vart/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
// #[allow(warnings)]
pub mod art;
pub mod iter;
pub mod node;

use std::cmp::{Ord, Ordering, PartialOrd};
use std::error::Error;
use std::fmt;
use std::fmt::Debug;
use std::str::FromStr;

// "Partial" in the Adaptive Radix Tree paper refers to "partial keys", a technique employed
// for prefix compression in this data structure. Instead of storing entire keys in the nodes,
// ART nodes often only store partial keys, which are the differing prefixes of the keys.
// This approach significantly reduces the memory requirements of the data structure.
// Key is a trait that provides an abstraction for partial keys.
pub trait Key {
    fn at(&self, pos: usize) -> u8;
    fn len(&self) -> usize;
    fn prefix_before(&self, length: usize) -> &[u8];
    fn prefix_after(&self, start: usize) -> &[u8];
    fn longest_common_prefix(&self, slice: &[u8]) -> usize;
    fn as_slice(&self) -> &[u8];
    fn extend(&self, other: &Self) -> Self;
    fn is_empty(&self) -> bool {
        self.len() == 0
    }
}

pub trait KeyTrait: Key + Clone + Ord + Debug + for<'a> From<&'a [u8]> {}
impl<T: Key + Clone + Ord + Debug + for<'a> From<&'a [u8]>> KeyTrait for T {}

/*
    Key trait implementations
*/

// Source: https://www.the-paper-trail.org/post/art-paper-notes/
//
// Keys can be of two types:
// 1. Fixed-length datatypes such as 128-bit integers, or strings of exactly 64-bytes,
// don’t have any problem because there can, by construction, never be any key that’s
// a prefix of any other.
//
// 2. Variable-length datatypes such as general strings, can be transformed into types
// where no key is the prefix of any other by a simple trick: append the NULL byte to every key.
// The NULL byte, as it does in C-style strings, indicates that this is the end of the key, and
// no characters can come after it. Therefore no string with a null-byte can be a prefix of any other,
// because no string can have any characters after the NULL byte!
//
#[derive(Clone, Debug, Eq)]
pub struct FixedSizeKey<const SIZE: usize> {
    content: [u8; SIZE],
    len: usize,
}

impl<const SIZE: usize> PartialEq for FixedSizeKey<SIZE> {
    fn eq(&self, other: &Self) -> bool {
        self.content[..self.len] == other.content[..other.len]
    }
}

impl<const SIZE: usize> PartialOrd for FixedSizeKey<SIZE> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}
impl<const SIZE: usize> Ord for FixedSizeKey<SIZE> {
    fn cmp(&self, other: &Self) -> Ordering {
        self.content[..self.len].cmp(&other.content[..other.len])
    }
}

impl<const SIZE: usize> FixedSizeKey<SIZE> {
    // Create new instance with data ending in zero byte
    pub fn create_key(src: &[u8]) -> Self {
        debug_assert!(src.len() < SIZE);
        let mut content = [0; SIZE];
        content[..src.len()].copy_from_slice(src);
        content[src.len()] = 0;
        Self {
            content,
            len: src.len() + 1,
        }
    }

    // Create new instance from slice
    pub fn from_slice(src: &[u8]) -> Self {
        debug_assert!(src.len() <= SIZE);
        let mut content = [0; SIZE];
        content[..src.len()].copy_from_slice(src);
        Self {
            content,
            len: src.len(),
        }
    }

    pub fn from_string(s: &String) -> Self {
        assert!(s.len() < SIZE, "data length is greater than array length");
        let mut arr = [0; SIZE];
        arr[..s.len()].copy_from_slice(s.as_bytes());
        Self {
            content: arr,
            len: s.len() + 1,
        }
    }
}

impl<const SIZE: usize> Key for FixedSizeKey<SIZE> {
    // Returns slice of the internal data up to the actual length
    fn as_slice(&self) -> &[u8] {
        &self.content[..self.len]
    }

    // Creates a new instance of FixedSizeKey consisting only of the initial part of the content
    fn prefix_before(&self, length: usize) -> &[u8] {
        assert!(length <= self.len);
        &self.content[..length]
    }

    // Creates a new instance of FixedSizeKey excluding the initial part of the content
    fn prefix_after(&self, start: usize) -> &[u8] {
        assert!(start <= self.len);
        &self.content[start..self.len]
    }

    #[inline(always)]
    fn at(&self, pos: usize) -> u8 {
        assert!(pos < self.len);
        self.content[pos]
    }

    #[inline(always)]
    fn len(&self) -> usize {
        self.len
    }

    // Returns the length of the longest common prefix between this object's content and the given byte slice
    fn longest_common_prefix(&self, key: &[u8]) -> usize {
        let len = self.len.min(key.len()).min(SIZE);
        self.content[..len]
            .iter()
            .zip(key)
            .take_while(|&(a, &b)| *a == b)
            .count()
    }

    fn extend(&self, other: &Self) -> Self {
        assert!(self.len + other.len < SIZE);
        let mut content = [0; SIZE];
        content[..self.len].copy_from_slice(&self.content[..self.len]);
        content[self.len..self.len + other.len].copy_from_slice(&other.content[..other.len]);
        Self {
            content,
            len: self.len + other.len,
        }
    }
}

impl<const SIZE: usize> FromStr for FixedSizeKey<SIZE> {
    type Err = TrieError;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        if s.len() >= SIZE {
            return Err(TrieError::FixedSizeKeyLengthExceeded);
        }
        let mut arr = [0; SIZE];
        arr[..s.len()].copy_from_slice(s.as_bytes());
        Ok(Self {
            content: arr,
            len: s.len() + 1,
        })
    }
}

impl<const SIZE: usize> From<&[u8]> for FixedSizeKey<SIZE> {
    fn from(src: &[u8]) -> Self {
        Self::from_slice(src)
    }
}

impl<const N: usize> From<u8> for FixedSizeKey<N> {
    fn from(data: u8) -> Self {
        Self::from_slice(data.to_be_bytes().as_ref())
    }
}

impl<const N: usize> From<u16> for FixedSizeKey<N> {
    fn from(data: u16) -> Self {
        Self::from_slice(data.to_be_bytes().as_ref())
    }
}

impl<const N: usize> From<u64> for FixedSizeKey<N> {
    fn from(data: u64) -> Self {
        Self::from_slice(data.to_be_bytes().as_ref())
    }
}

impl<const N: usize> From<&str> for FixedSizeKey<N> {
    fn from(data: &str) -> Self {
        Self::from_str(data).unwrap()
    }
}

impl<const N: usize> From<String> for FixedSizeKey<N> {
    fn from(data: String) -> Self {
        Self::from_string(&data)
    }
}
impl<const N: usize> From<&String> for FixedSizeKey<N> {
    fn from(data: &String) -> Self {
        Self::from_string(data)
    }
}

// A VariableSizeKey is a variable-length datatype with NULL byte appended to it.
#[derive(Clone, PartialEq, PartialOrd, Ord, Eq, Debug)]
pub struct VariableSizeKey {
    data: Vec<u8>,
}

impl VariableSizeKey {
    pub fn key(src: &[u8]) -> Self {
        let mut data = Vec::with_capacity(src.len() + 1);
        data.extend_from_slice(src);
        data.push(0);
        Self { data }
    }

    pub fn from_slice(src: &[u8]) -> Self {
        Self {
            data: Vec::from(src),
        }
    }

    pub fn to_slice(&self) -> &[u8] {
        &self.data
    }

    pub fn terminate(&self) -> Self {
        let mut data = Vec::with_capacity(self.data.len() + 1);
        data.extend_from_slice(&self.data);
        data.push(0);
        Self { data }
    }

    pub fn from_string(s: &String) -> Self {
        let mut data = Vec::with_capacity(s.len() + 1);
        data.extend_from_slice(s.as_bytes());
        data.push(0);
        Self { data }
    }

    pub fn from(data: Vec<u8>) -> Self {
        Self { data }
    }

    pub fn from_slice_with_termination(src: &[u8]) -> Self {
        let mut data = Vec::with_capacity(src.len() + 1);
        data.extend_from_slice(src);
        data.push(0);
        Self { data }
    }
}

impl FromStr for VariableSizeKey {
    type Err = ();

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let mut data = Vec::with_capacity(s.len() + 1);
        data.extend_from_slice(s.as_bytes());
        data.push(0);
        Ok(Self { data })
    }
}

impl From<&[u8]> for VariableSizeKey {
    fn from(src: &[u8]) -> Self {
        Self::from_slice(src)
    }
}

impl Key for VariableSizeKey {
    fn prefix_before(&self, length: usize) -> &[u8] {
        assert!(length <= self.data.len());
        &self.data[..length]
    }

    fn prefix_after(&self, start: usize) -> &[u8] {
        assert!(start <= self.data.len());
        &self.data[start..self.data.len()]
    }

    #[inline(always)]
    fn at(&self, pos: usize) -> u8 {
        assert!(pos < self.data.len());
        self.data[pos]
    }

    #[inline(always)]
    fn len(&self) -> usize {
        self.data.len()
    }

    // Returns the length of the longest common prefix between this object's content and the given byte slice
    fn longest_common_prefix(&self, key: &[u8]) -> usize {
        let len = self.data.len().min(key.len());
        self.data[..len]
            .iter()
            .zip(key)
            .take_while(|&(a, &b)| *a == b)
            .count()
    }

    fn as_slice(&self) -> &[u8] {
        &self.data[..self.data.len()]
    }

    fn extend(&self, other: &Self) -> Self {
        let mut data = Vec::with_capacity(self.data.len() + other.data.len());
        data.extend_from_slice(&self.data);
        data.extend_from_slice(&other.data);
        Self { data }
    }
}

// Define a custom error enum representing different error cases for the Trie
#[derive(Clone, Debug)]
pub enum TrieError {
    FixedSizeKeyLengthExceeded,
    VersionIsOld,
    RootIsNotUniquelyOwned,
    SnapshotOlderThanRoot,
}

impl Error for TrieError {}

// Implement the Display trait to define how the error should be formatted as a string
impl fmt::Display for TrieError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            TrieError::FixedSizeKeyLengthExceeded => write!(f, "Fixed key length exceeded"),
            TrieError::VersionIsOld => {
                write!(f, "Given version is older than root's current version")
            }
            TrieError::RootIsNotUniquelyOwned => write!(f, "Root arc is not uniquely owned"),
            TrieError::SnapshotOlderThanRoot => write!(f, "Snapshot is older than root"),
        }
    }
}