefix associated with the current node based on its node type.
///
/// # Parameters
///
/// - `prefix`: The new prefix to be associated with the node.
///
#[inline]
fn set_prefix(&mut self, prefix: P) {
self.node_type.set_prefix(prefix);
}
/// Shrinks the current node to a smaller size.
///
/// Shrinks the current node to a smaller size based on its type.
/// This method is typically used to downgrade nodes when the number of children becomes low.
///
/// ArtNodes of type NODE256 will shrink to NODE48
/// ArtNodes of type NODE48 will shrink to NODE16.
/// ArtNodes of type NODE16 will shrink to NODE4.
/// ArtNodes of type NODE4 will collapse into its first child.
///
/// If that child is not a twig, it will concatenate its current prefix with that of its childs
/// before replacing itself.
fn shrink(&mut self) {
match &mut self.node_type {
NodeType::Node4(n) => {
// Shrink Node4 to Node1 by resizing it.
// In an Adaptive Radix Tree (ART), when a node has only one child,
// it can be collapsed into its first child to save space and improve efficiency.
// During this process, the prefix of the current node and the prefix of the child node
// are combined (compressed) into a single prefix.
let (curr_prefix, child) = n.get_value_if_single_child();
let child = child.unwrap();
let mut child_type = child.node_type.clone();
let new_prefix = curr_prefix.extend(child.prefix());
child_type.set_prefix(new_prefix);
self.node_type = child_type;
}
NodeType::Node16(n) => {
// Shrink Node16 to Node4 by resizing it.
self.node_type = NodeType::Node4(n.resize());
}
NodeType::Node48(n) => {
// Shrink Node48 to Node16 by obtaining the shrunken Node16 instance.
let n16 = n.shrink();
// Update the node type to Node16 after the shrinking operation.
let new_node = NodeType::Node16(n16);
self.node_type = new_node;
}
NodeType::Node256(n) => {
// Shrink Node256 to Node48 by obtaining the shrunken Node48 instance.
let n48 = n.shrink();
// Update the node type to Node48 after the shrinking operation.
self.node_type = NodeType::Node48(n48);
}
NodeType::Twig(_) => panic!("Twig node encountered in shrink()"),
}
}
#[inline]
pub(crate) fn num_children(&self) -> usize {
match &self.node_type {
NodeType::Node4(n) => n.num_children(),
NodeType::Node16(n) => n.num_children(),
NodeType::Node48(n) => n.num_children(),
NodeType::Node256(n) => n.num_children(),
NodeType::Twig(_) => 0,
}
}
#[inline]
pub(crate) fn get_leaf_by_query(&self, query_type: QueryType) -> Option<Arc<LeafValue<V>>> {
// Unwrap the NodeType::Twig to access the TwigNode instance.
let NodeType::Twig(twig) = &self.node_type else {
return None;
};
twig.get_leaf_by_query(query_type)
}
#[inline]
pub(crate) fn get_all_versions(&self) -> Option<Vec<(V, u64, u64)>> {
// Unwrap the NodeType::Twig to access the TwigNode instance.
let NodeType::Twig(twig) = &self.node_type else {
return None;
};
// Get the value from the TwigNode instance by the specified version.
let val = twig.get_all_versions();
// Return the retrieved key, value, and version as a tuple.
Some(val)
}
#[allow(unused)]
pub(crate) fn node_type_name(&self) -> String {
match &self.node_type {
NodeType::Node4(_) => "Node4".to_string(),
NodeType::Node16(_) => "Node16".to_string(),
NodeType::Node48(_) => "Node48".to_string(),
NodeType::Node256(_) => "Node256".to_string(),
NodeType::Twig(_) => "Twig".to_string(),
}
}
/// Creates a clone of the current node.
///
/// Creates and returns a new instance of the current node with the same node type and contents.
///
/// # Returns
///
/// Returns a cloned instance of the current node with the same node type and contents.
///
fn clone_node(&self) -> Self {
// Create a new instance with the same node type as the current node.
Self {
node_type: self.node_type.clone(),
}
}
fn update_version(&mut self) {
match &mut self.node_type {
NodeType::Node4(n) => n.update_version_to_max_child_version(),
NodeType::Node16(n) => n.update_version_to_max_child_version(),
NodeType::Node48(n) => n.update_version_to_max_child_version(),
NodeType::Node256(n) => n.update_version_to_max_child_version(),
NodeType::Twig(_) => {}
}
}
// Common logic for insert to extract common prefix and key prefix
fn common_insert_logic<'a>(
cur_node_prefix: &P,
key: &'a P,
depth: usize,
) -> (&'a [u8], P, P, bool, usize) {
// Obtain the current node's prefix and its length.
let cur_node_prefix_len = cur_node_prefix.len();
// Determine the prefix of the key after the current depth.
let key_prefix = key.prefix_after(depth);
// Find the longest common prefix between the current node's prefix and the key's prefix.
let longest_common_prefix = cur_node_prefix.longest_common_prefix(key_prefix);
// Create a new key that represents the remaining part of the current node's prefix after the common prefix.
let new_key = cur_node_prefix.prefix_after(longest_common_prefix).into();
// Extract the prefix of the current node up to the common prefix.
let prefix = cur_node_prefix.prefix_before(longest_common_prefix).into();
// Determine whether the current node's prefix and the key's prefix match up to the common prefix.
let is_prefix_match = min(cur_node_prefix_len, key_prefix.len()) == longest_common_prefix;
(
key_prefix,
new_key,
prefix,
is_prefix_match,
longest_common_prefix,
)
}
/// Inserts a key-value pair recursively into the node.
///
/// Recursively inserts a key-value pair into the current node and its child nodes.
///
/// # Parameters
///
/// - `cur_node`: A reference to the current node.
/// - `key`: The key to be inserted.
/// - `value`: The value associated with the key.
/// - `commit_version`: The version when the value was inserted.
/// - `depth`: The depth of the insertion process.
///
/// # Returns
///
/// Returns the updated node and the old value (if any) for the given key.
///
pub(crate) fn insert_recurse(
cur_node: &Arc<Node<P, V>>,
key: &P,
value: V,
commit_version: u64,
ts: u64,
depth: usize,
replace: bool,
) -> NodeArc<P, V> {
let (key_prefix, new_key, prefix, is_prefix_match, longest_common_prefix) =
Self::common_insert_logic(cur_node.prefix(), key, depth);
// If the current node is a Twig node and the prefixes match up to the end of both prefixes,
// update the existing value in the Twig node.
if let NodeType::Twig(ref twig) = &cur_node.node_type {
if is_prefix_match && twig.prefix.len() == key_prefix.len() {
let new_twig = if replace {
// Create a replacement Twig node with the new value only.
let mut new_twig = TwigNode::new(twig.prefix.clone(), twig.key.clone());
new_twig.insert_mut(value, commit_version, ts);
new_twig
} else {
twig.insert(value, commit_version, ts)
};
return Arc::new(Node {
node_type: NodeType::Twig(new_twig),
});
}
}
// If the prefixes don't match, create a new Node4 with the old node and a new Twig as children.
if !is_prefix_match {
let mut old_node = cur_node.clone_node();
old_node.set_prefix(new_key);
let mut n4 = Node::new_node4(prefix);
let k1 = cur_node.prefix().at(longest_common_prefix);
let k2 = key_prefix[longest_common_prefix];
let new_twig = Node::new_twig(
key_prefix[longest_common_prefix..].into(),
key.as_slice().into(),
value,
commit_version,
ts,
);
n4 = n4.add_child(k1, old_node).add_child(k2, new_twig);
return Arc::new(n4);
}
// Continue the insertion process by finding or creating the appropriate child node for the next character.
let k = key_prefix[longest_common_prefix];
let child_for_key = cur_node.find_child(k);
if let Some(child) = child_for_key {
let new_child = Node::insert_recurse(
child,
key,
value,
commit_version,
ts,
depth + longest_common_prefix,
replace,
);
let new_node = cur_node.replace_child(k, new_child);
return Arc::new(new_node);
}
// If no child exists for the key's character, create a new Twig node and add it as a child.
let new_twig = Node::new_twig(
key_prefix[longest_common_prefix..].into(),
key.as_slice().into(),
value,
commit_version,
ts,
);
let new_node = cur_node.add_child(k, new_twig);
Arc::new(new_node)
}
pub(crate) fn insert_recurse_mut(
cur_node: &mut Node<P, V>,
key: &P,
value: V,
commit_version: u64,
ts: u64,
depth: usize,
replace: bool,
) {
let (key_prefix, new_key, prefix, is_prefix_match, longest_common_prefix) =
Self::common_insert_logic(cur_node.prefix(), key, depth);
// If the current node is a Twig node and the prefixes match up to the end of both prefixes,
// update the existing value in the Twig node.
if let NodeType::Twig(ref mut twig) = &mut cur_node.node_type {
if is_prefix_match && twig.prefix.len() == key_prefix.len() {
if replace {
// Only replace if the provided value is more recent than
// the existing ones. This is important because this method
// is used for loading the index in SurrealKV and thus must
// be able to handle segments left by an unfinished compaction
// where older versions can end up in more recent segments
// after the newer versions.
twig.replace_if_newer_mut(value, commit_version, ts);
} else {
twig.insert_mut(value, commit_version, ts);
}
return;
}
}
// If the prefixes don't match, create a new Node4 with the old node and a new Twig as children.
if !is_prefix_match {
let n4 = Node::new_node4(prefix);
let k1 = cur_node.prefix().at(longest_common_prefix);
let k2 = key_prefix[longest_common_prefix];
// Must be set after the calculation of k1 above.
cur_node.set_prefix(new_key);
let old_node = std::mem::replace(cur_node, n4);
let new_twig = Node::new_twig(
key_prefix[longest_common_prefix..].into(),
key.as_slice().into(),
value,
commit_version,
ts,
);
cur_node.add_child_mut(k1, old_node);
cur_node.add_child_mut(k2, new_twig);
return;
}
// Continue the insertion process by finding or creating the appropriate child node for the next character.
let k = key_prefix[longest_common_prefix];
let child_for_key = cur_node.find_child_mut(k);
if let Some(child) = child_for_key {
Node::insert_recurse_mut(
child,
key,
value,
commit_version,
ts,
depth + longest_common_prefix,
replace,
);
cur_node.update_version();
return;
}
// If no child exists for the key's character, create a new Twig node and add it as a child.
let new_twig = Node::new_twig(
key_prefix[longest_common_prefix..].into(),
key.as_slice().into(),
value,
commit_version,
ts,
);
cur_node.add_child_mut(k, new_twig);
}
/// Removes a key recursively from the node and its children.
///
/// Recursively removes a key from the current node and its child nodes.
///
/// # Parameters
///
/// - `cur_node`: A reference to the current node.
/// - `key`: The key to be removed.
/// - `depth`: The depth of the removal process.
///
/// # Returns
///
/// Returns a tuple containing the updated node (or `None`) and a flag indicating if the key was removed.
///
pub(crate) fn remove_recurse(
cur_node: &Arc<Node<P, V>>,
key: &P,
depth: usize,
) -> (Option<Arc<Node<P, V>>>, bool) {
let k = key.at(depth);
// Search for a child node corresponding to the key's character.
let child = cur_node.find_child(k);
if let Some(child_node) = child {
let prefix = child_node.prefix().clone();
// Determine the prefix of the key after the current depth.
let key_prefix = key.prefix_after(depth);
// Find the longest common prefix between the current node's prefix and the key's prefix.
let longest_common_prefix = prefix.longest_common_prefix(key_prefix);
if longest_common_prefix != prefix.len() {
return (None, false);
}
if child_node.is_twig() {
let prefix_len = key.len() - depth;
if child_node.prefix().len() != prefix_len {
return (None, false);
}
let new_node = cur_node.delete_child(k);
return (Some(Arc::new(new_node)), true);
}
// Recursively attempt to remove the key from the child node.
let (new_child, removed) =
Node::remove_recurse(child_node, key, depth + longest_common_prefix);
if removed {
// If the key was successfully removed from the child node, update the current node's child pointer.
let new_node = cur_node.replace_child(k, new_child.unwrap());
return (Some(Arc::new(new_node)), true);
}
}
// If the key was not found at this level, return the current node as-is.
(Some(cur_node.clone()), false)
}
fn navigate_to_node<'a>(cur_node: &'a Node<P, V>, key: &P) -> Option<&'a Node<P, V>> {
let mut cur_node = cur_node;
let mut depth = 0;
loop {
let key_prefix = key.prefix_after(depth);
let prefix = cur_node.prefix();
let lcp = prefix.longest_common_prefix(key_prefix);
if lcp != prefix.len() {
return None;
}
if prefix.len() == key_prefix.len() {
return Some(cur_node);
}
let k = key.at(depth + prefix.len());
depth += prefix.len();
match cur_node.find_child(k) {
Some(child) => cur_node = child,
None => return None,
}
}
}
/// Recursively searches for a key in the node and its children.
pub(crate) fn get_recurse(
cur_node: &Node<P, V>,
key: &P,
query_type: QueryType,
) -> Option<(V, u64, u64)> {
let cur_node = Self::navigate_to_node(cur_node, key)?;
let val = cur_node.get_leaf_by_query(query_type)?;
Some((val.value.clone(), val.version, val.ts))
}
pub(crate) fn get_version_history(
cur_node: &Node<P, V>,
key: &P,
) -> Option<Vec<(V, u64, u64)>> {
Self::navigate_to_node(cur_node, key).and_then(|cur_node| cur_node.get_all_versions())
}
/// Returns an iterator that iterates over child nodes of the current node.
///
/// This function provides an iterator that traverses through the child nodes of the current node,
/// returning tuples of keys and references to child nodes.
///
/// # Returns
///
/// Returns a boxed iterator that yields tuples containing keys and references to child nodes.
///
#[allow(dead_code)]
pub(crate) fn iter(&self) -> Box<dyn DoubleEndedIterator<Item = (u8, &Arc<Self>)> + '_> {
match &self.node_type {
NodeType::Node4(n) => Box::new(n.iter()),
NodeType::Node16(n) => Box::new(n.iter()),
NodeType::Node48(n) => Box::new(n.iter()),
NodeType::Node256(n) => Box::new(n.iter()),
NodeType::Twig(_) => Box::new(std::iter::empty()),
}
}
}
/// A struct representing an Adaptive Radix Trie.
///
/// The `Tree` struct encompasses the entire adaptive radix trie data structure.
/// It manages the root node of the tree.
///
/// # Type Parameters
///
/// - `P`: A type implementing the `KeyTrait` trait, defining the prefix traits for nodes.
/// - `V`: The type of value associated with nodes.
///
/// # Fields
///
/// - `root`: An optional shared reference (using `Rc`) to the root node of the tree.
///
pub struct Tree<P: KeyTrait, V: Clone> {
/// An optional shared reference to the root node of the tree.
pub(crate) root: Option<Arc<Node<P, V>>>,
pub size: usize,
}
// A type alias for a node reference.
type NodeArc<P, V> = Arc<Node<P, V>>;
impl<P: KeyTrait, V: Clone> NodeType<P, V> {
fn clone(&self) -> Self {
match self {
// twig value not actually cloned
NodeType::Twig(twig) => NodeType::Twig(twig.clone()),
NodeType::Node4(n) => NodeType::Node4(n.clone()),
NodeType::Node16(n) => NodeType::Node16(n.clone()),
NodeType::Node48(n) => NodeType::Node48(n.clone()),
NodeType::Node256(n) => NodeType::Node256(n.clone()),
}
}
}
// Default implementation for the Tree struct
impl<P: KeyTrait, V: Clone> Default for Tree<P, V> {
fn default() -> Self {
Tree::new()
}
}
impl<P: KeyTrait, V: Clone> Clone for Tree<P, V> {
fn clone(&self) -> Self {
Self {
root: self.root.as_ref().cloned(),
size: self.size,
}
}
}
impl<P: KeyTrait, V: Clone> Tree<P, V> {
pub fn new() -> Self {
Tree {
root: None,
size: 0,
}
}
fn insert_common(
&mut self,
key: &P,
value: V,
version: u64,
ts: u64,
check_version: bool,
replace: bool,
) -> Result<(), TrieError> {
let new_root = match &self.root {
None => {
let commit_version = if version == 0 { 1 } else { version };
Arc::new(Node::new_twig(
key.as_slice().into(),
key.as_slice().into(),
value,
commit_version,
ts,
))
}
Some(root) => {
let curr_version = root.version();
let mut commit_version = version;
if version == 0 {
commit_version = curr_version + 1;
} else if check_version && curr_version > version {
return Err(TrieError::VersionIsOld);
}
Node::insert_recurse(root, key, value, commit_version, ts, 0, replace)
}
};
self.root = Some(new_root);
self.size += 1;
Ok(())
}
fn insert_common_mut(
&mut self,
key: &P,
value: V,
version: u64,
ts: u64,
check_version: bool,
replace: bool,
) -> Result<(), TrieError> {
if let Some(root_arc) = self.root.as_mut() {
let curr_version = root_arc.version();
let mut commit_version = version;
if version == 0 {
commit_version = curr_version + 1;
} else if check_version && curr_version > version {
return Err(TrieError::VersionIsOld);
}
if let Some(root) = Arc::get_mut(root_arc) {
Node::insert_recurse_mut(root, key, value, commit_version, ts, 0, replace)
} else {
return Err(TrieError::RootIsNotUniquelyOwned);
}
} else {
let commit_version = if version == 0 { 1 } else { version };
self.root = Some(Arc::new(Node::new_twig(
key.as_slice().into(),
key.as_slice().into(),
value,
commit_version,
ts,
)));
}
self.size += 1;
Ok(())
}
/// Inserts a new key-value pair with the specified version into the Trie.
///
/// This function inserts a new key-value pair into the Trie. If the key already exists,
/// the previous value associated with the key is returned. The `version`` is used to
/// ensure proper ordering of values for versioning. The `ts` parameter is used to
/// record the timestamp of the insertion.
///
/// This method ensures that the `version` provided is equal to or greater than the
/// current version of the tree. If a strictly greater guarantee is required, then
/// the caller is responsible for enforcing it.
///
/// # Arguments
///
/// * `key`: A reference to the key to be inserted.
/// * `value`: The value to be associated with the key.
/// * `version`: The version number for the key-value pair.
/// * `ts`: The timestamp for the insertion, used for versioning.
///
/// # Returns
///
/// Returns `Ok(())` on success.
///
/// # Errors
///
/// Returns an error if the given version is older than the root's current version.
pub fn insert(&mut self, key: &P, value: V, version: u64, ts: u64) -> Result<(), TrieError> {
self.insert_common(key, value, version, ts, true, false)
}
/// Inserts or replaces a key-value pair in the trie.
///
/// This function inserts a new key-value pair into the trie or replaces the existing value
/// if the key already exists. It ensures that the insertion is checked, meaning it will
/// validate the keys are inserted in increasing order of version numbers.
///
/// # Parameters
/// - `key`: A reference to the key to be inserted or replaced.
/// - `value`: The value to be associated with the key.
/// - `version`: The version number for the key-value pair.
/// - `ts`: The timestamp for the key-value pair.
///
/// # Returns
/// - `Result<(), TrieError>`: Returns `Ok(())` if the insertion or replacement is successful,
/// or a `TrieError` if an error occurs during the operation.
pub fn insert_or_replace(
&mut self,
key: &P,
value: V,
version: u64,
ts: u64,
) -> Result<(), TrieError> {
self.insert_common(key, value, version, ts, true, true)
}
/// Inserts a key-value pair into the trie without checking for existing keys.
///
/// This function inserts a new key-value pair into the trie without checking if the key
/// already exists. It is an unchecked insertion, meaning it will not check if the versions
/// are incremental during insertion. This can be faster but may lead to inconsistencies
/// if not used carefully.
///
/// This function also avoids the Copy-on-Write overhead of the `Arc` type by using mutable
/// references to the nodes. This can be useful when the caller knows that the root node
/// is uniquely owned and can be mutated directly.
///
/// # Parameters
/// - `key`: A reference to the key to be inserted.
/// - `value`: The value to be associated with the key.
/// - `version`: The version number for the key-value pair.
/// - `ts`: The timestamp for the key-value pair.
///
/// # Returns
/// - `Result<(), TrieError>`: Returns `Ok(())` if the insertion is successful,
/// or a `TrieError` if an error occurs during the operation.
pub fn insert_unchecked(
&mut self,
key: &P,
value: V,
version: u64,
ts: u64,
) -> Result<(), TrieError> {
self.insert_common_mut(key, value, version, ts, false, false)
}
/// Inserts or replaces a key-value pair in the trie without checking for existing keys.
///
/// This function inserts a new key-value pair into the trie or replaces the existing value
/// if the key already exists. It is an unchecked insertion, meaning it will not check if the versions
/// are incremental during insertion. This can be faster but may lead to inconsistencies
/// if not used carefully.
///
/// # Parameters
/// - `key`: A reference to the key to be inserted or replaced.
/// - `value`: The value to be associated with the key.
/// - `version`: The version number for the key-value pair.
/// - `ts`: The timestamp for the key-value pair.
///
/// # Returns
/// - `Result<(), TrieError>`: Returns `Ok(())` if the insertion or replacement is successful,
/// or a `TrieError` if an error occurs during the operation.
pub fn insert_or_replace_unchecked(
&mut self,
key: &P,
value: V,
version: u64,
ts: u64,
) -> Result<(), TrieError> {
self.insert_common_mut(key, value, version, ts, false, true)
}
pub(crate) fn remove_from_node(
node: Option<&Arc<Node<P, V>>>,
key: &P,
) -> (Option<Arc<Node<P, V>>>, bool) {
// Directly match on the root to simplify logic
let (new_root, is_deleted) = match &node {
Some(root) if !root.is_twig() => {
// Determine the prefix of the key after the current depth.
let key_prefix = key.prefix_after(0);
// Find the longest common prefix between the current node's prefix and the key's prefix.
let longest_common_prefix = root.prefix().longest_common_prefix(key_prefix);
if longest_common_prefix != root.prefix().len() {
// If the longest common prefix doesn't match the root's prefix length, no deletion occurs.
(Some(Arc::clone(root)), false)
} else {
// Proceed with recursive removal if the prefixes match.
let (new_root, removed) =
Node::remove_recurse(root, key, longest_common_prefix);
if removed
&& new_root.as_ref().unwrap().is_inner()
&& new_root.as_ref().unwrap().num_children() == 0
{
// If the node was deleted and it has no children, return None as the new root.
(None, removed)
} else {
(new_root, removed)
}
}
}
Some(root) => {
// case where the root is a twig.
// Determine the prefix of the key after the current depth.
let key_prefix = key.prefix_after(0);
// Find the longest common prefix between the current node's prefix and the key's prefix.
let longest_common_prefix = root.prefix().longest_common_prefix(key_prefix);
if longest_common_prefix != root.prefix().len() {
(None, false)
} else {
(None, true)
}
}
None => (None, false), // case where there is no root.
};
(new_root, is_deleted)
}
/// Removes a key with all the versions associated with it from the Trie.
///
/// This function removes a key and all its associated versions from the Trie.
///
/// # Arguments
///
/// * `key`: A reference to the key to be removed.
///
/// # Returns
///
/// Returns `true` if the key was successfully removed, `false` otherwise.
pub fn remove(&mut self, key: &P) -> bool {
// Directly match on the root to simplify logic
let (new_root, is_deleted) = Tree::remove_from_node(self.root.as_ref(), key);
// Update the root and return the deletion status.
if is_deleted {
self.root = new_root;
self.size -= 1;
}
is_deleted
}
/// Retrieves the value associated with the given key at a given version from the Trie.
///
/// This function searches for the value associated with the specified key at the specified
/// version in the Trie. If the version is set to 0, it retrieves the latest version available
/// for the key. The function uses a recursive search to find the value.
///
/// # Arguments
///
/// * `key`: A reference to the key to be searched.
/// * `version`: The version number to be searched. If set to 0, the latest version is retrieved.
///
/// # Returns
///
/// Returns an `Option` containing a tuple `(V, u64, u64)` if the key and version are found:
/// - `V`: The value associated with the key.
/// - `u64`: The version number of the value.
/// - `u64`: The timestamp of the value.
///
/// Returns `None` if the key or version is not found.
pub fn get(&self, key: &P, version: u64) -> Option<(V, u64, u64)> {
let root = self.root.as_ref()?;
let mut commit_version = version;
if commit_version == 0 {
commit_version = root.version();
}
Node::get_recurse(root, key, QueryType::LatestByVersion(commit_version))
}
/// Retrieves the latest version of the Trie.
///
/// This function returns the version of the latest version of the Trie. If the Trie is empty,
/// it returns `0`.
///
/// # Returns
///
/// Returns the version of the latest version of the Trie, or `0` if the Trie is empty.
///
pub fn version(&self) -> u64 {
match &self.root {
None => 0,
Some(root) => root.version(),
}
}
/// Creates a new snapshot of the Trie.
///
/// This function creates a snapshot of the current state of the Trie. If successful, it returns
/// a `Snapshot` that can be used to interact with the newly created snapshot.
///
/// # Returns
///
/// Returns a `Result` containing the `Snapshot` if the snapshot is created successfully,
/// or an `Err` with an appropriate error message if creation fails.
///
pub fn create_snapshot(&self) -> Snapshot<P, V> {
let root = self.root.as_ref().cloned();
let version = self.root.as_ref().map_or(1, |root| root.version() + 1);
Snapshot::new(root, version)
}
/// Creates a new snapshot of the Trie at the specified version.
///
/// This function creates a snapshot of the Trie at the given version. The snapshot
/// captures the state of the Trie as it was at the specified version. This can be useful
/// for versioned data access, allowing you to interact with the Trie as it existed at
/// a particular point in time.
///
/// # Arguments
///
/// * `version`: The version number at which to create the snapshot.
///
/// # Returns
///
/// Returns a `Snapshot` that can be used to interact with the Trie at the specified version.
pub fn create_snapshot_at_version(&self, version: u64) -> Result<Snapshot<P, V>, TrieError> {
if let Some(root) = self.root.as_ref() {
if version < root.version() {
return Err(TrieError::SnapshotOlderThanRoot);
}
}
let root = self.root.as_ref().cloned();
Ok(Snapshot::new(root, version))
}
/// Creates an iterator over the Trie's key-value pairs.
///
/// This function creates and returns an iterator that can be used to traverse the key-value pairs
/// stored in the Trie. The iterator starts from the root of the Trie.
///
/// # Returns
///
/// Returns an `Iter` instance that iterates over the key-value pairs in the Trie.
///
pub fn iter(&self) -> Iter<P, V> {
Iter::new(self.root.as_ref(), false)
}
/// Creates a versioned iterator over the Trie's key-value pairs.
///
/// This function creates and returns an iterator that can be used to traverse all the versions
/// for all the key-value pairs stored in the Trie. The iterator starts from the root of the Trie.
pub fn iter_with_versions(&self) -> Iter<P, V> {
Iter::new(self.root.as_ref(), true)
}
/// Returns an iterator over a range of key-value pairs within the Trie.
///
/// This function creates and returns an iterator that iterates over key-value pairs in the Trie,
/// starting from the provided `start_key` and following the specified `range` bounds. The iterator
/// iterates within the specified key range.
///
/// # Arguments
///
/// * `range` - A range that specifies the bounds for iterating over key-value pairs.
///
/// # Returns
///
/// Returns a `Range` iterator instance that iterates over the key-value pairs within the given range.
/// If the Trie is empty, an empty `Range` iterator is returned.
///
pub fn range<'a, R>(
&'a self,
range: R,
) -> impl Iterator<Item = (Vec<u8>, &'a V, &'a u64, &'a u64)>
where
R: RangeBounds<P> + 'a,
{
// If the Trie is empty, return an empty Range iterator
if self.root.is_none() {
return Range::empty(range);
}
let root = self.root.as_ref();
Range::new(root, range)
}
/// Returns an iterator over the key-value pairs within the specified range, including all the
/// versions of the key.
///
/// This function returns an iterator that yields key-value pairs along with their version
/// and timestamp within the specified range. If the Trie is empty, it returns an empty iterator.
///
/// # Arguments
///
/// * `range`: The range of keys to be iterated over.
///
/// # Returns
///
/// Returns an iterator over the key-value pairs, versions, and timestamps within the specified range.
pub fn range_with_versions<'a, R>(
&'a self,
range: R,
) -> impl Iterator<Item = (Vec<u8>, &'a V, &'a u64, &'a u64)>
where
R: RangeBounds<P> + 'a,
{
// If the Trie is empty, return an empty Range iterator
if self.root.is_none() {
return Range::empty(range);
}
let root = self.root.as_ref();
Range::new_versioned(root, range)
}
/// Retrieves the value associated with the given key at the specified timestamp.
///
/// This function searches for the value associated with the specified key at the given
/// timestamp in the Trie. It uses a recursive search to find the value.
///
/// # Arguments
///
/// * `key`: A reference to the key to be searched.
/// * `ts`: The timestamp to be searched.
///
/// # Returns
///
/// Returns an `Option` containing a tuple `(V, u64, u64)` if the key and timestamp are found:
/// - `V`: The value associated with the key.
/// - `u64`: The version number of the value.
/// - `u64`: The timestamp of the value.
///
/// Returns `None` if the key or timestamp is not found.
pub fn get_at_ts(&self, key: &P, ts: u64) -> Option<(V, u64, u64)> {
let root = self.root.as_ref()?;
Node::get_recurse(root, key, QueryType::LatestByTs(ts))
}
/// Retrieves the version history of the given key.
///
/// This function searches for all versions of the specified key in the Trie and returns
/// a vector of tuples containing the value, version number, and timestamp for each version.
///
/// # Arguments
///
/// * `key`: A reference to the key to be searched.
///
/// # Returns
///
/// Returns an `Option` containing a vector of tuples `(V, u64, u64)` if the key is found:
/// - `V`: The value associated with the key.
/// - `u64`: The version number of the value.
/// - `u64`: The timestamp of the value.
///
/// Returns `None` if the key is not found.
pub fn get_version_history(&self, key: &P) -> Option<Vec<(V, u64, u64)>> {
let root = self.root.as_ref()?;
Node::get_version_history(root, key)
}
/// Retrieves the value associated with the given key based on the specified query type.
///
/// This function searches for the value associated with the specified key based on the
/// provided query type in the Trie. It uses a recursive search to find the value.
///
/// # Arguments
///
/// * `key`: A reference to the key to be searched.
/// * `query_type`: The type of query to be performed (e.g., latest by version, latest by timestamp).
///
/// # Returns
///
/// Returns an `Option` containing a tuple `(V, u64, u64)` if the key and query type are found:
/// - `V`: The value associated with the key.
/// - `u64`: The version number of the value.
/// - `u64`: The timestamp of the value.
///
/// Returns `None` if the key or query type is not found.
pub fn get_value_by_query(&self, key: &P, query_type: QueryType) -> Option<(V, u64, u64)> {
let root = self.root.as_ref()?;
Node::get_recurse(root, key, query_type)
}
/// Checks if the Trie is empty.
///
/// This function checks if the Trie contains any key-value pairs.
///
/// # Returns
///
/// Returns `true` if the Trie is empty, `false` otherwise.
pub fn is_empty(&self) -> bool {
self.size == 0
}
pub fn scan_at_ts<R>(&self, range: R, ts: u64) -> Vec<(Vec<u8>, V)>
where
R: RangeBounds<P>,
{
scan_node(self.root.as_ref(), range, QueryType::LatestByTs(ts))
}
pub fn keys_at_ts<R>(&self, range: R, ts: u64) -> Vec<Vec<u8>>
where
R: RangeBounds<P>,
{
query_keys_at_node(self.root.as_ref(), range, QueryType::LatestByTs(ts))
}
}
/*
Test cases for Adaptive Radix Tree
*/
#[cfg(test)]
mod tests {
use super::Tree;
use crate::art::QueryType;
use crate::{FixedSizeKey, VariableSizeKey};
use rand::{thread_rng, Rng};
use std::str::FromStr;
use rand::distributions::Alphanumeric;
use std::fs::File;
use std::io::{self, BufRead, BufReader};
fn read_words_from_file(file_path: &str) -> io::Result<Vec<String>> {
let file = File::open(file_path)?;
let reader = BufReader::new(file);
let words: Vec<String> = reader.lines().map_while(Result::ok).collect();
Ok(words)
}
#[test]
fn insert_search_delete_words() {
let mut tree: Tree<VariableSizeKey, i32> = Tree::<VariableSizeKey, i32>::new();
let file_path = "testdata/words.txt";
if let Ok(words) = read_words_from_file(file_path) {
// Insertion phase
for word in &words {
let key = &VariableSizeKey::from_str(word).unwrap();
let _ = tree.insert(key, 1, 0, 0);
}
// Search phase
for word in &words {
let key = VariableSizeKey::from_str(word).unwrap();
let (val, _, _) = tree.get(&key, 0).unwrap();
assert_eq!(val, 1);
}
// Deletion phase
for word in &words {
let key = VariableSizeKey::from_str(word).unwrap();
assert!(tree.remove(&key));
}
} else if let Err(err) = read_words_from_file(file_path) {
eprintln!("Error reading file: {}", err);
}
assert_eq!(tree.version(), 0);
}
#[test]
fn string_insert_delete() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
// Insertion phase
let insert_words = [
"a", "aa", "aal", "aalii", "abc", "abcd", "abcde", "xyz", "axyz",
];
for word in &insert_words {
let _ = tree.insert(&VariableSizeKey::from_str(word).unwrap(), 1, 0, 0);
}
// Deletion phase
for word in &insert_words {
assert!(tree.remove(&VariableSizeKey::from_str(word).unwrap()));
}
}
#[test]
fn string_long() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
// Insertion phase
let words_to_insert = [
("amyelencephalia", 1),
("amyelencephalic", 2),
("amyelencephalous", 3),
];
for (word, val) in &words_to_insert {
let _ = tree.insert(&VariableSizeKey::from_str(word).unwrap(), *val, 0, 0);
}
// Verification phase
for (word, expected_val) in &words_to_insert {
let (val, _, _) = tree
.get(&VariableSizeKey::from_str(word).unwrap(), 0)
.unwrap();
assert_eq!(val, *expected_val);
}
}
#[test]
fn root_set_get() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
// Insertion phase
let key = VariableSizeKey::from_str("abc").unwrap();
let value = 1;
let _ = tree.insert(&key, value, 0, 0);
// Verification phase
let (val, _ts, _) = tree.get(&key, 0).unwrap();
assert_eq!(val, value);
}
#[test]
fn string_duplicate_insert() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
// First insertion
let key = VariableSizeKey::from_str("abc").unwrap();
let value = 1;
tree.insert(&key, value, 0, 0).expect("Failed to insert");
let (val, version, ts) = tree.get(&key, 0).unwrap();
assert!(val == value);
assert!(version == 1);
assert!(ts == 0);
// Second insertion (duplicate)
let value = 2;
tree.insert(&key, value, 0, 0).expect("Failed to insert");
let (val, version, ts) = tree.get(&key, 0).unwrap();
assert!(val == value);
assert!(version == 2);
assert!(ts == 0);
}
// Inserting a single value into the tree and removing it should result in a nil tree root.
#[test]
fn insert_and_remove_single_key() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
// Insertion
let key = VariableSizeKey::from_str("test").unwrap();
let value = 1;
let _ = tree.insert(&key, value, 0, 0);
// Removal
assert!(tree.remove(&key));
// Verification
assert!(tree.get(&key, 0).is_none());
}
#[test]
fn inserting_keys_with_common_prefix() {
let key1 = VariableSizeKey::from_str("foo").unwrap();
let key2 = VariableSizeKey::from_str("foo2").unwrap();
let mut tree = Tree::<VariableSizeKey, i32>::new();
// Insertion
tree.insert(&key1, 1, 0, 0).unwrap();
tree.insert(&key2, 1, 0, 0).unwrap();
// Removal
assert!(tree.remove(&key1));
// Root verification
if let Some(root) = &tree.root {
assert_eq!(root.node_type_name(), "Twig");
} else {
panic!("Tree root is None");
}
}
// Inserting Two values into the tree and removing one of them
// should result in a tree root of type twig
#[test]
fn insert2_and_remove1_and_root_should_be_node1() {
let key1 = VariableSizeKey::from_str("test1").unwrap();
let key2 = VariableSizeKey::from_str("test2").unwrap();
let mut tree = Tree::<VariableSizeKey, i32>::new();
// Insertion
tree.insert(&key1, 1, 0, 0).unwrap();
tree.insert(&key2, 1, 0, 0).unwrap();
// Removal
assert!(tree.remove(&key1));
// Root verification
if let Some(root) = &tree.root {
assert_eq!(root.node_type_name(), "Twig");
} else {
panic!("Tree root is None");
}
}
// Inserting Two values into a tree and deleting them both
// should result in a nil tree root
// This tests the expansion of the root into a NODE4 and
// successfully collapsing into a twig and then nil upon successive removals
#[test]
fn insert2_and_remove2_and_root_should_be_nil() {
let key1 = &VariableSizeKey::from_str("test1").unwrap();
let key2 = &VariableSizeKey::from_str("test2").unwrap();
let mut tree = Tree::<VariableSizeKey, i32>::new();
tree.insert(key1, 1, 0, 0).unwrap();
tree.insert(key2, 1, 0, 0).unwrap();
assert!(tree.remove(key1));
assert!(tree.remove(key2));
assert!(tree.root.is_none());
}
// Inserting Five values into a tree and deleting one of them
// should result in a tree root of type NODE4
// This tests the expansion of the root into a NODE16 and
// successfully collapsing into a NODE4 upon successive removals
#[test]
fn insert5_and_remove1_and_root_should_be_node4() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
// Insertion
for i in 0..5u32 {
let key = VariableSizeKey::from_slice(&i.to_be_bytes());
tree.insert(&key, 1, 0, 0).unwrap();
}
// Removal
let key_to_remove = VariableSizeKey::from_slice(&1u32.to_be_bytes());
assert!(tree.remove(&key_to_remove));
// Root verification
if let Some(root) = &tree.root {
assert!(root.is_inner());
assert_eq!(root.node_type_name(), "Node4");
} else {
panic!("Tree root is None");
}
}
// Inserting Five values into a tree and deleting all of them
// should result in a tree root of type nil
// This tests the expansion of the root into a NODE16 and
// successfully collapsing into a NODE4, twig, then nil
#[test]
fn insert5_and_remove5_and_root_should_be_nil() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
for i in 0..5u32 {
let key = &VariableSizeKey::from_slice(&i.to_be_bytes());
tree.insert(key, 1, 0, 0).unwrap();
}
for i in 0..5u32 {
let key = &VariableSizeKey::from_slice(&i.to_be_bytes());
tree.remove(key);
}
assert!(tree.root.is_none());
}
// Inserting 17 values into a tree and deleting one of them should
// result in a tree root of type NODE16
// This tests the expansion of the root into a NODE48, and
// successfully collapsing into a NODE16
#[test]
fn insert17_and_remove1_and_root_should_be_node16() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
// Insertion
for i in 0..17u32 {
let key = VariableSizeKey::from_slice(&i.to_be_bytes());
tree.insert(&key, 1, 0, 0).unwrap();
}
// Removal
let key_to_remove = VariableSizeKey::from_slice(&2u32.to_be_bytes());
assert!(tree.remove(&key_to_remove));
// Root verification
if let Some(root) = &tree.root {
assert!(root.is_inner());
assert_eq!(root.node_type_name(), "Node16");
} else {
panic!("Tree root is None");
}
}
#[test]
fn insert17_and_root_should_be_node48() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
// Insertion
for i in 0..17u32 {
let key = VariableSizeKey::from_slice(&i.to_be_bytes());
tree.insert(&key, 1, 0, 0).unwrap();
}
// Root verification
if let Some(root) = &tree.root {
assert!(root.is_inner());
assert_eq!(root.node_type_name(), "Node48");
} else {
panic!("Tree root is None");
}
}
// Inserting 17 values into a tree and removing them all should
// result in a tree of root type nil
// This tests the expansion of the root into a NODE48, and
// successfully collapsing into a NODE16, NODE4, twig, and then nil
#[test]
fn insert17_and_remove17_and_root_should_be_nil() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
for i in 0..17u32 {
let key = VariableSizeKey::from_slice(&i.to_be_bytes());
tree.insert(&key, 1, 0, 0).unwrap();
}
for i in 0..17u32 {
let key = VariableSizeKey::from_slice(&i.to_be_bytes());
tree.remove(&key);
}
assert!(tree.root.is_none());
}
// Inserting 49 values into a tree and removing one of them should
// result in a tree root of type NODE48
// This tests the expansion of the root into a NODE256, and
// successfully collapasing into a NODE48
#[test]
fn insert49_and_remove1_and_root_should_be_node48() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
// Insertion
for i in 0..49u32 {
let key = VariableSizeKey::from_slice(&i.to_be_bytes());
tree.insert(&key, 1, 0, 0).unwrap();
}
// Removal
let key_to_remove = VariableSizeKey::from_slice(&2u32.to_be_bytes());
assert!(tree.remove(&key_to_remove));
// Root verification
if let Some(root) = &tree.root {
assert!(root.is_inner());
assert_eq!(root.node_type_name(), "Node48");
} else {
panic!("Tree root is None");
}
}
#[test]
fn insert49_and_root_should_be_node248() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
// Insertion
for i in 0..49u32 {
let key = VariableSizeKey::from_slice(&i.to_be_bytes());
tree.insert(&key, 1, 0, 0).unwrap();
}
// Root verification
if let Some(root) = &tree.root {
assert!(root.is_inner());
assert_eq!(root.node_type_name(), "Node256");
} else {
panic!("Tree root is None");
}
}
// Inserting 49 values into a tree and removing all of them should
// result in a nil tree root
// This tests the expansion of the root into a NODE256, and
// successfully collapsing into a Node48, Node16, Node4, twig, and finally nil
#[test]
fn insert49_and_remove49_and_root_should_be_nil() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
for i in 0..49u32 {
let key = &VariableSizeKey::from_slice(&i.to_be_bytes());
tree.insert(key, 1, 0, 0).unwrap();
}
for i in 0..49u32 {
let key = VariableSizeKey::from_slice(&i.to_be_bytes());
assert!(tree.remove(&key));
}
assert!(tree.root.is_none());
}
#[derive(Debug, Clone, PartialEq)]
struct Kvt {
k: Vec<u8>, // Key
version: u64, // version
}
#[test]
fn timed_insertion() {
let mut tree: Tree<VariableSizeKey, i32> = Tree::<VariableSizeKey, i32>::new();
let kvts = vec![
Kvt {
k: b"key1_0".to_vec(),
version: 0,
},
Kvt {
k: b"key2_0".to_vec(),
version: 0,
},
Kvt {
k: b"key3_0".to_vec(),
version: 0,
},
Kvt {
k: b"key4_0".to_vec(),
version: 0,
},
Kvt {
k: b"key5_0".to_vec(),
version: 0,
},
Kvt {
k: b"key6_0".to_vec(),
version: 0,
},
];
// Insertion
for (idx, kvt) in kvts.iter().enumerate() {
let ts = if kvt.version == 0 {
idx as u64 + 1
} else {
kvt.version
};
assert!(tree
.insert(&VariableSizeKey::from(kvt.k.clone()), 1, ts, 0)
.is_ok());
}
// Verification
let mut curr_version = 1;
for kvt in &kvts {
let key = VariableSizeKey::from(kvt.k.clone());
let (val, version, _ts) = tree.get(&key, 0).unwrap();
assert_eq!(val, 1);
if kvt.version == 0 {
assert_eq!(curr_version, version);
} else {
assert_eq!(kvt.version, version);
}
curr_version += 1;
}
// Root's version should match the greatest inserted version
assert_eq!(kvts.len() as u64, tree.version());
}
#[test]
fn timed_insertion_update_same_key() {
let mut tree: Tree<VariableSizeKey, i32> = Tree::<VariableSizeKey, i32>::new();
let key1 = &VariableSizeKey::from_str("key_1").unwrap();
// insert key1 with version 0
assert!(tree.insert(key1, 1, 0, 1).is_ok());
// update key1 with version 0
assert!(tree.insert(key1, 1, 0, 3).is_ok());
// get key1 should return version 2 as the same key was inserted and updated
let (val, version, ts) = tree.get(key1, 0).unwrap();
assert_eq!(val, 1);
assert_eq!(version, 2);
assert_eq!(ts, 3);
// update key1 with older version should fail
assert!(tree.insert(key1, 1, 1, 0).is_err());
assert_eq!(tree.version(), 2);
// update key1 with newer version should pass
assert!(tree.insert(key1, 1, 8, 5).is_ok());
let (val, version, ts) = tree.get(key1, 0).unwrap();
assert_eq!(val, 1);
assert_eq!(version, 8);
assert_eq!(ts, 5);
assert_eq!(tree.version(), 8);
}
#[test]
fn timed_insertion_update_non_increasing_version() {
let mut tree: Tree<VariableSizeKey, i32> = Tree::<VariableSizeKey, i32>::new();
let key1 = VariableSizeKey::from_str("key_1").unwrap();
let key2 = VariableSizeKey::from_str("key_2").unwrap();
// Initial insertion
assert!(tree.insert(&key1, 1, 10, 0).is_ok());
let initial_version_key1 = tree.version();
// Attempt update with non-increasing version
assert!(tree.insert(&key1, 1, 2, 0).is_err());
assert_eq!(initial_version_key1, tree.version());
let (val, version, _) = tree.get(&key1, 0).unwrap();
assert_eq!(val, 1);
assert_eq!(version, 10);
// Insert another key
assert!(tree.insert(&key2, 1, 15, 0).is_ok());
let initial_version_key2 = tree.version();
// Attempt update with non-increasing version for the second key
assert!(tree.insert(&key2, 1, 11, 0).is_err());
assert_eq!(initial_version_key2, tree.version());
let (val, version, _ts) = tree.get(&key2, 0).unwrap();
assert_eq!(val, 1);
assert_eq!(version, 15);
// Check if the max version of the tree is the max of the two inserted versions
assert_eq!(tree.version(), 15);
}
#[test]
fn timed_deletion_check_root_ts() {
let mut tree: Tree<VariableSizeKey, i32> = Tree::<VariableSizeKey, i32>::new();
let key1 = VariableSizeKey::from_str("key_1").unwrap();
let key2 = VariableSizeKey::from_str("key_2").unwrap();
// Initial insertions
assert!(tree.insert(&key1, 1, 0, 0).is_ok());
assert!(tree.insert(&key2, 1, 0, 0).is_ok());
assert_eq!(tree.version(), 2);
// Deletions
assert!(tree.remove(&key1));
assert!(tree.remove(&key2));
assert_eq!(tree.version(), 0);
}
fn from_be_bytes_key(k: &[u8]) -> u64 {
let padded_k = if k.len() < 8 {
let mut new_k = vec![0; 8];
new_k[8 - k.len()..].copy_from_slice(k);
new_k
} else {
k.to_vec()
};
let k_slice = &padded_k[..8];
u64::from_be_bytes(k_slice.try_into().unwrap())
}
#[test]
fn iter_seq_u16() {
let mut tree = Tree::<FixedSizeKey<16>, u16>::new();
// Insertion
for i in 0..u16::MAX {
let key: FixedSizeKey<16> = i.into();
tree.insert(&key, i, 0, i as u64).unwrap();
}
// Iteration and verification
let mut len = 0usize;
let mut expected = 0u16;
let tree_iter = tree.iter();
for tree_entry in tree_iter {
let k = from_be_bytes_key(&tree_entry.0);
assert_eq!(expected as u64, k);
let ts = tree_entry.3;
assert_eq!(expected as u64, *ts);
expected = expected.wrapping_add(1);
len += 1;
}
// Final assertion
assert_eq!(len, u16::MAX as usize);
}
#[test]
fn iter_seq_u8() {
let mut tree: Tree<FixedSizeKey<32>, u8> = Tree::<FixedSizeKey<32>, u8>::new();
// Insertion
for i in 0..u8::MAX {
let key: FixedSizeKey<32> = i.into();
tree.insert(&key, i, 0, 0).unwrap();
}
// Iteration and verification
let mut len = 0usize;
let mut expected = 0u8;
let tree_iter = tree.iter();
for tree_entry in tree_iter {
let k = from_be_bytes_key(&tree_entry.0);
assert_eq!(expected as u64, k);
expected = expected.wrapping_add(1);
len += 1;
}
// Final assertion
assert_eq!(len, u8::MAX as usize);
}
#[test]
fn range_seq_u8() {
let mut tree: Tree<FixedSizeKey<8>, u8> = Tree::<FixedSizeKey<8>, u8>::new();
let max = u8::MAX;
// Insertion
for i in 0..=max {
let key: FixedSizeKey<8> = i.into();
tree.insert(&key, i, 0, 0).unwrap();
}
// Test inclusive range
let start_key: FixedSizeKey<8> = 5u8.into();
let end_key: FixedSizeKey<8> = max.into();
let mut len = 0usize;
for _ in tree.range(start_key..=end_key) {
len += 1;
}
assert_eq!(len, max as usize - 4);
// Test exclusive range
let start_key: FixedSizeKey<8> = 5u8.into();
let end_key: FixedSizeKey<8> = max.into();
let mut len = 0usize;
for _ in tree.range(start_key..end_key) {
len += 1;
}
assert_eq!(len, max as usize - 5);
// Test range with different start and end keys
let start_key: FixedSizeKey<8> = 3u8.into();
let end_key: FixedSizeKey<8> = 7u8.into();
let mut len = 0usize;
for _ in tree.range(start_key..=end_key) {
len += 1;
}
assert_eq!(len, 5);
// Test range with all keys
let start_key: FixedSizeKey<8> = 0u8.into();
let end_key: FixedSizeKey<8> = max.into();
let mut len = 0usize;
for _ in tree.range(start_key..=end_key) {
len += 1;
}
assert_eq!(len, 256);
}
#[test]
fn range_seq_u16() {
let mut tree: Tree<FixedSizeKey<16>, u16> = Tree::<FixedSizeKey<16>, u16>::new();
let max = u16::MAX;
// Insertion
for i in 0..=max {
let key: FixedSizeKey<16> = i.into();
tree.insert(&key, i, 0, 0).unwrap();
}
let mut len = 0usize;
let start_key: FixedSizeKey<16> = 0u8.into();
let end_key: FixedSizeKey<16> = max.into();
for _ in tree.range(start_key..=end_key) {
len += 1;
}
assert_eq!(len, max as usize + 1);
}
#[test]
fn same_key_with_versions() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
// Insertions
let key1 = VariableSizeKey::from_str("abc").unwrap();
let key2 = VariableSizeKey::from_str("efg").unwrap();
tree.insert(&key1, 1, 0, 0).unwrap();
tree.insert(&key1, 2, 10, 0).unwrap();
tree.insert(&key2, 3, 11, 0).unwrap();
// Versioned retrievals and assertions
let (val, _, _) = tree.get(&key1, 1).unwrap();
assert_eq!(val, 1);
let (val, _, _) = tree.get(&key1, 10).unwrap();
assert_eq!(val, 2);
let (val, _, _) = tree.get(&key2, 11).unwrap();
assert_eq!(val, 3);
// Iteration and verification
let mut len = 0;
let tree_iter = tree.iter();
for _ in tree_iter {
len += 1;
}
assert_eq!(len, 2);
}
#[test]
fn insert_and_remove() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
let version = 0;
// Keys to set
let set_keys = vec![
[107, 101, 121, 48, 48, 0],
[107, 101, 121, 48, 49, 0],
[107, 101, 121, 48, 50, 0],
[107, 101, 121, 48, 51, 0],
[107, 101, 121, 48, 52, 0],
[107, 101, 121, 48, 53, 0],
[107, 101, 121, 48, 54, 0],
[107, 101, 121, 48, 55, 0],
[107, 101, 121, 48, 56, 0],
[107, 101, 121, 48, 57, 0],
[107, 101, 121, 49, 48, 0],
[107, 101, 121, 49, 49, 0],
[107, 101, 121, 49, 50, 0],
[107, 101, 121, 49, 51, 0],
[107, 101, 121, 49, 52, 0],
[107, 101, 121, 49, 53, 0],
[107, 101, 121, 49, 54, 0],
[107, 101, 121, 49, 55, 0],
[107, 101, 121, 49, 56, 0],
[107, 101, 121, 49, 57, 0],
[107, 101, 121, 50, 48, 0],
[107, 101, 121, 50, 49, 0],
[107, 101, 121, 50, 50, 0],
[107, 101, 121, 50, 51, 0],
[107, 101, 121, 50, 52, 0],
[107, 101, 121, 50, 53, 0],
];
// Insert keys
for key_data in &set_keys {
let key = VariableSizeKey {
data: key_data.to_vec(),
};
tree.insert(&key, 1, version, 0).unwrap();
}
// Delete one key at a time and check remaining keys
for (index, key_data_to_delete) in set_keys.iter().enumerate() {
let key_to_delete = VariableSizeKey {
data: key_data_to_delete.to_vec(),
};
tree.remove(&key_to_delete);
// Check remaining keys are still present
for (remaining_index, remaining_key_data) in set_keys.iter().enumerate() {
if remaining_index <= index {
// Check that the deleted key is no longer present
assert!(
tree.get(&key_to_delete, version).is_none(),
"Key {:?} should not exist after deletion",
key_data_to_delete
);
// This key has been deleted; skip
continue;
}
let remaining_key = VariableSizeKey {
data: remaining_key_data.to_vec(),
};
assert!(
tree.get(&remaining_key, version).is_some(),
"Key {:?} should exist",
remaining_key_data
);
}
}
}
fn generate_sequential_keys(count: usize) -> Vec<Vec<u8>> {
(0..count)
.map(|i| {
let mut key = i.to_le_bytes().to_vec();
key.push(0); // Ensure each key ends with 0
key
})
.collect()
}
fn generate_random_keys(count: usize) -> Vec<Vec<u8>> {
let mut rng = thread_rng();
(0..count)
.map(|_| {
let mut key: Vec<u8> = (0..5).map(|_| rng.gen()).collect(); // Generate a key of 5 random bytes
key.push(0); // Ensure each key ends with 0
key
})
.collect()
}
fn insert_remove_and_verify_keys(set_keys: Vec<Vec<u8>>) {
let mut tree = Tree::<VariableSizeKey, i32>::new();
let version = 0;
// Insert keys
for key_data in &set_keys {
let key = VariableSizeKey {
data: key_data.to_vec(),
};
tree.insert(&key, 1, version, 0).unwrap();
}
// Delete one key at a time and check remaining keys
for (index, key_data_to_delete) in set_keys.iter().enumerate() {
let key_to_delete = VariableSizeKey {
data: key_data_to_delete.to_vec(),
};
tree.remove(&key_to_delete);
// Check remaining keys are still present
for (remaining_index, remaining_key_data) in set_keys.iter().enumerate() {
if remaining_index <= index {
// Check that the deleted key is no longer present
assert!(
tree.get(&key_to_delete, version).is_none(),
"Key {:?} should not exist after deletion",
key_data_to_delete
);
// This key has been deleted; skip
continue;
}
let remaining_key = VariableSizeKey {
data: remaining_key_data.to_vec(),
};
assert!(
tree.get(&remaining_key, version).is_some(),
"Key {:?} should exist",
remaining_key_data
);
}
}
}
#[test]
fn test_insert_remove_and_verify_keys_large_sequential() {
insert_remove_and_verify_keys(generate_sequential_keys(1000)); // Generate 1000 sequential keys
}
#[test]
fn test_insert_remove_and_verify_keys_large_random() {
insert_remove_and_verify_keys(generate_random_keys(1000)); // Generate 1000 random keys
}
#[test]
fn remove_non_existent_key() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
let key = VariableSizeKey::from_str("nonexistent").unwrap();
let is_removed = tree.remove(&key);
assert!(!is_removed);
}
#[test]
fn remove_key_from_empty_tree() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
let key = VariableSizeKey::from_str("test").unwrap();
let is_removed = tree.remove(&key);
assert!(!is_removed);
}
#[test]
fn sequential_removals() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
let keys = vec!["first", "second", "third"]
.into_iter()
.map(|k| VariableSizeKey::from_str(k).unwrap())
.collect::<Vec<_>>();
// Insert keys
for key in &keys {
let _ = tree.insert(key, 1, 0, 0);
}
// Remove keys sequentially
for key in &keys {
assert!(tree.remove(key));
}
// Verify all keys are removed
for key in keys {
assert!(tree.get(&key, 0).is_none());
}
}
#[test]
fn remove_until_empty() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
let keys = vec!["key1", "key2", "key3"]
.into_iter()
.map(|k| VariableSizeKey::from_str(k).unwrap())
.collect::<Vec<_>>();
// Insert keys
for key in &keys {
let _ = tree.insert(key, 1, 0, 0);
}
// Remove all keys
for key in &keys {
let is_removed = tree.remove(key);
assert!(is_removed);
}
}
#[test]
fn remove_with_subsequent_inserts() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
let key1 = VariableSizeKey::from_str("key1").unwrap();
let key2 = VariableSizeKey::from_str("key2").unwrap();
// Initial insert
let _ = tree.insert(&key1, 1, 0, 0);
// Remove
assert!(tree.remove(&key1));
// Insert another key
let _ = tree.insert(&key2, 2, 0, 0);
// Verify
assert!(tree.get(&key1, 0).is_none());
assert_eq!(tree.get(&key2, 0).unwrap().0, 2);
}
#[test]
fn insert_with_random_versions_and_verify_count() {
use rand::seq::SliceRandom;
use rand::Rng;
use std::collections::HashMap;
let mut tree = Tree::<VariableSizeKey, i32>::new();
let num_keys = 1000; // Large number of keys
let mut rng = rand::thread_rng();
let mut expected_entries = 0;
// Generate an array of increasing versions and shuffle it
let mut versions: Vec<usize> = (1..=num_keys).collect();
versions.shuffle(&mut rng);
// HashMap to store key-version mapping
let mut key_version_map = HashMap::new();
for (i, &version) in versions.iter().enumerate().take(num_keys) {
let id = format!("key{}", i + 1);
let key = VariableSizeKey::from_str(&id).unwrap();
if tree
.insert_unchecked(&key, rng.gen::<i32>(), version as u64, 0)
.is_ok()
{
expected_entries += 1;
key_version_map.insert(id, version);
}
}
// Verification
for (key, version) in key_version_map.iter() {
let key = VariableSizeKey::from_str(key).unwrap();
assert!(
tree.get(&key, *version as u64).is_some(),
"The key {:?} at version {} should be present in the tree.",
key,
version
);
}
// Iteration and verification
let mut actual_entries = 0;
let tree_iter = tree.iter();
for _ in tree_iter {
actual_entries += 1;
}
assert_eq!(
actual_entries, expected_entries,
"The number of entries in the tree does not match the expected number of insertions."
);
assert_eq!(tree.version(), num_keys as u64);
}
#[test]
fn insert_keys_in_decreasing_order_and_verify_count() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
let num_keys = 1000;
for i in (0..num_keys).rev() {
let key = VariableSizeKey::from_str(&format!("key{}", i)).unwrap();
tree.insert_unchecked(&key, i as i32, i, 0).unwrap();
}
// Verify total entries
let total_entries = tree.iter().count() as u64;
assert_eq!(
total_entries, num_keys,
"The total entries should be equal to the number of inserted keys."
);
assert_eq!(tree.version(), { num_keys });
}
#[test]
fn insert_same_key_different_versions_without_version_check_and_verify() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
let key = VariableSizeKey::from_str("key1").unwrap();
// Insert the same key with two different versions
tree.insert_unchecked(&key, 2, 2, 0).unwrap(); // Second version
tree.insert_unchecked(&key, 1, 1, 0).unwrap(); // First version
// Verify the order during iteration
let mut iter = tree.iter();
let (_, value, version, _) = iter.next().unwrap();
assert_eq!(value, &2);
assert_eq!(version, &2);
// Verify get at version 0 gives the latest version
let (value, version, _) = tree.get(&key, 0).unwrap();
assert_eq!(value, 2);
assert_eq!(version, 2);
assert_eq!(tree.version(), 2);
}
#[test]
fn insert_multiple_keys_different_versions_and_verify() {
let mut tree = Tree::<VariableSizeKey, u64>::new();
let num_keys = 1000; // Large number of keys for the test
// Insert two versions for each key
for i in 0..num_keys {
let key = VariableSizeKey::from_str(&format!("key{}", i)).unwrap();
tree.insert_unchecked(&key, i as u64 + 1000, 2, 0).unwrap(); // Second version
tree.insert_unchecked(&key, i as u64, 1, 0).unwrap(); // First version
}
// Verify get at version 0 gives the latest version for each key
for i in 0..num_keys {
let key = VariableSizeKey::from_str(&format!("key{}", i)).unwrap();
let (value, version, _) = tree.get(&key, 0).unwrap();
assert_eq!(
value,
i as u64 + 1000,
"get at version 0 should return the latest version value."
);
assert_eq!(
version, 2,
"get at version 0 should return the latest version number."
);
}
}
#[test]
fn test_range_scan_order_with_random_keys() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
// Define keys in random order
let insert_words = ["test3", "test1", "test5", "test4", "test2"];
// Insert keys into the tree
for word in &insert_words {
tree.insert(&VariableSizeKey::from_str(word).unwrap(), 1, 1, 1)
.unwrap()
}
// Define a range that encompasses all keys
let range = VariableSizeKey::from_slice_with_termination("test1".as_bytes())
..=VariableSizeKey::from_slice_with_termination("test5".as_bytes());
// Collect results of the range scan
let results: Vec<_> = tree.range(range).collect();
assert_eq!(results.len(), insert_words.len());
// Expected order
let expected_order = ["test1", "test2", "test3", "test4", "test5"];
// Assert that results are in expected order
for (i, result) in results.iter().enumerate() {
let result_str = std::str::from_utf8(result.0.as_slice()).expect("Invalid UTF-8");
// The variable size key has a trailing null byte, so we need to trim it
let result_str_trimmed = &result_str[..result_str.len() - 1];
assert_eq!(result_str_trimmed, expected_order[i]);
}
}
#[test]
fn test_add_keys_and_then_delete_keys_which_dont_exist() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
// Insert 75 keys
for i in 1..=75 {
let key = VariableSizeKey::from_str(&format!("key{}", i)).unwrap();
tree.insert(&key, i, i as u64, 0).unwrap();
}
// Attempt to delete 25 keys (76 to 100), which do not exist
for i in 76..=100 {
let key = VariableSizeKey::from_str(&format!("key{}", i)).unwrap();
// Since these keys do not exist, remove should return an Err or false depending on implementation
assert!(!tree.remove(&key));
}
// Verify versions of a few keys
// For example, check the version of key1 and key75
let key1 = VariableSizeKey::from_str("key1").unwrap();
let key75 = VariableSizeKey::from_str("key75").unwrap();
assert_eq!(tree.get(&key1, 0).unwrap().1, 1); // Check version of key1
assert_eq!(tree.get(&key75, 0).unwrap().1, 75); // Check version of key75
}
#[test]
fn test_nonexistent_key_removal_does_not_empty_tree() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
for i in 1..=1 {
let key = VariableSizeKey::from_str(&format!("key{}", i)).unwrap();
let _ = tree.insert(&key, i, i as u64, 0);
}
for i in 2..=2 {
let key = VariableSizeKey::from_str(&format!("key{}", i)).unwrap();
// Since these keys do not exist, remove should return an Err or false depending on implementation
assert!(!tree.remove(&key));
}
let key1 = VariableSizeKey::from_str("key1").unwrap();
assert_eq!(tree.get(&key1, 0).unwrap().1, 1); // Check version of key1
}
#[test]
fn test_tree_empty_after_removing_single_key() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
// Insert a single key
let key = VariableSizeKey::from_str("key1").unwrap();
tree.insert(&key, 1, 1, 0).unwrap();
// Remove the inserted key
tree.remove(&key);
// Verify the tree is empty
assert!(tree.root.is_none());
}
#[test]
fn verify_iter() {
let mut tree = Tree::<VariableSizeKey, i32>::new();
let mut rng = rand::thread_rng();
let mut inserted_data = Vec::new();
// Generate and insert random keys with versions
for version in 1u64..=100 {
let random_key: String = (0..10).map(|_| rng.sample(Alphanumeric) as char).collect();
let key = VariableSizeKey::from_str(&random_key).unwrap();
let value = rng.gen_range(1..100);
let ts = rng.gen_range(1..100);
tree.insert(&key, value, version, ts).unwrap();
inserted_data.push((key.to_slice().to_vec(), value, version, ts));
}
// Iteration and verification
let mut count = 0;
let tree_iter = tree.iter();
for (key, value, version, ts) in tree_iter {
assert!(inserted_data.contains(&(key, *value, *version, *ts)));
count += 1;
}
// Ensure all inserted items are iterated over
assert_eq!(inserted_data.len(), count);
}
#[test]
fn test_get_all_versions() {
let mut tree: Tree<VariableSizeKey, i32> = Tree::new();
// Scenario 1: Insert multiple values for the same key with different timestamps
let key1 = VariableSizeKey::from_str("test_key1").unwrap();
let value1_1 = 10;
let value1_2 = 20;
let ts1_1 = 100;
let ts1_2 = 200;
tree.insert(&key1, value1_1, 0, ts1_1).unwrap();
tree.insert(&key1, value1_2, 0, ts1_2).unwrap();
let history1 = tree.get_version_history(&key1).unwrap();
assert_eq!(history1.len(), 2);
let (retrieved_value1_1, v1_1, t1_1) = history1[0];
assert_eq!(retrieved_value1_1, value1_1);
assert_eq!(v1_1, 1);
assert_eq!(t1_1, ts1_1);
let (retrieved_value1_2, v1_2, t1_2) = history1[1];
assert_eq!(retrieved_value1_2, value1_2);
assert_eq!(v1_2, 2);
assert_eq!(t1_2, ts1_2);
// Scenario 2: Insert values for different keys
let key2 = VariableSizeKey::from_str("test_key2").unwrap();
let value2 = 30;
let ts2 = 300;
tree.insert(&key2, value2, 0, ts2).unwrap();
let history2 = tree.get_version_history(&key2).unwrap();
assert_eq!(history2.len(), 1);
let (retrieved_value2, v2, t2) = history2[0];
assert_eq!(retrieved_value2, value2);
assert_eq!(v2, 3);
assert_eq!(t2, ts2);
// Scenario 3: Ensure no history for a non-existent key
let key3 = VariableSizeKey::from_str("non_existent_key").unwrap();
assert!(tree.get_version_history(&key3).is_none());
}
#[test]
fn test_retrieving_value_at_future_timestamp() {
let mut tree: Tree<VariableSizeKey, i32> = Tree::new();
let key = VariableSizeKey::from_str("test_key").unwrap();
let value = 10;
let ts_insert = 100;
let ts_future = 200;
tree.insert(&key, value, 0, ts_insert).unwrap();
let (retrieved_value, version, ts) = tree.get_at_ts(&key, ts_future).unwrap();
assert_eq!(retrieved_value, value);
assert_eq!(version, 1);
assert_eq!(ts, ts_insert);
}
#[test]
fn test_inserting_and_retrieving_with_same_timestamp() {
let mut tree: Tree<VariableSizeKey, i32> = Tree::new();
let key = VariableSizeKey::from_str("test_key").unwrap();
let value1 = 10;
let value2 = 20;
let ts = 100;
tree.insert_unchecked(&key, value1, 1, ts).unwrap();
tree.insert_unchecked(&key, value2, 1, ts).unwrap();
let (retrieved_value, version, t) = tree.get_at_ts(&key, ts).unwrap();
assert_eq!(retrieved_value, value2);
assert_eq!(version, 1);
assert_eq!(t, ts);
}
#[test]
fn test_latest_by_version() {
let mut tree: Tree<VariableSizeKey, i32> = Tree::new();
let key = VariableSizeKey::from_str("test_key").unwrap();
tree.insert_unchecked(&key, 10, 1, 100).unwrap();
tree.insert_unchecked(&key, 20, 2, 200).unwrap();
tree.insert_unchecked(&key, 30, 3, 300).unwrap();
let query_type = QueryType::LatestByVersion(3);
let result = tree.get_value_by_query(&key, query_type).unwrap();
assert_eq!(result, (30, 3, 300));
assert_eq!(tree.version(), 3);
}
#[test]
fn test_latest_by_ts() {
let mut tree: Tree<VariableSizeKey, i32> = Tree::new();
let key = VariableSizeKey::from_str("test_key").unwrap();
tree.insert_unchecked(&key, 10, 1, 100).unwrap();
tree.insert_unchecked(&key, 20, 2, 200).unwrap();
tree.insert_unchecked(&key, 30, 3, 300).unwrap();
let query_type = QueryType::LatestByTs(300);
let result = tree.get_value_by_query(&key, query_type).unwrap();
assert_eq!(result, (30, 3, 300));
assert_eq!(tree.version(), 3);
}
#[test]
fn test_last_less_than_ts() {
let mut tree: Tree<VariableSizeKey, i32> = Tree::new();
let key = VariableSizeKey::from_str("test_key").unwrap();
tree.insert_unchecked(&key, 10, 1, 100).unwrap();
tree.insert_unchecked(&key, 20, 2, 150).unwrap();
tree.insert_unchecked(&key, 30, 3, 200).unwrap();
let query_type = QueryType::LastLessThanTs(150);
let result = tree.get_value_by_query(&key, query_type).unwrap();
assert_eq!(result, (10, 1, 100));
assert_eq!(tree.version(), 3);
}
#[test]
fn test_last_less_or_equal_ts() {
let mut tree: Tree<VariableSizeKey, i32> = Tree::new();
let key = VariableSizeKey::from_str("test_key").unwrap();
tree.insert_unchecked(&key, 10, 1, 100).unwrap();
tree.insert_unchecked(&key, 20, 2, 150).unwrap();
tree.insert_unchecked(&key, 30, 3, 200).unwrap();
let query_type = QueryType::LastLessOrEqualTs(150);
let result = tree.get_value_by_query(&key, query_type).unwrap();
assert_eq!(result, (20, 2, 150));
assert_eq!(tree.version(), 3);
}
#[test]
fn test_first_greater_than_ts() {
let mut tree: Tree<VariableSizeKey, i32> = Tree::new();
let key = VariableSizeKey::from_str("test_key").unwrap();
tree.insert_unchecked(&key, 10, 1, 100).unwrap();
tree.insert_unchecked(&key, 20, 2, 150).unwrap();
tree.insert_unchecked(&key, 30, 3, 200).unwrap();
let query_type = QueryType::FirstGreaterThanTs(150);
let result = tree.get_value_by_query(&key, query_type).unwrap();
assert_eq!(result, (30, 3, 200));
assert_eq!(tree.version(), 3);
}
#[test]
fn test_first_greater_or_equal_ts() {
let mut tree: Tree<VariableSizeKey, i32> = Tree::new();
let key = VariableSizeKey::from_str("test_key").unwrap();
tree.insert_unchecked(&key, 10, 1, 100).unwrap();
tree.insert_unchecked(&key, 20, 2, 150).unwrap();
tree.insert_unchecked(&key, 30, 3, 200).unwrap();
let query_type = QueryType::FirstGreaterOrEqualTs(150);
let result = tree.get_value_by_query(&key, query_type).unwrap();
assert_eq!(result, (20, 2, 150));
assert_eq!(tree.version(), 3);
}
#[test]
fn test_insert_or_replace() {
let mut tree: Tree<VariableSizeKey, i32> = Tree::new();
let key = VariableSizeKey::from_str("key").unwrap();
tree.insert_or_replace(&key, 1, 10, 100).unwrap();
tree.insert_or_replace(&key, 2, 20, 200).unwrap();
let history = tree.get_version_history(&key).unwrap();
assert_eq!(history.len(), 1);
assert_eq!(history[0], (2, 20, 200));
}
#[test]
fn test_insert_or_replace_unchecked() {
let mut tree: Tree<VariableSizeKey, i32> = Tree::new();
let key = VariableSizeKey::from_str("key").unwrap();
// Scenario 1: the second value is more recent than the first one.
tree.insert_or_replace_unchecked(&key, 1, 10, 100).unwrap();
tree.insert_or_replace_unchecked(&key, 2, 20, 200).unwrap();
let history = tree.get_version_history(&key).unwrap();
assert_eq!(history.len(), 1);
assert_eq!(history[0], (2, 20, 200));
// Scenario 2: the new value has the smaller version and hence
// is older than the one already in the tree. Discard the new
// value.
tree.insert_or_replace_unchecked(&key, 1, 1, 1).unwrap();
let history = tree.get_version_history(&key).unwrap();
assert_eq!(history.len(), 1);
assert_eq!(history[0], (2, 20, 200));
}
}