w3f_bls/single_pop_aggregator.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
//! ## Aggregation of BLS signatures using proofs-of-possession
//!
//! In this module, we provide the linear flavor of aggregate
//! BLS signature in which the verifiers has previously checked
//! proofs-of-possession for all public keys. In other words,
//! we simply add up the signatures because the previously checked
//! proofs-of-possession for all signers prevent rogue key attacks.
//! See the security arguments in The Power of Proofs-of-Possession:
//! Securing Multiparty Signatures against Rogue-Key Attacks
//! by Thomas Ristenpart and Scott Yilek at https://eprint.iacr.org/2007/264.pdf
//!
//! These proof-of-possession are simply self-signed certificates,
//! so a BLS signature by each secret key on its own public key.
//! Importantly, the message for this self-signed certificates
//! must uniquely distinguish the public key for which the signature
//! establishes a proof-of-possession.
//! It follows that each proof-of-possession has a unique message,
//! so distinct message aggregation is optimal for verifying them.
//!
//! In this vein, we note that aggregation under proofs-of-possession
//! cannot improve performance when signers sign distinct messages,
//! so proofs-of-possession help with aggregating votes in a concensus
//! protocol, but should never be used for accounts on a block chain.
//!
//! We assume here that users provide their own data structure for
//! proofs-of-poossession. We provide more structure for users who
//! one bit per vote in a concensus protocol:
//! You first verify the proofs-of-possession when building a data
//! structure that holds the voters' keys. You implement the
//! `ProofsOfPossession` trait for this data strtcuture as well,
//! so that the `BitPoPSignedMessage` type provides a signature
//! data type with reasonable sanity checks.
// Aside about proof-of-possession in the DLOG setting
// https://twitter.com/btcVeg/status/1085490561082183681
use ark_ff::Zero;
use super::verifiers::{
verify_using_aggregated_auxiliary_public_keys, verify_with_distinct_messages,
};
use super::*;
use digest::DynDigest;
/// Batch or aggregate BLS signatures with attached messages and
/// signers, for whom we previously checked proofs-of-possession.
///
/// In this type, we provide a high-risk low-level batching and
/// aggregation mechanism that merely adds up signatures under the
/// assumption that all required proofs-of-possession were previously
/// checked.
///
/// We say a signing key has provided a proof-of-possession if the
/// verifier remembers having checked some self-signed certificate
/// by that key. It's insecure to use this aggregation strategy
/// without first cehcking proofs-of-possession. In particular
/// it is insecure to use this aggregation strategy when checking
/// proofs-of-possession, and could not improve performance anyways.
/// Distinct message aggregation is always optimal for checking
/// proofs-of-possession. Please see the module level doumentation
/// for additional discussion and notes on security.
///
/// We foresee this type primarily being used to batch several
/// `BitPoPSignedMessage`s into one verification. We do not track
/// aggreggated public keys here, instead merging multiples signers
/// public keys anytime they sign the same message, so this type
/// essentially provides only fast batch verificartion.
/// In principle, our `add_*` methods suffice for building an actual
/// aggregate signature type. Yet, normally direct approaches like
/// `BitPoPSignedMessage` work better for aggregation because
/// the `ProofsOfPossession` trait tooling permits both enforce the
/// proofs-of-possession and provide a compact serialization.
/// We see no reason to support serialization for this type as present.
/// message assumptions, or other aggre
///
/// In principle, one might combine proof-of-possession with distinct
/// message assumptions, or other aggregation strategies, when
/// verifiers have only observed a subset of the proofs-of-possession,
/// but this sounds complex or worse fragile.
///
/// TODO: Implement gaussian elimination verification scheme.
use core::iter::once;
use double::PublicKeyInSignatureGroup;
use single::PublicKey;
#[derive(Clone)]
pub struct SignatureAggregatorAssumingPoP<E: EngineBLS> {
message: Message,
aggregated_publickey: PublicKey<E>,
signature: Signature<E>,
aggregated_auxiliary_public_key: PublicKeyInSignatureGroup<E>,
}
impl<E: EngineBLS> SignatureAggregatorAssumingPoP<E> {
pub fn new(message: Message) -> SignatureAggregatorAssumingPoP<E> {
SignatureAggregatorAssumingPoP {
message: message,
aggregated_publickey: PublicKey(E::PublicKeyGroup::zero()),
signature: Signature(E::SignatureGroup::zero()),
aggregated_auxiliary_public_key: PublicKeyInSignatureGroup(E::SignatureGroup::zero()),
}
}
/// Add only a `Signature<E>` to our internal signature.
///
/// Useful for constructing an aggregate signature, but we
pub fn add_signature(&mut self, signature: &Signature<E>) {
self.signature.0 += &signature.0;
}
/// Add only a `PublicKey<E>` to our internal data.
///
/// Useful for constructing an aggregate signature, but we
/// recommend instead using a custom types like `BitPoPSignedMessage`.
pub fn add_publickey(&mut self, publickey: &PublicKey<E>) {
self.aggregated_publickey.0 += publickey.0;
}
/// Aggregate the auxiliary public keys in the signature group to be used verification using aux key
pub fn add_auxiliary_public_key(
&mut self,
publickey_in_signature_group: &PublicKeyInSignatureGroup<E>,
) {
self.aggregated_auxiliary_public_key.0 += publickey_in_signature_group.0;
}
/// Returns the aggergated public key.
///
pub fn aggregated_publickey(&self) -> PublicKey<E> {
self.aggregated_publickey
}
// /// Aggregage BLS signatures assuming they have proofs-of-possession
// /// TODO this function should return Result refusing to aggregate messages
// /// different than the message the aggregator is initiated at
// pub fn aggregate<'a,S>(&mut self, signed: &'a S)
// where
// &'a S: Signed<E=E>,
// <&'a S as Signed>::PKG: Borrow<PublicKey<E>>,
// {
// let signature = signed.signature();
// for (message,pubickey) in signed.messages_and_publickeys() {
// self.add_message_n_publickey(message.borrow(),pubickey.borrow());
// }
// self.add_signature(&signature);
// }
pub fn verify_using_aggregated_auxiliary_public_keys<
RandomOracle: DynDigest + Default + Clone,
>(
&self,
) -> bool {
verify_using_aggregated_auxiliary_public_keys::<E, RandomOracle>(
self,
true,
self.aggregated_auxiliary_public_key.0,
)
}
}
impl<'a, E: EngineBLS> Signed for &'a SignatureAggregatorAssumingPoP<E> {
type E = E;
type M = Message;
type PKG = PublicKey<Self::E>;
type PKnM = ::core::iter::Once<(Message, PublicKey<E>)>;
fn messages_and_publickeys(self) -> Self::PKnM {
once((self.message.clone(), self.aggregated_publickey)) // TODO: Avoid clone
}
fn signature(&self) -> Signature<E> {
self.signature
}
fn verify(self) -> bool {
// We have already aggregated distinct messages, so our distinct
// message verification code provides reasonable optimizations,
// except the public keys might not be normalized here.
// We foresee verification via gaussian elimination being faster,
// but requires affine keys or normalization.
verify_with_distinct_messages(self, true)
// TODO: verify_with_gaussian_elimination(self)
}
}
#[cfg(all(test, feature = "std"))]
mod tests {
use crate::EngineBLS;
use crate::Keypair;
use crate::Message;
use crate::TinyBLS;
use crate::UsualBLS;
use rand::thread_rng;
use sha2::Sha256;
use ark_bls12_377::Bls12_377;
use ark_bls12_381::Bls12_381;
use super::*;
#[test]
fn verify_aggregate_single_message_single_signer() {
let good = Message::new(b"ctx", b"test message");
let mut keypair =
Keypair::<UsualBLS<Bls12_381, ark_bls12_381::Config>>::generate(thread_rng());
let good_sig0 = keypair.sign(&good);
assert!(good_sig0.verify(&good, &keypair.public));
}
#[test]
fn verify_aggregate_single_message_multi_signers() {
let good = Message::new(b"ctx", b"test message");
let mut keypair0 =
Keypair::<UsualBLS<Bls12_381, ark_bls12_381::Config>>::generate(thread_rng());
let good_sig0 = keypair0.sign(&good);
let mut keypair1 =
Keypair::<UsualBLS<Bls12_381, ark_bls12_381::Config>>::generate(thread_rng());
let good_sig1 = keypair1.sign(&good);
let mut aggregated_sigs =
SignatureAggregatorAssumingPoP::<UsualBLS<Bls12_381, ark_bls12_381::Config>>::new(good);
aggregated_sigs.add_signature(&good_sig0);
aggregated_sigs.add_signature(&good_sig1);
aggregated_sigs.add_publickey(&keypair0.public);
aggregated_sigs.add_publickey(&keypair1.public);
assert!(
aggregated_sigs.verify() == true,
"good aggregated signature of a single message with multiple key does not verify"
);
}
#[test]
fn verify_aggregate_single_message_repetative_signers() {
let good = Message::new(b"ctx", b"test message");
let mut keypair =
Keypair::<UsualBLS<Bls12_381, ark_bls12_381::Config>>::generate(thread_rng());
let good_sig = keypair.sign(&good);
let mut aggregated_sigs =
SignatureAggregatorAssumingPoP::<UsualBLS<Bls12_381, ark_bls12_381::Config>>::new(good);
aggregated_sigs.add_signature(&good_sig);
aggregated_sigs.add_signature(&good_sig);
aggregated_sigs.add_publickey(&keypair.public);
aggregated_sigs.add_publickey(&keypair.public);
assert!(
aggregated_sigs.verify() == true,
"good aggregate of a repetitive signature does not verify"
);
}
#[test]
fn aggregate_of_signature_of_a_wrong_message_should_not_verify() {
let good0 = Message::new(b"ctx", b"Space over Tab");
let bad1 = Message::new(b"ctx", b"Tab over Space");
let mut keypair0 =
Keypair::<UsualBLS<Bls12_381, ark_bls12_381::Config>>::generate(thread_rng());
let good_sig0 = keypair0.sign(&good0);
let mut keypair1 =
Keypair::<UsualBLS<Bls12_381, ark_bls12_381::Config>>::generate(thread_rng());
let bad_sig1 = keypair1.sign(&bad1);
let mut aggregated_sigs = SignatureAggregatorAssumingPoP::<
UsualBLS<Bls12_381, ark_bls12_381::Config>,
>::new(good0);
aggregated_sigs.add_signature(&good_sig0);
aggregated_sigs.add_signature(&bad_sig1);
aggregated_sigs.add_publickey(&keypair0.public);
aggregated_sigs.add_publickey(&keypair1.public);
assert!(
aggregated_sigs.verify() == false,
"aggregated signature of a wrong message should not verify"
);
}
#[test]
fn test_aggregate_tiny_sigs_and_verify_in_g1() {
let message = Message::new(b"ctx", b"test message");
let mut keypairs: Vec<_> = (0..3)
.into_iter()
.map(|_| Keypair::<TinyBLS<Bls12_377, ark_bls12_377::Config>>::generate(thread_rng()))
.collect();
let pub_keys_in_sig_grp: Vec<PublicKeyInSignatureGroup<TinyBLS377>> = keypairs
.iter()
.map(|k| k.into_public_key_in_signature_group())
.collect();
let mut aggregator = SignatureAggregatorAssumingPoP::<TinyBLS377>::new(message.clone());
let mut aggregated_public_key =
PublicKey::<TinyBLS377>(<TinyBLS377 as EngineBLS>::PublicKeyGroup::zero());
for k in &mut keypairs {
aggregator.add_signature(&k.sign(&message));
aggregated_public_key.0 += k.public.0;
}
let mut verifier_aggregator = SignatureAggregatorAssumingPoP::<TinyBLS377>::new(message);
verifier_aggregator.add_signature(&aggregator.signature);
verifier_aggregator.add_publickey(&aggregated_public_key);
for k in &pub_keys_in_sig_grp {
verifier_aggregator.add_auxiliary_public_key(k);
}
assert!(
verifier_aggregator.verify_using_aggregated_auxiliary_public_keys::<Sha256>(),
"verifying with honest auxilary public key should pass"
);
//false aggregation in signature group should fails verification.
verifier_aggregator
.add_auxiliary_public_key(&keypairs[0].into_public_key_in_signature_group());
assert!(
!verifier_aggregator.verify_using_aggregated_auxiliary_public_keys::<Sha256>(),
"verification using non-matching auxilary public key should fail"
);
}
}