w3f_bls/single.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
//! ## Unaggreagated BLS signatures
//!
//! We simplify the code by using only the projective form as
//! produced by algebraic operations, like aggregation, signing, and
//! `SecretKey::into_public`, for both `Signature` and `Group`.
//!
//! In principle, one benifits from an affine form in serialization,
//! and pairings meaning signature verification, but the conversion
//! from affine to projective is always free and the converion from
//! projective to affine is free if we do no algebraic operations.
//! We thus expect the conversion to and from projective to be free
//! in the case of verifications where staying affine yields the
//! largest benifits.
//!
//! We imagine this simplification helps focus on more important
//! optimizations, like placing `batch_normalization` calls well.
//! We could exploit `CurveGroup: += _mixed` function
//! if we had seperate types for affine points, but if doing so
//! improved performance enough then we instead suggest tweaking
//! `CurveGroup::add_mixed` to test for normalized points.
//!
//! TODO: Add serde support for serialization throughout. See
//! https://github.com/ebfull/pairing/pull/87#issuecomment-402397091
//! https://github.com/poanetwork/hbbft/blob/38178af1244ddeca27f9d23750ca755af6e886ee/src/crypto/serde_impl.rs#L95
use alloc::{vec, vec::Vec};
use ark_ff::field_hashers::{DefaultFieldHasher, HashToField};
use ark_ff::{UniformRand, Zero};
use ark_ec::{AffineRepr, CurveGroup};
use ark_serialize::{
CanonicalDeserialize, CanonicalSerialize, Compress, Read, SerializationError, Valid, Validate,
Write,
};
#[cfg(feature = "std")]
use rand::thread_rng;
use rand::{rngs::StdRng, Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;
use sha2::Sha256;
use sha3::{
digest::{ExtendableOutput, Update, XofReader},
Shake128,
};
use digest::Digest;
use core::iter::once;
use crate::serialize::SerializableToBytes;
use crate::{EngineBLS, Message, Signed};
// //////////////// SECRETS //////////////// //
/// Secret signing key lacking the side channel protections from
/// key splitting. Avoid using directly in production.
#[derive(CanonicalSerialize, CanonicalDeserialize)]
pub struct SecretKeyVT<E: EngineBLS>(pub E::Scalar);
impl<E: EngineBLS> Clone for SecretKeyVT<E> {
fn clone(&self) -> Self {
SecretKeyVT(self.0)
}
}
impl<E: EngineBLS> SecretKeyVT<E> {
/// Generate a secret key without side channel protections.
pub fn generate<R: Rng>(mut rng: R) -> Self {
SecretKeyVT(E::generate(&mut rng))
}
pub fn from_seed(seed: &[u8]) -> Self {
let hasher = <DefaultFieldHasher<Sha256> as HashToField<E::Scalar>>::new(&[]);
return SecretKeyVT(hasher.hash_to_field(seed, 1)[0]);
}
}
impl<E: EngineBLS> SecretKeyVT<E> {
/// Sign without side channel protections from key mutation.
pub fn sign(&self, message: &Message) -> Signature<E> {
let mut s: E::SignatureGroup = message.hash_to_signature_curve::<E>();
s *= self.0;
// s.normalize(); // VRFs are faster if we only normalize once, but no normalize method exists.
// E::SignatureGroup::batch_normalization(&mut [&mut s]);
Signature(s)
}
/// Convert into a `SecretKey` that supports side channel protections,
/// but does not itself resplit the key.
pub fn into_split_dirty(&self) -> SecretKey<E> {
SecretKey {
key: [self.0.clone(), E::Scalar::zero()],
old_unsigned: E::SignatureGroup::zero(),
old_signed: E::SignatureGroup::zero(),
}
}
/// Convert into a `SecretKey` applying side channel protections.
pub fn into_split<R: Rng>(&self, mut rng: R) -> SecretKey<E> {
let mut s = self.into_split_dirty();
s.resplit(&mut rng);
s.init_point_mutation(rng);
s
}
/// Derive our public key from our secret key
pub fn into_public(&self) -> PublicKey<E> {
// TODO str4d never decided on projective vs affine here, so benchmark both versions.
PublicKey(<E::PublicKeyGroup as CurveGroup>::Affine::generator().into_group() * self.0)
// let mut g = <E::PublicKeyGroup as CurveGroup>::one();
// g *= self.0;
// PublicKey(p)
}
}
/// Secret signing key that is split to provide side channel protection.
///
/// A simple key splitting works because
/// `self.key[0] * H(message) + self.key[1] * H(message) = (self.key[0] + self.key[1]) * H(message)`.
/// In our case, we mutate the point being signed too by keeping
/// an old point in both signed and unsigned forms, so our message
/// point becomes `new_unsigned = H(message) - old_unsigned`,
/// we compute `new_signed = self.key[0] * new_unsigned + self.key[1] * new_unsigned`,
/// and our signature becomes `new_signed + old_signed`.
/// We save the new signed and unsigned values as old ones, so that adversaries
/// also cannot know the curves points being multiplied by scalars.
/// In this, our `init_point_mutation` method signs some random point,
/// so that even an adversary who tracks all signed messages cannot
/// foresee the curve points being signed.
///
#[cfg_attr(
feature = "std",
doc = r##"
/// We require mutable access to the secret key, but interior mutability
/// can easily be employed, which might resemble:
/// ```rust,no_run
/// # extern crate bls_like as bls;
/// # extern crate rand;
/// # use bls::{SecretKey,ZBLS,Message};
/// # #[cfg(feature=std)]
/// # use rand::thread_rng;
/// # let message = Message::new(b"ctx",b"test message");
/// let mut secret = ::std::cell::RefCell::new(SecretKey::<ZBLS>::generate(thread_rng()));
/// let signature = secret.borrow_mut().sign(message,thread_rng());
/// ```
/// If however `secret: Mutex<SecretKey>` or `secret: RwLock<SecretKey>`
/// then one might avoid holding the write lock while signing, or even
/// while sampling the random numbers by using other methods.
"##
)]
///
/// Right now, we serialize using `SecretKey::into_vartime` and
/// `SecretKeyVT::write`, so `secret.into_vartime().write(writer)?`.
/// We deserialize using the `read`, `from_repr`, and `into_split`
/// methods of `SecretKeyVT`, so roughly
/// `SecretKeyVT::from_repr(SecretKeyVT::read(reader) ?) ?.into_split(thread_rng())`.
///
/// TODO: Provide sensible `to_bytes` and `from_bytes` methods
/// for `ZBLS` and `TinyBLS<..>`.
///
/// TODO: Is Pippenger’s algorithm, or another fast MSM algorithm,
/// secure when used with key splitting?
/// Secret signing key including the side channel protections from
/// key splitting.
pub struct SecretKey<E: EngineBLS> {
key: [E::Scalar; 2],
old_unsigned: E::SignatureGroup,
old_signed: E::SignatureGroup,
}
impl<E: EngineBLS> Clone for SecretKey<E> {
fn clone(&self) -> Self {
SecretKey {
key: self.key.clone(),
old_unsigned: self.old_unsigned.clone(),
old_signed: self.old_signed.clone(),
}
}
}
impl<E: EngineBLS> SecretKey<E>
where
E: EngineBLS,
{
/// Generate a secret key that is already split for side channel protection,
/// but does not apply signed point mutation.
pub fn generate_dirty<R: Rng>(mut rng: R) -> Self {
SecretKey {
key: [E::generate(&mut rng), E::generate(&mut rng)],
old_unsigned: E::SignatureGroup::zero(),
old_signed: E::SignatureGroup::zero(),
}
}
/// Generate a secret key that is already split for side channel protection.
pub fn generate<R: Rng>(mut rng: R) -> Self {
let mut s = Self::generate_dirty(&mut rng);
s.init_point_mutation(rng);
s
}
pub fn from_seed(seed: &[u8]) -> Self {
SecretKeyVT::from_seed(seed).into_split_dirty()
}
}
impl<E: EngineBLS> SecretKey<E> {
/// Initialize the signature curve signed point mutation.
///
/// Amortized over many signings involing this once costs
/// nothing, but each individual invokation costs as much
/// as signing.
pub fn init_point_mutation<R: Rng>(&mut self, mut rng: R) {
let mut s = <E::SignatureGroup as UniformRand>::rand(&mut rng);
self.old_unsigned = s;
self.old_signed = s;
self.old_signed *= self.key[0];
s *= self.key[1];
self.old_signed += &s;
}
/// Create a representative usable for operations lacking
/// side channel protections.
pub fn into_vartime(&self) -> SecretKeyVT<E> {
let mut secret = self.key[0].clone();
secret += &self.key[1];
SecretKeyVT(secret)
}
/// Randomly adjust how we split our secret signing key.
//
// An initial call to this function after deserialization or
// `into_split_dirty` incurs a miniscule risk from side channel
// attacks, but then protects the highly vulnerable signing
// operations. `into_split` itself handles this.
#[inline(never)]
pub fn resplit<R: Rng>(&mut self, mut rng: R) {
// resplit_with(|| Ok(self), rng).unwrap();
let x = E::generate(&mut rng);
self.key[0] += &x;
self.key[1] -= &x;
}
/// Sign without doing the key resplit mutation that provides side channel protection.
///
/// Avoid using directly without appropriate `replit` calls, but maybe
/// useful in proof-of-concenpt code, as it does not require a mutable
/// secret key.
pub fn sign_once(&mut self, message: &Message) -> Signature<E> {
let mut z = message.hash_to_signature_curve::<E>();
z -= &self.old_unsigned;
self.old_unsigned = z.clone();
let mut t = z.clone();
t *= self.key[0];
z *= self.key[1];
z += &t;
let old_signed = self.old_signed.clone();
self.old_signed = z.clone();
z += &old_signed;
// s.normalize(); // VRFs are faster if we only normalize once, but no normalize method exists.
// E::SignatureGroup::batch_normalization(&mut [&mut s]);
Signature(z)
}
/// Sign after respliting the secret key for side channel protections.
pub fn sign<R: Rng>(&mut self, message: &Message, rng: R) -> Signature<E> {
self.resplit(rng);
self.sign_once(message)
}
/// Derive our public key from our secret key
///
/// We do not resplit for side channel protections here since
/// this call should be rare.
pub fn into_public(&self) -> PublicKey<E> {
let generator = <E::PublicKeyGroup as CurveGroup>::Affine::generator();
let mut publickey = generator * self.key[0];
publickey += generator.into_group() * self.key[1];
PublicKey(publickey)
// TODO str4d never decided on projective vs affine here, so benchmark this.
/*
let mut x = <E::PublicKeyGroup as CurveGroup>::one();
x *= self.0;
let y = <E::PublicKeyGroup as CurveGroup>::one();
y *= self.1;
x += &y;
PublicKey(x)
*/
}
}
// ////////////// NON-SECRETS ////////////// //
// /////// BEGIN MACROS /////// //
/*
TODO: Requires specilizatin
macro_rules! borrow_wrapper {
($wrapper:tt,$wrapped:tt,$var:tt) => {
impl<E: EngineBLS> Borrow<E::$wrapped> for $wrapper<E> {
borrow(&self) -> &E::$wrapped { &self.$var }
}
impl<E: EngineBLS> BorrowMut<E::$wrapped> for $wrapper<E> {
borrow_mut(&self) -> &E::$wrapped { &self.$var }
}
}
} // macro_rules!
*/
#[macro_export]
macro_rules! broken_derives {
($wrapper:tt) => {
impl<E: EngineBLS> Clone for $wrapper<E> {
fn clone(&self) -> Self {
$wrapper(self.0)
}
}
impl<E: EngineBLS> Copy for $wrapper<E> {}
impl<E: EngineBLS> PartialEq<Self> for $wrapper<E> {
fn eq(&self, other: &Self) -> bool {
self.0.eq(&other.0)
}
}
impl<E: EngineBLS> Eq for $wrapper<E> {}
};
} // macro_rules!
// //////// END MACROS //////// //
/// Implementing de/serialization for secret keypair
/// Note that deriving serialization for secret is not sensible
/// as you need to conver them to vartime form first
impl<E> CanonicalSerialize for SecretKey<E>
where
E: EngineBLS,
{
#[inline]
fn serialize_with_mode<W: Write>(
&self,
writer: W,
compress: ark_serialize::Compress,
) -> Result<(), SerializationError> {
self.into_vartime().serialize_with_mode(writer, compress)
}
#[inline]
fn serialize_compressed<W: Write>(&self, writer: W) -> Result<(), SerializationError> {
self.into_vartime().serialize_compressed(writer)?;
Ok(())
}
#[inline]
fn serialized_size(&self, compress: Compress) -> usize {
self.into_vartime().serialized_size(compress)
}
#[inline]
fn serialize_uncompressed<W: Write>(&self, mut writer: W) -> Result<(), SerializationError> {
self.into_vartime().serialize_uncompressed(&mut writer)?;
Ok(())
}
#[inline]
fn uncompressed_size(&self) -> usize {
self.into_vartime().uncompressed_size()
}
// #[inline]
// fn serialize_uncompressed_<W: Write>(&self, mut writer: W) -> Result<(), SerializationError> {
// self.into_vartime().uncompressed_size().serialize_unchecked(&mut writer)?;
// Ok(())
// }
}
impl<E> Valid for SecretKey<E>
where
E: EngineBLS,
{
fn check(&self) -> Result<(), SerializationError> {
//TODO probabaly turn into vartime and check that because vartime impl valid
match (self.key[1].check(), self.key[2].check()) {
(Ok(()), Ok(())) => Ok(()),
_ => Err(SerializationError::InvalidData),
}
}
}
impl<E> CanonicalDeserialize for SecretKey<E>
where
E: EngineBLS,
{
fn deserialize_with_mode<R: Read>(
reader: R,
compress: Compress,
validate: Validate,
) -> Result<Self, SerializationError> {
let secret_key_vt = <SecretKeyVT<E> as CanonicalDeserialize>::deserialize_with_mode(
reader, compress, validate,
)?;
Ok(secret_key_vt.into_split_dirty())
}
#[inline]
fn deserialize_compressed<R: Read>(reader: R) -> Result<Self, SerializationError> {
let secret_key_vt =
<SecretKeyVT<E> as CanonicalDeserialize>::deserialize_compressed(reader)?;
Ok(secret_key_vt.into_split_dirty())
}
#[inline]
fn deserialize_uncompressed<R: Read>(mut reader: R) -> Result<Self, SerializationError> {
let secret_key_vt =
<SecretKeyVT<E> as CanonicalDeserialize>::deserialize_uncompressed(&mut reader)?;
Ok(secret_key_vt.into_split_dirty())
}
#[inline]
fn deserialize_uncompressed_unchecked<R: Read>(reader: R) -> Result<Self, SerializationError> {
let secret_key_vt =
<SecretKeyVT<E> as CanonicalDeserialize>::deserialize_uncompressed_unchecked(reader)?;
Ok(secret_key_vt.into_split_dirty())
}
}
//TODO: when const generic becomes stable we get the size from the trait and return
// constant size array so it can be implemented as follows
// impl <E: EngineBLS> SerializableToBytes<{ E::SIGNATURE_SERIALIZED_SIZE }> for Signature<E> {}
// impl <E: EngineBLS> SerializableToBytes<{ PublicKey::E::PUBLICKEY_SERIALIZED_SIZE }> for PublicKey<E> {}
impl<E: EngineBLS> SerializableToBytes for Signature<E> {
const SERIALIZED_BYTES_SIZE: usize = E::SIGNATURE_SERIALIZED_SIZE;
}
impl<E: EngineBLS> SerializableToBytes for PublicKey<E> {
const SERIALIZED_BYTES_SIZE: usize = E::PUBLICKEY_SERIALIZED_SIZE;
}
impl<E: EngineBLS> SerializableToBytes for SecretKeyVT<E> {
const SERIALIZED_BYTES_SIZE: usize = E::SECRET_KEY_SIZE;
}
impl<E: EngineBLS> SerializableToBytes for SecretKey<E> {
const SERIALIZED_BYTES_SIZE: usize = E::SECRET_KEY_SIZE;
}
/// because SecretKey is not canonically serializable and that we need to convert
/// it to vartime first we need to manually re-implement this trait for secret keys
//, CanonicalSerialize, CanonicalDeserialize)]
/// Detached BLS Signature
#[derive(Debug, CanonicalSerialize, CanonicalDeserialize)]
pub struct Signature<E: EngineBLS>(pub E::SignatureGroup);
// TODO: Serialization
broken_derives!(Signature); // Actually the derive works for this one, not sure why.
impl<E: EngineBLS> Signature<E> {
//const DESCRIPTION : &'static str = "A BLS signature";
/// Verify a single BLS signature
pub fn verify(&self, message: &Message, publickey: &PublicKey<E>) -> bool {
let publickey = E::prepare_public_key(publickey.0);
// TODO: Bentchmark these two variants
// Variant 1. Do not batch any normalizations
let message = E::prepare_signature(message.hash_to_signature_curve::<E>());
let signature = E::prepare_signature(self.0);
// Variant 2. Batch signature curve normalizations
// let mut s = [E::hash_to_signature_curve(message), signature.0];
// E::SignatureCurve::batch_normalization(&s);
// let message = s[0].into_affine().prepare();
// let signature = s[1].into_affine().prepare();
// TODO: Compare benchmarks on variants
E::verify_prepared(signature, &[(publickey, message)])
}
}
/// BLS Public Key
#[derive(Debug, CanonicalSerialize, CanonicalDeserialize)]
pub struct PublicKey<E: EngineBLS>(pub E::PublicKeyGroup);
// TODO: Serialization
// impl<E: EngineBLS> PublicKey<E> where E: DeserializePublicKey {
// pub fn i_have_checked_this_proof_of_possession(self) -> PublicKey<PoP<E>> {
// PublicKey(self.0)
// }
// }
broken_derives!(PublicKey);
//serialization!(PublicKey,PublicKeyGroup,EngineBLS,EngineBLS);
impl<E: EngineBLS> PublicKey<E> {
//const DESCRIPTION : &'static str = "A BLS signature";
pub fn verify(&self, message: &Message, signature: &Signature<E>) -> bool {
signature.verify(&message, self)
}
}
/// BLS Keypair
///
/// We create `Signed` messages with a `Keypair` to avoid recomputing
/// the public key, which usually takes longer than signing when
/// the public key group is `G2`.2
///
/// We provide constant-time signing using key splitting.
pub struct KeypairVT<E: EngineBLS> {
pub secret: SecretKeyVT<E>,
pub public: PublicKey<E>,
}
impl<E: EngineBLS> Clone for KeypairVT<E> {
fn clone(&self) -> Self {
KeypairVT {
secret: self.secret.clone(),
public: self.public.clone(),
}
}
}
// TODO: Serialization
impl<E: EngineBLS> KeypairVT<E> {
/// Generate a `Keypair`
pub fn generate<R: Rng>(rng: R) -> Self {
let secret = SecretKeyVT::generate(rng);
let public = secret.into_public();
KeypairVT { secret, public }
}
}
impl<E: EngineBLS> KeypairVT<E> {
/// Convert into a `SecretKey` applying side channel protections.
pub fn into_split<R: Rng>(&self, rng: R) -> Keypair<E> {
let secret = self.secret.into_split(rng);
let public = self.public;
Keypair { secret, public }
}
/// Sign a message creating a `SignedMessage` using a user supplied CSPRNG for the key splitting.
pub fn sign(&self, message: &Message) -> Signature<E> {
self.secret.sign(message)
}
/// Sign a message creating a `SignedMessage` using a user supplied CSPRNG for the key splitting.
pub fn signed_message(&self, message: &Message) -> SignedMessage<E> {
let signature = self.secret.sign(&message);
SignedMessage {
message: message.clone(),
publickey: self.public.clone(),
signature,
}
}
}
/// BLS Keypair
///
/// We create `Signed` messages with a `Keypair` to avoid recomputing
/// the public key, which usually takes longer than signing when
/// the public key group is `G2`.
///
/// We provide constant-time signing using key splitting.
pub struct Keypair<E: EngineBLS> {
pub secret: SecretKey<E>,
pub public: PublicKey<E>,
}
impl<E: EngineBLS> Clone for Keypair<E> {
fn clone(&self) -> Self {
Keypair {
secret: self.secret.clone(),
public: self.public.clone(),
}
}
}
// TODO: Serialization
impl<E: EngineBLS> Keypair<E> {
/// Generate a `Keypair`
pub fn generate<R: Rng>(rng: R) -> Self {
let secret = SecretKey::generate(rng);
let public = secret.into_public();
Keypair { secret, public }
}
}
impl<E: EngineBLS> Keypair<E> {
/// Create a representative usable for operations lacking
/// side channel protections.
pub fn into_vartime(&self) -> KeypairVT<E> {
let secret = self.secret.into_vartime();
let public = self.public;
KeypairVT { secret, public }
}
/// Sign a message creating a `Signature` using a user supplied CSPRNG for the key splitting.
pub fn sign_with_rng<R: Rng>(&mut self, message: &Message, rng: R) -> Signature<E> {
self.secret.sign(&message, rng)
}
/// Sign a message using a Seedabale RNG created from user supplied seed
pub fn sign_with_random_seed(&mut self, message: &Message, seed: [u8; 32]) -> Signature<E> {
self.sign_with_rng::<StdRng>(message, SeedableRng::from_seed(seed))
}
/// Sign a message using a Seedabale RNG created from a seed derived from the message and key
pub fn sign(&mut self, message: &Message) -> Signature<E> {
let mut serialized_part1 = [0u8; 32];
let mut serialized_part2 = [0u8; 32];
self.secret.key[0]
.serialize_compressed(&mut serialized_part1[..])
.unwrap();
self.secret.key[1]
.serialize_compressed(&mut serialized_part2[..])
.unwrap();
let seed_digest = Sha256::new()
.chain_update(serialized_part1)
.chain_update(serialized_part2)
.chain_update(message.0);
let seed: [u8; 32] = seed_digest.finalize().into();
self.sign_with_rng::<StdRng>(message, SeedableRng::from_seed(seed))
}
#[cfg(feature = "std")]
/// Sign a message creating a `Signature` using the default `ThreadRng`.
pub fn sign_thread_rng(&mut self, message: &Message) -> Signature<E> {
self.sign_with_rng(message, thread_rng())
}
/// Create a `SignedMessage` using the default `ThreadRng`.
pub fn signed_message(&mut self, message: &Message) -> SignedMessage<E> {
let signature = self.sign(&message);
SignedMessage {
message: message.clone(),
publickey: self.public,
signature,
}
}
}
/// Message with attached BLS signature
///
///
#[derive(Debug, Clone)]
pub struct SignedMessage<E: EngineBLS> {
pub message: Message,
pub publickey: PublicKey<E>,
pub signature: Signature<E>,
}
// TODO: Serialization
// borrow_wrapper!(Signature,SignatureGroup,signature);
// borrow_wrapper!(PublicKey,PublicKeyGroup,publickey);
impl<E: EngineBLS> PartialEq<Self> for SignedMessage<E> {
fn eq(&self, other: &Self) -> bool {
self.message.eq(&other.message)
&& self.publickey.eq(&other.publickey)
&& self.signature.eq(&other.signature)
}
}
impl<E: EngineBLS> Eq for SignedMessage<E> {}
impl<'a, E: EngineBLS> Signed for &'a SignedMessage<E> {
type E = E;
type M = Message;
type PKG = PublicKey<E>;
type PKnM = ::core::iter::Once<(Message, PublicKey<E>)>;
fn messages_and_publickeys(self) -> Self::PKnM {
once((self.message.clone(), self.publickey)) // TODO: Avoid clone
}
fn signature(&self) -> Signature<E> {
self.signature
}
fn verify(self) -> bool {
self.signature.verify(&self.message, &self.publickey)
}
}
impl<E: EngineBLS> SignedMessage<E> {
#[cfg(test)]
pub fn verify_slow(&self) -> bool {
let g1_one = <E::PublicKeyGroup as CurveGroup>::Affine::generator();
let message = self.message.hash_to_signature_curve::<E>().into_affine();
E::pairing(g1_one, self.signature.0.into_affine())
== E::pairing(self.publickey.0.into_affine(), message)
}
/// Hash output from a BLS signature regarded as a VRF.
///
/// If you are not the signer then you must verify the VRF before calling this method.
///
/// If called with distinct contexts then outputs should be independent.
///
/// We incorporate both the input and output to provide the 2Hash-DH
/// construction from Theorem 2 on page 32 in appendex C of
/// ["Ouroboros Praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain"](https://eprint.iacr.org/2017/573.pdf)
/// by Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell.
pub fn vrf_hash<H: ExtendableOutput>(&self, h: &mut H) {
h.update(b"msg");
h.update(&self.message.0[..]);
h.update(b"out");
let affine_signature = self.signature.0.into_affine();
let mut serialized_signature = vec![0; affine_signature.uncompressed_size()];
affine_signature
.serialize_uncompressed(&mut serialized_signature[..])
.unwrap();
h.update(&serialized_signature);
}
/// Raw bytes output from a BLS signature regarded as a VRF.
///
/// If you are not the signer then you must verify the VRF before calling this method.
///
/// If called with distinct contexts then outputs should be independent.
pub fn make_bytes<Out: Default + AsMut<[u8]>>(&self, context: &[u8]) -> Out {
let mut t = Shake128::default();
t.update(context);
self.vrf_hash(&mut t);
let mut seed = Out::default();
XofReader::read(&mut t.finalize_xof(), seed.as_mut());
seed
}
/* TODO: Switch to this whenever pairing upgrades to rand 0.5 or later
/// VRF output converted into any `SeedableRng`.
///
/// If you are not the signer then you must verify the VRF before calling this method.
///
/// We expect most users would prefer the less generic `VRFInOut::make_chacharng` method.
pub fn make_rng<R: SeedableRng>(&self, context: &[u8]) -> R {
R::from_seed(self.make_bytes::<R::Seed>(context))
}
*/
/// VRF output converted into a `ChaChaRng`.
///
/// If you are not the signer then you must verify the VRF before calling this method.
///
/// If called with distinct contexts then outputs should be independent.
/// Independent output streams are available via `ChaChaRng::set_stream` too.
///
/// We incorporate both the input and output to provide the 2Hash-DH
/// construction from Theorem 2 on page 32 in appendex C of
/// ["Ouroboros Praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain"](https://eprint.iacr.org/2017/573.pdf)
/// by Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell.
pub fn make_chacharng(&self, context: &[u8]) -> ChaCha8Rng {
let bytes = self.make_bytes::<[u8; 32]>(context);
ChaCha8Rng::from_seed(bytes)
}
}
#[cfg(all(test, feature = "std"))]
mod tests {
use ark_bls12_377::Bls12_377;
use ark_bls12_381::Bls12_381;
use ark_ec::bls12::Bls12Config;
use ark_ec::hashing::curve_maps::wb::{WBConfig, WBMap};
use ark_ec::hashing::map_to_curve_hasher::MapToCurve;
use ark_ec::pairing::Pairing as PairingEngine;
use super::*;
use crate::{CurveExtraConfig, TinyBLS, UsualBLS};
use core::convert::TryInto;
use hex_literal::hex;
fn bls_engine_serialization_test<
EB: EngineBLS<Engine = E>,
E: PairingEngine,
P: Bls12Config + CurveExtraConfig,
>(
x: SignedMessage<EB>,
) -> SignedMessage<EB>
where
<P as Bls12Config>::G2Config: WBConfig,
WBMap<<P as Bls12Config>::G2Config>: MapToCurve<<E as PairingEngine>::G2>,
{
let SignedMessage {
message,
publickey,
signature,
} = x;
let publickey = PublicKey::<EB>::from_bytes(&publickey.to_bytes()).unwrap();
let signature = Signature::<EB>::from_bytes(&signature.to_bytes()).unwrap();
SignedMessage {
message,
publickey,
signature,
}
}
/// generates a random secret key sign a message and convert the
/// key to bytes then reconvert it to key and derive its public key
/// And check if the signature still verifies
fn test_serialize_deserialize_production_secret_key<
E: PairingEngine,
P: Bls12Config + CurveExtraConfig,
>()
where
<P as Bls12Config>::G2Config: WBConfig,
WBMap<<P as Bls12Config>::G2Config>: MapToCurve<<E as PairingEngine>::G2>,
{
let mut keypair = Keypair::<UsualBLS<E, P>>::generate(thread_rng());
let serialized_secret_key = keypair.secret.to_bytes();
println!(
"secret key serialize size: {}, secret key first scaler serialize size {}",
keypair.secret.uncompressed_size(),
keypair.secret.key[0].uncompressed_size()
);
let good_message = Message::new(b"ctx", b"test message");
let sig = keypair.sign(&good_message);
let deserialized_secret_key =
SecretKey::<UsualBLS<E, P>>::from_bytes(&serialized_secret_key).unwrap();
let reconstructed_public_key = deserialized_secret_key.into_public();
assert!(sig.verify(&good_message, &reconstructed_public_key));
}
fn test_deserialize_random_value_as_secret_key_fails<
E: PairingEngine,
P: Bls12Config + CurveExtraConfig,
>(
random_seed: &[u8],
) where
<P as Bls12Config>::G2Config: WBConfig,
WBMap<<P as Bls12Config>::G2Config>: MapToCurve<<E as PairingEngine>::G2>,
{
match SecretKey::<UsualBLS<E, P>>::from_bytes(
random_seed
.try_into()
.expect("the size of the seed be 32 Bytes."),
) {
Ok(_) => assert!(
false,
"random seed should not be canonically deserializable to a secret key."
),
Err(SerializationError::InvalidData) => (),
_ => assert!(false, "unexpected deserialization error."),
}
}
// fn test_public_key_and_message_serialization<E: PairingEngine, P: Bls12Config>(x: SignedMessage<EB>)-> SignedMessage<E> where <P as Bls12Config>::G2Config: WBConfig, WBMap<<P as Bls12Config>::G2Config>: MapToCurve<<E as PairingEngine>::G2> {
// let SignedMessage { message, publickey, signature } = x;
// let publickey = PublicKey::<E>::from_bytes(publickey.to_bytes()).unwrap();
// let signature = Signature::<E>::from_bytes(signature.to_bytes()).unwrap();
// assert!(SignedMessage { message, publickey, signature } == x);
// }
fn test_single_bls_message<E: PairingEngine, P: Bls12Config + CurveExtraConfig>()
where
<P as Bls12Config>::G2Config: WBConfig,
WBMap<<P as Bls12Config>::G2Config>: MapToCurve<<E as PairingEngine>::G2>,
{
let good = Message::new(b"ctx", b"test message");
let mut keypair = Keypair::<UsualBLS<E, P>>::generate(thread_rng());
let good_sig0 = keypair.signed_message(&good);
let good_sig = bls_engine_serialization_test::<UsualBLS<E, P>, E, P>(good_sig0);
assert!(good_sig.verify_slow());
let keypair_vt = keypair.into_vartime();
assert!(keypair_vt.secret.0 == keypair_vt.into_split(thread_rng()).into_vartime().secret.0);
assert!(good_sig == keypair.signed_message(&good));
assert!(good_sig == keypair_vt.signed_message(&good));
let bad = Message::new(b"ctx", b"wrong message");
let bad_sig0 = keypair.signed_message(&bad);
let bad_sig = bls_engine_serialization_test::<UsualBLS<E, P>, E, P>(bad_sig0);
assert!(bad_sig == keypair.into_vartime().signed_message(&bad));
assert!(bad_sig.verify());
let another = Message::new(b"ctx", b"another message");
let another_sig = keypair.signed_message(&another);
assert!(another_sig == keypair.into_vartime().signed_message(&another));
assert!(another_sig.verify());
assert!(
keypair.public.verify(&good, &good_sig.signature),
"Verification of a valid signature failed!"
);
assert!(good != bad, "good == bad");
assert!(
good_sig.signature != bad_sig.signature,
"good sig == bad sig"
);
assert!(
!keypair.public.verify(&good, &bad_sig.signature),
"Verification of a signature on a different message passed!"
);
assert!(
!keypair.public.verify(&bad, &good_sig.signature),
"Verification of a signature on a different message passed!"
);
assert!(
!keypair.public.verify(
&Message::new(b"other", b"test message"),
&good_sig.signature
),
"Verification of a signature on a different message passed!"
);
}
#[test]
fn zbls_engine_bytes_test() {
let mut keypair =
Keypair::<UsualBLS<Bls12_381, ark_bls12_381::Config>>::generate(thread_rng());
let good_sig0 = keypair.signed_message(&Message::new(b"ctx", b"test message"));
bls_engine_serialization_test::<
UsualBLS<Bls12_381, ark_bls12_381::Config>,
Bls12_381,
ark_bls12_381::Config,
>(good_sig0);
}
#[test]
fn bls377_engine_bytes_test() {
let mut keypair =
Keypair::<UsualBLS<Bls12_377, ark_bls12_377::Config>>::generate(thread_rng());
let good_sig0 = keypair.signed_message(&Message::new(b"ctx", b"test message"));
bls_engine_serialization_test::<
UsualBLS<Bls12_377, ark_bls12_377::Config>,
Bls12_377,
ark_bls12_377::Config,
>(good_sig0);
}
#[test]
fn tiny_zbls_engine_bytes_test() {
let mut keypair =
Keypair::<TinyBLS<Bls12_381, ark_bls12_381::Config>>::generate(thread_rng());
let good_sig0 = keypair.signed_message(&Message::new(b"ctx", b"test message"));
bls_engine_serialization_test::<
TinyBLS<Bls12_381, ark_bls12_381::Config>,
Bls12_381,
ark_bls12_381::Config,
>(good_sig0);
}
#[test]
fn tiny_bls377_engine_bytes_test() {
let mut keypair =
Keypair::<TinyBLS<Bls12_377, ark_bls12_377::Config>>::generate(thread_rng());
let good_sig0 = keypair.signed_message(&Message::new(b"ctx", b"test message"));
bls_engine_serialization_test::<
TinyBLS<Bls12_377, ark_bls12_377::Config>,
Bls12_377,
ark_bls12_377::Config,
>(good_sig0);
}
#[test]
fn single_messages_zbls() {
test_single_bls_message::<Bls12_381, ark_bls12_381::Config>();
}
#[test]
fn single_messages_bls377() {
test_single_bls_message::<Bls12_377, ark_bls12_377::Config>();
}
#[test]
fn test_secret_key_serialization_for_zbls() {
test_serialize_deserialize_production_secret_key::<Bls12_381, ark_bls12_381::Config>();
}
#[test]
fn test_secret_key_serialization_for_bls377() {
test_serialize_deserialize_production_secret_key::<Bls12_377, ark_bls12_377::Config>();
}
#[test]
fn test_deserialize_random_value_as_secret_key_fails_for_bls377() {
let random_seed = hex!("9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60");
test_deserialize_random_value_as_secret_key_fails::<Bls12_377, ark_bls12_377::Config>(
random_seed.as_slice(),
);
}
}